Emerging Insights into the Roles of the Rhizome–Culm System in Bamboo Shoot Development through Analysis of Non-Structural Carbohydrate Changes
Abstract
:1. Introduction
2. Results
2.1. Changes in Non-Structural Carbon Hydration of Shoots
2.2. Changes in Non-Structural Carbon Hydration of Culms
2.3. Changes in Non-Structural Carbon Hydration of Rhizomes
3. Discussion
3.1. Metabolism of NSCs Preceded the Development of Bamboo Shoots
3.2. Bamboo Culms of Different Ages Have Different Functions during the Development of Bamboo Shoots
3.3. Supply Patterns of NSCs in Bamboo Rhizome–Culm System
4. Materials and Methods
4.1. Plant Materials
4.2. Observation of Cell Morphology and Starch Granules
4.3. Determination of Soluble Sugar and Starch Contents
4.4. Starch-Related Enzyme Activity Measurement
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bian, F.Y.; Zhong, Z.K.; Zhang, X.P.; Yang, C.B.; Gai, X. Bamboo—An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere 2019, 246, 125750. [Google Scholar] [CrossRef] [PubMed]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Carbon stocks in bamboo ecosystems worldwide: Estimates and uncertainties. For. Ecol. Manag. 2017, 393, 113–138. [Google Scholar] [CrossRef]
- Nath, A.J.; Lal, R.; Das, A.K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 2015, 3, 654–663. [Google Scholar] [CrossRef]
- Chen, M.; Guo, L.; Muthusamy, R.; Fei, Z.J.; Vinod, K.K.; Ding, Y.L.; Jiao, C.; Gao, Z.P.; Zha, R.F.; Wang, C.Y.; et al. Rapid growth of Moso bamboo (Phyllostachys edulis): Cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell 2022, 34, 3577–3610. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Werger, M.J.A.; During, H.J.; Zhong, Z.C. Carbon and nutrient dynamics in relation to growth rhythm in the giant bamboo Phyllostachys pubescens. Plant Soil 1998, 201, 113–123. [Google Scholar] [CrossRef]
- Zheng, H.F.; Bai, Y.C.; Li, X.Y.; Song, H.J.; Cai, M.M.; Cheng, Z.C.; Mu, S.H.; Li, J.; Gao, J. Photosynthesis, phytohormone signaling and sugar catabolism in the culm sheaths of Phyllostachys edulis. Plants 2022, 11, 2866. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.G.; Zhan, H.; Li, P.C.; Chu, C.H.; Li, J.; Wang, C.M. Physiological mechanism of internode bending growth after the excision of shoot sheath in Fargesia yunnanensis and its implications for understanding the rapid growth of bamboos. Front. Plant Sci. 2020, 11, 418–432. [Google Scholar] [CrossRef]
- Peng, Z.H.; Zhang, C.L.; Zhang, Y.; Hu, T.; Mu, S.H.; Li, X.P.; Gao, J. Transcriptome sequencing and analysis of the fast growing shoots of Moso bamboo (Phyllostachys edulis). PLoS ONE 2013, 8, e78944. [Google Scholar] [CrossRef]
- Chen, M.; Ju, Y.; Ahmad, Z.; Yin, Z.F.; Ding, Y.L.; Que, F.; Yan, J.J.; Chu, J.F.; Wei, Q. Multi-analysis of sheath senescence provides new insights into bamboo shoot development at the fast growth stage. Tree Physiol. 2022, 41, 491–507. [Google Scholar] [CrossRef]
- Song, X.Z.; Peng, C.H.; Zhou, G.M.; Gu, H.H.; Li, Q.; Zhang, C. Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla). Sci. Rep. 2016, 6, 25016–25908. [Google Scholar] [CrossRef]
- Chen, A.L.; Zhao, W.Q.; Ruan, Y.Q.; Guo, C.C.; Zhang, W.G.; Shi, J.M.; Yang, G.Y.; Yu, F. Pattern of emergence and degradation of Phyllostachys edulis ‘Pachyloen’ shoot and the changes of nutrient composition during degradation. Sci. Silvae Sin. 2019, 55, 32–40. [Google Scholar]
- Ding, F.J.; Wang, B.; Zhao, G.D. Sap flow changes of Phyllostachys edulis and their relationships with meteorological factors. Sci. Silvae Sin. 2011, 47, 73–81. [Google Scholar]
- Fang, D.M.; Mei, T.T.; Röll, A.; Hölscher, D. Water transfer between bamboo culms in the period of sprouting. Front. Plant Sci. 2019, 10, 786. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Werger, M.J.A.; Kroon, H.; During, H.J.; Zhong, Z.C. Interactions between shoot age structure, nutrient availability and physiological integration in the giant bamboo Phyllostachys pubescens. Plant Biol. 2000, 2, 437–446. [Google Scholar] [CrossRef]
- Xiong, W.Y. Population structure and management of Moso bamboo stand. Sci. Silvae Sin. 1962, 8, 183–192. [Google Scholar]
- Shi, J.M.; Mao, S.Y.; Wang, L.F.; Ye, X.H.; Wu, J.; Wang, G.R.; Chen, F.S.; Yang, Q.P. Clonal integration driven by source-sink relationships is constrained by rhizome branching architecture in a running bamboo species (Phyllostachys glauca): A 15N assessment in the field. For. Ecol. Manag. 2021, 481, 118754–118763. [Google Scholar] [CrossRef]
- Zhao, J.C.; Cai, C.J. Effects of physiological integration on nitrogen use efficiency of Moso bamboo in homogeneous and heterogeneous environments. Front. Plant Sci. 2023, 14, 1203881. [Google Scholar] [CrossRef]
- Mei, T.T.; Fang, D.M.; Röll, A.; Hölscher, D. Bamboo water transport assessed with deuterium tracing. Forests 2019, 10, 623. [Google Scholar] [CrossRef]
- Li, X.; Ye, C.Y.; Fang, D.M.; Zheng, Q.F.; Cai, Y.J.; Du, H.Q.; Mei, T.T.; Zhou, G.M. Non-structural carbohydrate and water dynamics of Moso bamboo during its explosive growth period. Front. For. Glob. Chang. 2022, 5, 938941. [Google Scholar] [CrossRef]
- Shi, W.L.; Li, J.; Zhan, H.; Yu, L.X.; Wang, C.M.; Wang, S.G. Relation between water storage and photoassimilate accumulation of neosinocalamus affinis with phenology. Forests 2023, 14, 531. [Google Scholar] [CrossRef]
- Jing, X.; Su, W.H.; Fan, S.H.; Luo, H.Y.; Chu, H.Y. Ecological strategy of Phyllostachys heteroclada oliver in the riparian zone based on ecological stoichiometry. Front. Plant Sci. 2022, 13, 974124. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhang, J.B.; Sun, J.L.; Li, Q.; Lin, X.C.; Song, X.Z. Unequal nitrogen translocation pattern caused by clonal integration between connected ramets ensures necessary nitrogen supply for young moso bamboo growth. Environ. Exp. Bot. 2022, 200, 104900. [Google Scholar] [CrossRef]
- Zhan, H.; He, W.Z.; Li, M.B.; Yu, L.X.; Wang, C.M.; Wang, S.G. The dynamics of non-structural carbohydrates in different types of bamboo in response to their phenological variations: Implications for managing bamboo plantations. Forests 2022, 13, 1218. [Google Scholar] [CrossRef]
- Lan, Y.Y.; Wu, L.; Wu, M.; Liu, H.L.; Gao, Y.M.; Zhang, K.M.; Xiang, Y. Transcriptome analysis reveals key genes regulating signaling and metabolic pathways during the growth of Moso bamboo (Phyllostachys edulis) shoots. Physiol. Plant. 2020, 172, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Ryoya, I.; Hisashi, M.; Nobuhiko, K. Characterization of the rhizome of Moso bamboo. Zairyo 2014, 63, 865–870. [Google Scholar]
- Zang, Y.G.; Wu, G.Z.; Li, Q.Q.; Xu, Y.W.; Xue, M.M.; Chen, X.Y.; Wei, H.Y.; Zhang, W.Y.; Zhang, H.; Liu, L.J.; et al. Irrigation regimes modulate non-structural carbohydrates remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolisms. J. Integr. Agric. 2023, in press. [Google Scholar] [CrossRef]
- Seng, S.S.; Wu, J.; Sui, J.J.; Wu, C.Y.; Zhong, X.H.; Liu, C.; Liu, C.; Gong, B.H.; Zhang, F.Q.; He, J.N.; et al. ADP-glucose pyrophosphorylase gene plays a key role in the quality of corm and yield of cormels in gladiolus. Biochem. Biophys. Res. Commun. 2016, 474, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, W.; Qiu, X.; Sun, Y.J.; Xia, X.Z.; Yang, L.Z.; Fan, M.C.; Wang, L.; Qian, H.F. Effects of β-amylase hydrolysis on the structural, physicochemical and storage properties of wheat starch. J. Cereal Sci. 2022, 109, 103605. [Google Scholar] [CrossRef]
- Li, L.Q.; Wang, L.J.; Gao, P.J.; Wei, S.J.; Lv, J.X.; Gao, Y.; Zhang, R.M. Gene expression of starch decomposing enzymes in Phyllostachys edulis stems during the rapid growth period. J. Zhejiang A F Univ. 2020, 37, 1128–1135. [Google Scholar]
- Wang, S.G.; Pei, J.L.; Li, J.; Tang, G.J.; Zhao, J.W.; Peng, X.P.; Nie, S.X.; Ding, Y.L.; Wang, C.M. Sucrose and starch metabolism during Fargesia yunnanensis shoot growth. Physiol. Plant. 2019, 168, 188–204. [Google Scholar] [CrossRef]
- Liu, J. Distribution Characteristic of Non-Structural Carbohydrate for Phyllostachys edulis in Its Clonal Expansion. Master’s Thesis, Jiangxi Agriculture University, Nanchang, China, 2012. [Google Scholar]
- Deepika; Reddy, S.R.; Dixit, V.; Verma, S.; Yadav, P.K. Comparative study on estimation of carbon content in different parts of selected bamboo species. Int. J. Environ. Clim. Chang. 2022, 12, 908–914. [Google Scholar] [CrossRef]
- Okahisa, Y.; Yoshimura, T.; Imamura, Y. Seasonal and height-dependent fluctuation of starch and free glucose contents in Moso bamboo (Phyllostachys pubescens) and its relation to attack by termites and decay fungi. J. Wood Sci. 2006, 52, 445–451. [Google Scholar] [CrossRef]
- Liu, C.G.; Wang, Y.J.; Pan, K.W.; Jin, Y.Q.; Liang, J.; Li, W.; Zhang, L. Photosynthetic carbon and nitrogen metabolism and the relationship between their metabolites and lipid peroxidation in dwarf bamboo (Fargesia rufa Yi) during drought and subsequent recovery. Trees-Struct. Funct. 2015, 29, 1633–1647. [Google Scholar] [CrossRef]
- Huo, D.; Zhao, Z.Y.; Hu, Q.T.; Li, L.; Vasupalli, N.; Zhuo, J.; Zeng, W.; Wu, A.M.; Lin, X.C. PeSNAC-1, a NAC transcription factor from Moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice. Tree Physiol. 2020, 40, 1792–1806. [Google Scholar]
- Ding, Y.L.; Fan, R.W.; Huang, J.S. Development and ultrastructure of the phloem ganglion in bamboo node. Chin. Bull. Bot. 2000, 17, 1009–1013. [Google Scholar]
- Yu, F.; Ding, Y.L. Ultracytochemical localization of Ca2+ during the phloem ganglion development in Phyllostachys edulis. Front. Biol. 2006, 1, 219–224. [Google Scholar] [CrossRef]
- Wang, S.G.; He, W.Z.; Zhan, H. Culm sheaths affect height growth of bamboo shoots in Fargesia yunnanensis. Braz. J. Bot. 2018, 41, 255–266. [Google Scholar] [CrossRef]
- Li, C.; Cai, Y.; Xiao, L.D.; Gao, X.Y.; Shi, Y.J.; Zhou, Y.F.; Du, H.Q.; Zhou, G.M. Rhizome extension characteristics, structure and carbon storage relationships with culms in a 10-year Moso bamboo reforestation period. For. Ecol. Manag. 2021, 498, 119556. [Google Scholar] [CrossRef]
- Keito, K.; Mizue, O.; Michiro, F.; Kanehiro, K.; Yusuke, O. Rhizomes play significant roles in biomass accumulation, production and carbon turnover in a stand of the tall bamboo; Phyllostachys edulis. J. For. Res. 2023, 28, 42–50. [Google Scholar]
- Wu, X.P.; Liu, S.R.; Luan, J.W.; Wang, Y.; Cai, C.J. Responses of water use in Moso bamboo (Phyllostachys heterocycla) culms of different developmental stages to manipulative drought. For. Ecosyst. 2019, 6, 31–45. [Google Scholar] [CrossRef]
- Cai, X.Y.; Jiang, M.Y.; Liao, J.R.; Yang, Y.X.; Li, N.F.; Cheng, Q.B.; Li, X.; Song, H.X.; Luo, Z.H.; Liu, S.L. Biomass allocation strategies and Pb-enrichment characteristics of six dwarf bamboos under soil Pb stress. Ecotoxicol. Environ. Saf. 2021, 207, 111500–111509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Ma, R.X.; Ding, X.C.; Huang, M.C.; Shen, K.; Zhao, S.Q.; Xiao, Z.Z.; Xiu, C.M. Association among starch storage, metabolism, related genes and growth of Moso bamboo (Phyllostachys heterocycla) shoots. BMC Plant Biol. 2021, 21, 477. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Li, P.C.; Chu, C.H.; Ding, Y.L.; Wang, S.G. Symplasmic phloem unloading and post-phloem transport during bamboo internode elongation. Tree Physiol. 2020, 40, 391–412. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; He, C.Y.; Zhang, J.G.; Liao, S.X. Characteristics of temporal and spatial tissue development during the rapidly growing stage of Moso bamboo culms. For. Res. 2012, 25, 425–431. [Google Scholar]
- Hu, T.Y.; Xu, T.T.; Wei, Q.; Yang, G.Y.; Yu, F. Starch granules changes in bamboo shoots during the elongation growth of Phyllostachys edulis ‘Pachyloen’. Acta Bot. Boreal.-Occident. Sin. 2021, 41, 1843–1852. [Google Scholar]
- Martinez, V.; Sala, A.; Dolores, A.; Lucía, G.; Günter, H.; Sara, P.; Frida, I.; Francisco, L. Dynamics of non-structural carbohydrates in terrestrial plants: A global synthesis. Ecol. Monogr. 2016, 86, 495–516. [Google Scholar] [CrossRef]
- Ding, Y.L.; Lin, S.Y.; Wei, Q.; Yao, W.J.; Que, F.; Li, L. Advances in developmental biology of bamboos. J. Nanjing For. Univ. 2022, 46, 23–40. [Google Scholar]
- Li, T.J.; Wang, M.L.; Cao, Y.; Xu, G.; Yang, Q.Q.; Ren, S.Y.; Hu, S.L. Diurnal transpiration of bamboo culm & sheath and their potential effects on water transport during the bamboo shoot stage. Chin. J. Plant Ecol. 2022, 68, 1365. [Google Scholar]
- Yu, F. Studies on the Differention and Function of Ground Tissue in Bamboo Culms. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2008. [Google Scholar]
- Xiao, J. Study on Structure and Metabolomics during Bamboo Culm Multilayer Cell Wall Construction. Master’s Thesis, Jiangxi Agriculture University, Nanchang, China, 2021. [Google Scholar]
- Liu, B. Formation of cell wall in developmental culms of Phyvllostachys pubescens. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2008. [Google Scholar]
- Zhang, M.X.; Chen, S.L.; Jiang, H.; Cao, Q. The water transport profile of Phyllostachys edulis during the explosive growth phase of bamboo shoots. Glob. Ecol. Conserv. 2020, 24, e01251. [Google Scholar] [CrossRef]
- Zhao, X.H.; Zhao, P.; Zhang, Z.Z.; Zhu, L.W.; Niu, J.F.; Ni, G.Y.; Hu, Y.T.; Lei, O.Y. Culm age and rhizome affects night-time water recharge in the bamboo Phyllostachys pubescens. Front. Plant Sci. 2017, 31, 765–779. [Google Scholar] [CrossRef]
- Cao, Y.H.; Zhou, B.Z.; Wang, X.M.; Xiao, M.; Wang, G. The photosynthetic characteristics of Moso bamboo (Phyllostachys pubescens) for different canopy leaves. Adv. Mat. Res. 2013, 2480, 4174–4279. [Google Scholar] [CrossRef]
- Huang, Q.M.; Yang, D.D.; Gao, A.X. A study on photosynthesis of bamboo. Sci. Silvae Sin. 1989, 35, 366–369. [Google Scholar]
- Liese, W.; Weiner, G. Ageing of bamboo culms. A review. Wood Sci. Technol. 1996, 30, 77–89. [Google Scholar] [CrossRef]
- Gan, X.H. Study on the Developmental Biology of Fiber in Phyllostachys edulis Culms. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2005. [Google Scholar]
- Zheng, Y.S.; Hong, W.; Chen, L.G.; Zhang, T.H. Study on structure characteristics of rhizomes in high-yield Phyllostachys heterocycla cv. Pubescens forests. Sci. Silvae Sin. 1998, 44, 52–59. [Google Scholar]
- Zhou, B.Z.; Fu, M.Y. Progress in the study of the underground rhizome root system of bamboo stand. For. Res. 2004, 17, 533–540. [Google Scholar]
- Weng, F.J.; Wang, K.H.; He, Q.J.; Wu, R. Rhizome root absorption capacity in bamboo shoot stands of different ages. J. Zhejiang For. Coll. 2001, 18, 28–30. [Google Scholar]
- Yuan, J.L.; Wen, G.S.; Zhang, M.R.; Zhang, R.M.; Cai, X.F.; Zeng, Y.Y.; Li, H.J.; Wen, X.; Zhu, H. Water potential with Phyllostachys edulis in its fast-growth periods. J. Zhejiang A F Univ. 2015, 32, 722–728. [Google Scholar]
- Wu, Z.C. Study on Water Physiological Characteristics during Degenerating of Phyllostachys edulis ‘Pachyloen’. Master’s Thesis, Jiangxi Agriculture University, Nanchang, China, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, T.; Kong, L.; Hu, S.; Deng, M.; Yang, G.; Wei, Q.; Yu, F. Emerging Insights into the Roles of the Rhizome–Culm System in Bamboo Shoot Development through Analysis of Non-Structural Carbohydrate Changes. Plants 2024, 13, 2. https://doi.org/10.3390/plants13010002
Hu T, Kong L, Hu S, Deng M, Yang G, Wei Q, Yu F. Emerging Insights into the Roles of the Rhizome–Culm System in Bamboo Shoot Development through Analysis of Non-Structural Carbohydrate Changes. Plants. 2024; 13(1):2. https://doi.org/10.3390/plants13010002
Chicago/Turabian StyleHu, Tianyi, Linghui Kong, Sisi Hu, Meng Deng, Guangyao Yang, Qiang Wei, and Fen Yu. 2024. "Emerging Insights into the Roles of the Rhizome–Culm System in Bamboo Shoot Development through Analysis of Non-Structural Carbohydrate Changes" Plants 13, no. 1: 2. https://doi.org/10.3390/plants13010002
APA StyleHu, T., Kong, L., Hu, S., Deng, M., Yang, G., Wei, Q., & Yu, F. (2024). Emerging Insights into the Roles of the Rhizome–Culm System in Bamboo Shoot Development through Analysis of Non-Structural Carbohydrate Changes. Plants, 13(1), 2. https://doi.org/10.3390/plants13010002