Global Research Trends and Recent Advances in Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Analysis of Annual Publications
3.2. Contribution and Collaboration Network between Countries
3.3. Analysis of Journals Publishing Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment
3.4. Analysis of Keywords and Thematic Categorization
3.5. Recent Research Advances in Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment
3.5.1. Anticancer Activities of Medicinal Plant-Synthesized Nanoparticles
Breast Cancer
Liver Cancer
Cervical Cancer
Lung Cancer
Prostate Cancer
Colon Cancer
3.5.2. Possible Mechanism of Action of Anticancer Activities of Medicinal Plant-Synthesized Nanoparticles
4. Discussion
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Gordon, M.C. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2020, 75, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacole 2020, 10, 1614. [Google Scholar]
- Shakya, A.K. Medicinal plants: Future source of new drugs. Int. J. Herb. Med. 2016, 4, 9–64. [Google Scholar]
- Andleeb, A.; Andleeb, A.; Asghar, S.; Zaman, G.; Tariq, M.; Mehmood, A.; Nadeem, M.; Hano, C.; Lorenzo, J.M.; Abbasi, B.H. A A systematic review of biosynthesized metallic nanoparticles as a promising anti-cancer-strategy. Cancers 2021, 13, 2818. [Google Scholar] [CrossRef]
- Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of phytochemicals in cancer prevention. Int. J. Mol. Sci. 2019, 20, 4981. [Google Scholar] [CrossRef] [PubMed]
- Lettieri-Barbato, D.; Aquilano, K. Pushing the limits of cancer therapy: The nutrient game. Front. Oncol. 2018, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- Majolo, F.; Delwing, L.; Marmitt, D.; Bustamante-Filho, I.; Goetertt, M. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem. Lett. 2019, 31, 196–207. [Google Scholar] [CrossRef]
- Lee, H.Y.; Mohammed, K.A.; Nasreen, N. Nanoparticle-based targeted gene therapy for lung cancer. Am. J. Cancer Res. 2016, 6, 1118–1134. [Google Scholar]
- Satalkar PElger, B.S.; Shaw, D.M. Defining nano, nanotechnology and nanomedicine: Why should it matter? Sci. Eng. Ethics 2016, 22, 1255–1276. [Google Scholar] [CrossRef]
- Chaudhary, V.; Sonu; Chowdhury, R.; Thukral, P.; Pathania, D.; Saklani, S.; Lucky; Rustagi, S.; Gautam, A.; Mishra, Y.M.; et al. Biogenic green metal nano systems as efficient anti-cancer agents. Environ. Res. 2023, 229, 115933. [Google Scholar] [CrossRef]
- Rani, N.; Rawat, K.; Saini, M.; Yadav, S.; Shrivastava, A.; Saini, K.; Maity, D. Azadirachta indica leaf extract mediated biosynthesized rod-shaped zinc oxide nanoparticles for in vitro lung cancer treatment. Mater. Sci. Eng. B 2022, 284, 115851. [Google Scholar] [CrossRef]
- Antunes Filho, S.; dos Santos, M.S.; dos Santos, O.A.L.; Backx, B.P.; Soran, M.-L.; Opriş, O.; Lung, I.; Stegarescu, A.; Bououdina, M. Biosynthesis of nanoparticles using plant extracts and essential oils. Molecules 2023, 28, 3060. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G.; MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; et al. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B 2023, 106, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Parveen, A.; Rao, S. Cytotoxicity and genotoxicity of biosynthesized gold and silver nanoparticles on human cancer cell lines. J. Clust. Sci. 2015, 26, 775–788. [Google Scholar] [CrossRef]
- Pillai, R.R.; Sreelekshmi, P.B.; Meera, A.P.; Thomas, S. Biosynthesized iron oxide nanoparticles: Cytotoxic evaluation against human colorectal cancer cell lines. Mater. Today Proc. 2022, 50, 187–195. [Google Scholar] [CrossRef]
- Devalapally, H.; Chakilam, A.; Amiji, M.M. Role of nanotechnology in pharmaceutical product development. J. Pharm. Sci. 2007, 96, 2547–2565. [Google Scholar] [CrossRef]
- Karmous, I.; Pandey, A.; Haj, K.B.; Chaoui, A. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: Insights on plant-based bioengineered nanoparticles, biophysical properties, and anticancer roles. Biol. Trace Elem. Res. 2020, 196, 330–342. [Google Scholar] [CrossRef]
- Haque, S.; Norbert, C.C.; Acharyya, R.; Mukherjee, S.; Kathirvel, M.; Patra, C.R. Biosynthesized silver nanoparticles for cancer therapy and in vivo bioimaging. Cancers 2021, 13, 6114. [Google Scholar] [CrossRef]
- Gnanavel, V.; Palanichamy, V.; Roopan, S.M. Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J. Photochem. Photobiol. B Biol. 2017, 171, 133–138. [Google Scholar] [CrossRef]
- Raghunandan, D.; Ravishankar, B.; Sharanbasava, G.; Mahesh, D.B.; Harsoor, V.; Yalagatti, M.S.; Bhagawanraju, M.; Venkataraman, A. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nano 2011, 2, 57–65. [Google Scholar] [CrossRef]
- El-Deeb, N.M.; Khattab, S.M.; Abu-Youssef, M.A.; Badr, A.M.A. Green synthesis of novel stable biogenic gold nanoparticles for breast cancer therapeutics via the induction of extrinsic and intrinsic pathways. Sci. Rep. 2022, 12, 11518. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.S.; Ngugi, C.; Tolo, F.M.; Maina, E.N. Anticancer potential of silver nanoparticles biosynthesized using Catharanthus roseus leaves extract on cervical (HeLa229) cancer cell line. Sci. Afr. 2024, 25, e02268. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Adetunji, T.L.; Olisah, C.; Olatunde, A.; Tijjani, H.; Mubarak, M.S.; Rauf, A.; Aremu, A.O. Global research landscape on two coumarin derivatives: A scientometric study of trends and innovations from 1990 to 2022. Arab. J. Chem. 2024, 17, 105494. [Google Scholar] [CrossRef]
- Bayode, A.A.; Olisah, C.; Emmanuel, S.S.; Adesina, M.O.; Koko, D.T. Sequestration of steroidal estrogen in aqueous samples using an adsorption mechanism: A systemic scientometric review. RSC Adv. 2023, 13, 22675–22697. [Google Scholar] [CrossRef] [PubMed]
- Fadelu, T.; Rebbeck, T.R. The rising burden of cancer in low– and middle–Human Development Index countries. Cancer 2021, 127, 2864–2866. [Google Scholar] [CrossRef]
- Ghufran, M.S.; Soni, P.; Duddukuri, G.R. The Global Concern for Cancer Emergence and Its Prevention: A Systematic Unveiling of the Present Scenario. In Bioprospecting of Tropical Medicinal Plants; Arunachalam, K., Yang, X., Sasidharan, S.P., Eds.; Springer: Cham, Switzerland, 2023; pp. 1429–1455. [Google Scholar]
- Brennan, P.; Davey-Smith, G. Identifying novel causes of cancers to enhance cancer prevention: New strategies are needed. J. Natl. Cancer Inst. 2022, 114, 353–360. [Google Scholar] [CrossRef]
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018, 15, 2. [Google Scholar] [CrossRef]
- Adetunji, T.L.; Olawale, F.; Olisah, C.; Adetunji, A.E.; Aremu, A.O. Capsaicin: A two-decade systematic review of global research output and recent advances against human cancer. Front. Oncol. 2022, 12, 908487. [Google Scholar] [CrossRef]
- Charmsaz, S.; Collins, D.M.; Perry, A.S.; Prencipe, M. Novel strategies for cancer treatment: Highlights from the 55th IACR annual conference. Cancers 2019, 11, 8. [Google Scholar] [CrossRef]
- Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther. 2016, 38, 1551–1566. [Google Scholar] [CrossRef] [PubMed]
- Mudaranthakam, D.P.; Wick, J.; Calhoun, E.; Gurley, T. Financial burden among cancer patients: A national-level perspective. Cancer Med. 2023, 12, 4638–4646. [Google Scholar] [CrossRef] [PubMed]
- Algarni, A.; Fayomi, A.; Al Garalleh, H.; Afandi, A.; Brindhadevi, K.; Pugazhendhi, A. Nanofabrication synthesis and its role in antibacterial, anti-inflammatory, and anticoagulant activities of AgNPs synthesized by Mangifera indica bark extract. Environ. Res. 2023, 231, 115983. [Google Scholar] [CrossRef] [PubMed]
- Javid, S.; Dilshad, E. Artemisia carvifolia Buch silver nanoparticles downregulate the Rap2A gene in liver cancer. Sci. Rep. 2023, 13, 21553. [Google Scholar] [CrossRef]
- Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer. Artif. Cells Nanomed. Biotechnol. 2018, 46, 295–305. [Google Scholar] [CrossRef]
- Vijayaram, S.; Razafindralambo, H.; Sun, Y.Z.; Vasantharaj, S.; Ghafarifarsani, H.; Hoseinifar, S.H.; Raeeszadeh, M. Applications of green synthesized metal nanoparticles—A review. Biol. Trace Elem. Res. 2024, 202, 360–386. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020, 7, 558493. [Google Scholar] [CrossRef]
- Vishwanath, R.; Negi, B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr. Opin. Green Sustain. Chem. 2021, 4, 100205. [Google Scholar] [CrossRef]
- Rani, N.; Singh, P.; Kumar, S.; Kumar, P.; Bhankar, V.; Kumar, K. Plant-mediated synthesis of nanoparticles and their applications: A review. Mater. Res. Bull. 2023, 163, 112233. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Malaikozhundan, B.; Saravanakumar, K.; Durán-Lara, E.F.; Wang, M.H.; Vaseeharan, B. Garlic clove extract assisted silver nanoparticle—Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. J. Photochem. Photobiol. B Biol. 2019, 198, 111558. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Meyer, S.; Ahmed, O.; Geerts, G.; Madiehe, M.A.; Meyer, M.; Sibuyi, N.R.S. Broad spectrum anti-bacterial activity and non-selective toxicity of gum Arabic silver nanoparticles. Int. J. Mol. Sci. 2022, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- Berta, L.; Coman, N.-A.; Rusu, A.; Tanase, C. A review on plant-mediated synthesis of bimetallic nanoparticles, characterisation and their biological applications. Materials 2021, 14, 7677. [Google Scholar] [CrossRef]
- Alharbi, N.S.; Alsubhi, N.S. Green synthesis and anticancer activity of silver nanoparticles prepared using fruit extract of Azadirachta indica. J. Radiat. Res. Appl. Sci. 2022, 15, 335–345. [Google Scholar] [CrossRef]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl. 2018, 2018, e9390784. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Du, Z.; Ma, S.; Cheng, S.; Jiang, S.; Liu, Y.; Li, D.; Huang, H.; Zhang, K.; Zheng, X. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using Dimocarpus longan Lour. peel extract. Nanoscale Res. Lett. 2016, 11, 300. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, O.; Abbak, M.; Demirbolat, G.M.; Birtekocak, F.; Aksel, M.; Pasa, S.; Cevik, O. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE 2019, 14, e0216496. [Google Scholar] [CrossRef]
- Pannerselvam, B.; Thiyagarajan, D.; Pazhani, A.; Thangavelu, K.P.; Kim, H.J.; Rangarajulu, S.K. Copperpod plant synthesized AgNPs enhance cytotoxic and apoptotic effect in cancer cell lines. Processes 2021, 9, 888. [Google Scholar] [CrossRef]
- Chavan, R.R.; Bhinge, S.D.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Todkar, S.S.; Urade, M.N. Characterization, antioxidant, antimicrobial and cytotoxic activities of green synthesized silver and iron nanoparticles using alcoholic Blumea eriantha DC plant extract. Mater. Today Commun. 2020, 24, 101320. [Google Scholar] [CrossRef]
- Unuofin, J.O.; Oladipo, A.O.; Msagati, T.A.; Lebelo, S.L.; Meddows-Taylor, S.; More, G.K. Novel silver-platinum bimetallic nanoalloy synthesized from Vernonia mespilifolia extract: Antioxidant, antimicrobial, and cytotoxic activities. Arab. J. Chem. 2020, 13, 6639–6648. [Google Scholar] [CrossRef]
- Hemlata Meena, P.R.; Singh, A.P.; Tejavath, K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 2020, 5, 5520–5528. [Google Scholar] [CrossRef]
- Rajasekharreddy, P.; Rani, P.U. Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater. Sci. Eng. C 2014, 39, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Kotteeswaran, V. Green synthesis of silver nanoparticles from aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 025014. [Google Scholar] [CrossRef]
- Sre, P.R.; Reka, M.; Poovazhagi, R.; Kumar, M.A.; Murugesan, K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 135, 1137–1144. [Google Scholar]
- Lakshmanan, G.; Sathiyaseelan Kalaichelvan, P.T.; Murugesan, K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity. Karbala Int. J. Mod. Sci. 2018, 4, 61–68. [Google Scholar]
- He, Y.; Du, Z.; Ma, S.; Liu, Y.; Li, D.; Huang, H.; Jiang, S.; Cheng, S.; Wu, W.; Zhang, K.; et al. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int. J. Nanomed. 2016, 11, 1879–1887. [Google Scholar] [CrossRef]
- Firdhouse, M.J.; Lalitha, P. Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis-antiproliferative effect against prostate cancer cells. Cancer Nanotechnol. 2013, 6, 137–143. [Google Scholar] [CrossRef]
- Singh, S.P.; Mishra, A.; Shyanti, R.K.; Singh, R.P.; Acharya, A. Silver nanoparticles synthesized using Carica papaya leaf extract (AgNPs-PLE) causes cell cycle arrest and apoptosis in human prostate (DU145) cancer cells. Biol. Trace Elem. Res. 2021, 199, 1316–1331. [Google Scholar] [CrossRef]
- Simon, S.; Sibuyi, N.R.S.; Fadaka, A.O.; Meyer, S.; Josephs, J.; Onani, M.O.; Meyer, M.; Madiehe, A.M. Biomedical applications of plant extract-synthesized silver nanoparticles. Biomedicines 2022, 10, 2792. [Google Scholar] [CrossRef]
- Tripathi, D.; Hajra, K.; Maity, D. Recent advancement of bio-inspired nanoparticles in cancer theragnostic. J. Nanotheranostics 2023, 4, 299–322. [Google Scholar] [CrossRef]
- Soni, S.; Kori, S.K.; Sahu, P.; Kashaw, V.; Dahiya, R.; Iyer, A.K.; Soni, V.; Kashaw, S.K. Herbal nanogels: Revolutionizing skin cancer therapy through nanotechnology and natural remedies. Eur. J. Med. Chem. Rep. 2024, 10, 100126. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Global Cancer Burden Growing, Amidst Mounting Need for Services. Available online: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services#:~:text=In%202022%2C%20there%20were%20an,women%20die%20from%20the%20disease (accessed on 1 October 2024).
- Globocan. All Cancers. 2020. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf (accessed on 10 January 2024).
- Coopoosamy, R.; Singh, K.; Naidoo, K.; Nadasan, D.S. The role of phytomedicine: Bridging the gap between the past, present, and future. J. Med. Plants Econ. Dev. 2023, 7, 7. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011, 16, 4567–4598. [Google Scholar] [CrossRef] [PubMed]
- Puja, A.M.; Rupa, E.J.; Kim, Y.J.; Yang, D.C. Medicinal plant enriched metal nanoparticles and nanoemulsion for inflammation treatment: A narrative review on current status and future perspective. Immuno 2023, 3, 182–194. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Pradhan, D.; Biswasroy, P.; Sahu, A.; Sahu, D.K.; Ghosh, G.; Rath, G. Recent advances in herbal nanomedicines for cancer treatment. Curr. Mol. Pharmacol. 2021, 14, 292–305. [Google Scholar] [CrossRef]
- Kaplan, A. The nanocomposites designs of phytomolecules from medicinal and aromatic plants: Promising anticancer-antiviral applications. Beni-Suef. Univ. J. Basic Appl. Sci. 2022, 11, 17. [Google Scholar] [CrossRef]
S/N | Journal Name | Number of Articles | 2022 Impact Factor |
---|---|---|---|
1 | International Journal of Nanomedicine | 121 | 8.0 |
2 | Molecules | 105 | 4.6 |
3 | Journal of Drug Delivery Science and Technology | 102 | 5.0 |
4 | Artificial Cells Nanomedicine and Biotechnology | 86 | 5.8 |
5 | Pharmaceutics | 72 | 5.4 |
6 | Scientific Reports | 57 | 4.6 |
7 | Nanomaterials | 55 | 5.3 |
8 | International Journal of Molecular Biology | 54 | 5.6 |
9 | International Journal of Biological Macromolecules | 52 | 8.2 |
10 | Arabian Journal of Chemistry | 51 | 6 |
Type of Nanoparticles (NPs) | Plant Species | Plant Part | NPs Particle Size | Type/Shape of NPs | Cell Lines | Effect | References |
---|---|---|---|---|---|---|---|
Silver nanoparticles (AgNps) | Cynara scolymus | Leaf | 98.47 ± 2.04 nm | Spherical | Breast cancer (MCF-7) | AgNps from C. scolymus leaf extract demonstrated efficient anticancer activities via mitochondrial apoptosis in MCF-7 cells. | [47] |
AgNps | Mangifera indica | Bark | 56–89 nm | Spherical | MCF-7 | AgNps from M. indica bark extract showed cytotoxicity (80.1%) against MCF-7 at 50 μg mL−1. | [34] |
AgNps | Peltophorum pterocarpum | Leaf | 20–70 nm | Globular | MCF-7 | AgNps from P. pterocarpum leaf extract showed anticancer activity on MCF-7, with an IC50 value of 62 μg mL−1. | [48] |
AgNps and iron nanoparticles (FeNps) | Blumea eriantha | Whole plant | 50 nm | Spherical | MCF-7 | AgNps from B. eriantha whole plant extract induced apoptosis in MCF-7. | [49] |
AgNps | Allium sativum | Garlic cloves | 10–50 nm | Spherical | MCF-7 | AgNps from garlic cloves significantly inhibited MCF-7 viability at 100 μg mL−1. | [41] |
Bimetallic silver-platinum nanoparticles (AgPtNPs) | Vernonia mespilifolia | Whole plant | 35.5 ± 0.8 nm | Spherical | MCF-7 | AgPtNPs from V. mespilifolia whole plant extract demonstrated selective cytotoxic potency towards MCF-7. | [50] |
AgNps | Artemisia carvifolia | Seeds | 80 ± 6 nm | Polyhedral | Liver cancer (HepG2) cell lines | AgNps from A. carvifolia seed extract showed significant cytotoxicity against HepG2 cell lines, with an IC50 value of 2.57 μM. Apoptotic effects were also recorded. | [35] |
AgNps | Cucumis prophetarum | Leaf | 90 nm | Polymorphic (irregularly granulated, ellipsoidal, and highly aggregate) | HepG2 | AgNps from C. prophetarum leaf extract showed antiproliferative effects on HepG2 cell lines, with an IC50 value of 94.2 μg mL−1. | [51] |
AgNps | Nepeta deflersiana | Aerial part | 33 nm | Spherical | Human cervical cancer (HeLa) cells | AgNps from N. deflersiana aerial parts induced dose-dependent cytotoxicity in HeLa cells and induced apoptosis and necrosis cell death through SubG1 cell cycle arrest. | [45] |
AgNps | Sterculia foetida | Seeds | 6.9 ± 0.2 nm | Spherical | HeLa | AgNps from S. foetida seed extract showed antiproliferative (>90%) activity against HeLa cells at a concentration of 16 μg mL−1. | [52] |
AgNps | Punica granatum | Leaves | 46.1–61.69 nm | Crystalline | HeLa | AgNps from P. granatum leaf extract induced apoptosis in HeLa cells by fragmenting the DNA. | [53] |
AgNps | Azadirachta indica | Fruit and leaves | 14–19 nm | Spherical | Lung cancer cell line (H1975) | AgNps from A. indica fruit and leaf extracts were highly toxic against H1975, with IC50 values of 62.2 and 91 μg mL−1. | [44] |
AgNps | Erythrina indica | Root | 20–118 nm | Spherical | Lung cancer | AgNps from E. indica root extract showed cytotoxic effects on lung cancer cell lines. | [54] |
AgNps | Cleome viscosa | Fruits | 20–50 nm | Spherical | Lung cancer (A549) | AgNps from C. viscosa fruit extract showed substantial anticancer activities on AS49 cells, with an IC50 of 28 μg mL−1. | [55] |
AgNps | Dimocarpus longan | Peel | 8–22 nm | Spherical | Human lung cancer (H1299) | AgNps from D. longan peel extract showed a strong inhibitory effect on the growth of H1299 cells, associated with their effects on NF-κB, Bcl-2, caspase-3, and survivin. | [56] |
AgNps | Alternanthera sessilis | Leaves | 30–50 nm | Spherical | Human prostrate (PC3) cancer cell line | AgNps from A. sessilis leaf extract exerted cytotoxic effects on PC3 cells, possibly via an apoptosis-dependent pathway. | [57] |
AgNps | Dimocarpus longan | Peel | 8–22 nm | Spherical | Prostate cancer (VCaP) | AgNps from D. longan peel extract induced a concentration-dependent cytotoxicity against the prostate cancer VCaP cells. | [56] |
AgNps | Carica papaya | Leaves | 10–25 nm | Spherical | Human prostate (DU145) | AgNps from C. papaya leaf extract showed anticancer activities via cell cycle arrest and induction of apoptosis. | [58] |
AgNps | Senegalia senegal | Gum arabic | 1–30 nm | Spherical | Colon cancer cell lines (Caco-2 and HT-29) | AgNps from gum arabic demonstrated selected cytotoxicity on colon cancer cell lines. | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adetunji, T.L.; Olisah, C.; Acho, M.A.; Oyetunde-Joshua, F.; Amoo, S.O. Global Research Trends and Recent Advances in Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment. Plants 2024, 13, 2836. https://doi.org/10.3390/plants13202836
Adetunji TL, Olisah C, Acho MA, Oyetunde-Joshua F, Amoo SO. Global Research Trends and Recent Advances in Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment. Plants. 2024; 13(20):2836. https://doi.org/10.3390/plants13202836
Chicago/Turabian StyleAdetunji, Tomi Lois, Chijioke Olisah, Marvellous Amarachi Acho, Funsho Oyetunde-Joshua, and Stephen O. Amoo. 2024. "Global Research Trends and Recent Advances in Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment" Plants 13, no. 20: 2836. https://doi.org/10.3390/plants13202836
APA StyleAdetunji, T. L., Olisah, C., Acho, M. A., Oyetunde-Joshua, F., & Amoo, S. O. (2024). Global Research Trends and Recent Advances in Medicinal Plant-Synthesized Nanoparticles for Cancer Treatment. Plants, 13(20), 2836. https://doi.org/10.3390/plants13202836