Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls—Scenedesmus sp. and Pinnularia sp.
Abstract
1. Introduction
2. Results and Discussion
2.1. Changes in Dissolved Organics
2.2. Biogas and Methane Production
2.3. Energy Balance
3. Materials and Methods
3.1. Experimental Design
3.2. Materials
3.3. Experimental Set-Up
3.4. Analytical Measurements
3.5. Calculation Methods
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilechukwu, N.; Lahiri, S. Renewable-Energy Consumption and International Trade. Energy Rep. 2022, 8, 10624–10629. [Google Scholar] [CrossRef]
- Vujanović, M.; Wang, Q.; Mohsen, M.; Duić, N.; Yan, J. Recent Progress in Sustainable Energy-Efficient Technologies and Environmental Impacts on Energy Systems. Appl. Energy 2021, 283, 116280. [Google Scholar] [CrossRef]
- Kazimierowicz, J. Organic Waste Used In Agricultural Biogas Plants. J. Ecol. Eng. 2014, 15, 88–92. [Google Scholar] [CrossRef]
- Dębowski, M.; Kazimierowicz, J.; Zieliński, M.; Bartkowska, I. Co-Fermentation of Microalgae Biomass and Miscanthus × Giganteus Silage—Assessment of the Substrate, Biogas Production and Digestate Characteristics. Appl. Sci. 2022, 12, 7291. [Google Scholar] [CrossRef]
- Thanigaivel, S.; Priya, A.K.; Dutta, K.; Rajendran, S.; Vasseghian, Y. Engineering Strategies and Opportunities of next Generation Biofuel from Microalgae: A Perspective Review on the Potential Bioenergy Feedstock. Fuel 2022, 312, 122827. [Google Scholar] [CrossRef]
- Gil, A. Challenges on Waste-to-Energy for the Valorization of Industrial Wastes: Electricity, Heat and Cold, Bioliquids and Biofuels. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100615. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dzienis, L.; Dębowski, M.; Zieliński, M. Optimisation of Methane Fermentation as a Valorisation Method for Food Waste Products. Biomass Bioenergy 2021, 144, 105913. [Google Scholar] [CrossRef]
- Vyas, S.; Prajapati, P.; Shah, A.V.; Kumar Srivastava, V.; Varjani, S. Opportunities and Knowledge Gaps in Biochemical Interventions for Mining of Resources from Solid Waste: A Special Focus on Anaerobic Digestion. Fuel 2022, 311, 122625. [Google Scholar] [CrossRef]
- Dębowski, M.; Dudek, M.; Zieliński, M.; Nowicka, A.; Kazimierowicz, J. Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review. Energies 2021, 14, 6025. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Krzemieniewski, M.; Dudek, M.; Grala, A. Microalgae–Cultivation Methods. Pol. J. Nat. Sci. 2012, 27, 151–164. [Google Scholar]
- Yap, J.K.; Sankaran, R.; Chew, K.W.; Halimatul Munawaroh, H.S.; Ho, S.H.; Rajesh Banu, J.; Show, P.L. Advancement of Green Technologies: A Comprehensive Review on the Potential Application of Microalgae Biomass. Chemosphere 2021, 281, 130886. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Świca, I.; Kazimierowicz, J. Algae Biomass as a Potential Source of Liquid Fuels. Phycology 2021, 1, 105–118. [Google Scholar] [CrossRef]
- Martín Juárez, J.; Riol Pastor, E.; Fernández Sevilla, J.M.; Muñoz Torre, R.; García-Encina, P.A.; Bolado Rodríguez, S. Effect of Pretreatments on Biogas Production from Microalgae Biomass Grown in Pig Manure Treatment Plants. Bioresour. Technol. 2018, 257, 30–38. [Google Scholar] [CrossRef]
- Klassen, V.; Blifernez-Klassen, O.; Bax, J.; Kruse, O. Wastewater-Borne Microalga Chlamydomonas Sp.: A Robust Chassis for Efficient Biomass and Biomethane Production Applying Low-N Cultivation Strategy. Bioresour. Technol. 2020, 315, 123825. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Kazimierowicz, J.; Dudek, M.; Świca, I.; Rudnicka, A. The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes 2020, 8, 517. [Google Scholar] [CrossRef]
- Behera, B.; Selvam, S.M.; Paramasivan, B. Research Trends and Market Opportunities of Microalgal Biorefinery Technologies from Circular Bioeconomy Perspectives. Bioresour. Technol. 2022, 351, 127038. [Google Scholar] [CrossRef]
- Razzak, S.A.; Lucky, R.A.; Hossain, M.M.; deLasa, H. Valorization of Microalgae Biomass to Biofuel Production: A Review. Energy Nexus 2022, 7, 100139. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhang, Y.; Qi, X. Biogas from Microalgae: Technologies, Challenges and Opportunities. Renew. Sustain. Energy Rev. 2020, 117, 109503. [Google Scholar] [CrossRef]
- Veerabadhran, M.; Gnanasekaran, D.; Wei, J.; Yang, F. Anaerobic Digestion of Microalgal Biomass for Bioenergy Production, Removal of Nutrients and Microcystin: Current Status. J. Appl. Microbiol. 2021, 131, 1639–1651. [Google Scholar] [CrossRef]
- Tawfik, A.; Ismail, S.; Elsayed, M.; Qyyum, M.A.; Rehan, M. Sustainable Microalgal Biomass Valorization to Bioenergy: Key Challenges and Future Perspectives. Chemosphere 2022, 296, 133812. [Google Scholar] [CrossRef]
- Dȩbowski, M.; Kisielewska, M.; Kazimierowicz, J.; Rudnicka, A.; Dudek, M.; Romanowska-Duda, Z.; Zielínski, M. The Effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock. Energies 2020, 13, 2186. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, Y.; Wang, J. Co-Fermentation of Sewage Sludge and Algae and Fe2+ Addition for Enhancing Hydrogen Production. Int. J. Hydrogen Energy 2021, 46, 8950–8960. [Google Scholar] [CrossRef]
- Doloman, A.; Soboh, Y.; Walters, A.J.; Sims, R.C.; Miller, C.D. Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor. Int. J. Microbiol. 2017, 2017, 5291283. [Google Scholar] [CrossRef] [PubMed]
- Klassen, V.; Blifernez-Klassen, O.; Wibberg, D.; Winkler, A.; Kalinowski, J.; Posten, C.; Kruse, O. Highly Efficient Methane Generation from Untreated Microalgae Biomass. Biotechnol. Biofuels 2017, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, M.J.; de la Lama-Calvente, D.; Jiménez-Rodríguez, A.; Borja, R.; Rincón-Llorente, B. Influence of the Cell Wall of Chlamydomonas Reinhardtii on Anaerobic Digestion Yield and on Its Anaerobic Co-Digestion with a Carbon-Rich Substrate. Process Saf. Environ. Prot. 2019, 128, 167–175. [Google Scholar] [CrossRef]
- Griffiths, G.; Hossain, A.K.; Sharma, V.; Duraisamy, G. Key Targets for Improving Algal Biofuel Production. Clean Technol. 2021, 3, 711–742. [Google Scholar] [CrossRef]
- Choi, H.I.; Sung, Y.J.; Hong, M.E.; Han, J.; Min, B.K.; Sim, S.J. Reconsidering the Potential of Direct Microalgal Biomass Utilization as End-Products: A Review. Renew. Sustain. Energy Rev. 2022, 155, 111930. [Google Scholar] [CrossRef]
- Jothibasu, K.; Muniraj, I.; Jayakumar, T.; Ray, B.; Dhar, D.W.; Karthikeyan, S.; Rakesh, S. Impact of Microalgal Cell Wall Biology on Downstream Processing and Nutrient Removal for Fuels and Value-Added Products. Biochem. Eng. J. 2022, 187, 108642. [Google Scholar] [CrossRef]
- Fischer, H.; Robl, I.; Sumper, M.; Kröger, N. Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca Fusiformis (bacillariophyceae). J. Phycol. 1999, 35, 113–120. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kobayashi, T.; Kumar, G.; Xu, K. Anaerobic Co-Digestion on Improving Methane Production from Mixed Microalgae (Scenedesmus Sp., Chlorella Sp.) and Food Waste: Kinetic Modeling and Synergistic Impact Evaluation. Chem. Eng. J. 2016, 299, 332–341. [Google Scholar] [CrossRef]
- Mathushika, J.; Gomes, C. Development of Microalgae-Based Biofuels as a Viable Green Energy Source: Challenges and Future Perspectives. Biointerface Res. Appl. Chem. 2022, 12, 3849–3882. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Bartkowska, I.; Walery, M. Effect of Low-Temperature Conditioning of Excess Dairy Sewage Sludge with the Use of Solidified Carbon Dioxide on the Efficiency of Methane Fermentation. Energies 2020, 14, 150. [Google Scholar] [CrossRef]
- Zielinski, M.; Debowski, M.; Kazimierowicz, J. The Effect of Static Magnetic Field on Methanogenesis in the Anaerobic Digestion of Municipal Sewage Sludge. Energies 2021, 14, 590. [Google Scholar] [CrossRef]
- Rokicka, M.; Zieliński, M.; Dudek, M.; Dębowski, M. Effects of Ultrasonic and Microwave Pretreatment on Lipid Extraction of Microalgae and Methane Production from the Residual Extracted Biomass. Bioenergy Res. 2021, 14, 752–760. [Google Scholar] [CrossRef]
- Zawieja, I.; Włodarczyk, R.; Kowalczyk, M. Biogas Generation from Sonicated Excess Sludge. Water 2019, 11, 2127. [Google Scholar] [CrossRef]
- Kisielewska, M.; Rusanowska, P.; Dudek, M.; Nowicka, A.; Krzywik, A.; Dębowski, M.; Joanna, K.; Zieliński, M. Evaluation of Ultrasound Pretreatment for Enhanced Anaerobic Digestion of Sida Hermaphrodita. Bioenergy Res. 2020, 13, 824–832. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Zieliński, M.; Bartkowska, I.; Dębowski, M. Effect of Acid Whey Pretreatment Using Ultrasonic Disintegration on the Removal of Organic Compounds and Anaerobic Digestion Efficiency. Int. J. Environ. Res. Public Health 2022, 19, 11362. [Google Scholar] [CrossRef]
- Blume, T.; Neis, U. Improved Wastewater Disinfection by Ultrasonic Pre-Treatment. Ultrason. Sonochem. 2004, 11, 333–336. [Google Scholar] [CrossRef]
- Matouq, M.A.D.; Al-Anber, Z.A. The Application of High Frequency Ultrasound Waves to Remove Ammonia from Simulated Industrial Wastewater. Ultrason. Sonochem. 2007, 14, 393–397. [Google Scholar] [CrossRef]
- Kyllönen, H.; Pirkonen, P.; Nyström, M.; Nuortila-Jokinen, J.; Grönroos, A. Experimental Aspects of Ultrasonically Enhanced Cross-Flow Membrane Filtration of Industrial Wastewater. Ultrason. Sonochem. 2006, 13, 295–302. [Google Scholar] [CrossRef]
- Draye, M.; Estager, J.; Kardos, N. Organic Sonochemistry: Ultrasound in Green Organic Synthesis. Act. Methods 2019, 2, 1–93. [Google Scholar] [CrossRef]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in Pre-Treatment Methods to Improve Anaerobic Digestion of Sewage Sludge. Rev. Environ. Sci. Bio/Technol. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Kashyap, N.; Roy, K.; Moholkar, V.S. Mechanistic Investigations in Ultrasound-Assisted Biodegradation of Phenanthrene. Ultrason. Sonochem. 2020, 62, 104890. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Feng, L.; Li, X.; Chen, Y.; Yin, G.; Zhou, W. Study on Ultrasound-Assisted Oxidative Desulfurization for Crude Oil. Ultrason. Sonochem. 2020, 63, 104946. [Google Scholar] [CrossRef]
- Lippert, T.; Bandelin, J.; Vogl, D.; Tesieh, Z.A.; Wild, T.; Drewes, J.E.; Koch, K. Full-Scale Assessment of Ultrasonic Sewage Sludge Pretreatment Using a Novel Double-Tube Reactor. ACS ES&T Eng. 2020, 1, 298–309. [Google Scholar] [CrossRef]
- Atelge, M.R.; Atabani, A.E.; Banu, J.R.; Krisa, D.; Kaya, M.; Eskicioglu, C.; Kumar, G.; Lee, C.; Yildiz, Y.; Unalan, S.; et al. A Critical Review of Pretreatment Technologies to Enhance Anaerobic Digestion and Energy Recovery. Fuel 2020, 270, 117494. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.S.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in Ultrasound Assisted Extraction of Bioactive Compounds from Cash Crops—A Review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef]
- Salakkam, A.; Sittijunda, S.; Mamimin, C.; Phanduang, O.; Reungsang, A. Valorization of Microalgal Biomass for Biohydrogen Generation: A Review. Bioresour. Technol. 2021, 322, 124533. [Google Scholar] [CrossRef]
- Deivayanai, V.C.; Yaashikaa, P.R.; Senthil Kumar, P.; Rangasamy, G. A Comprehensive Review on the Biological Conversion of Lignocellulosic Biomass into Hydrogen: Pretreatment Strategy, Technology Advances and Perspectives. Bioresour. Technol. 2022, 365, 128166. [Google Scholar] [CrossRef]
- Lim, J.H.K.; Gan, Y.Y.; Ong, H.C.; Lau, B.F.; Chen, W.H.; Chong, C.T.; Ling, T.C.; Klemeš, J.J. Utilization of Microalgae for Bio-Jet Fuel Production in the Aviation Sector: Challenges and Perspective. Renew. Sustain. Energy Rev. 2021, 149, 111396. [Google Scholar] [CrossRef]
- Putri, E.S.K.; Verawaty, M. Microbial Community in Constructed Wetland during the Treatment of Domestic Wastewater. J. Phys. Conf. Ser. 2020, 1500, 012077. [Google Scholar] [CrossRef]
- Ferreira, A.; Reis, A.; Vidovic, S.; Vladic, J.; Gkelis, S.; Melkonyan, L.; Avetisova, G.; Congestri, R.; Acién, G.; Muñoz, R.; et al. Combining Microalgae-Based Wastewater Treatment with Biofuel and Bio-Based Production in the Frame of a Biorefinery. In Grand Challenges in Algae Biotechnology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 319–369. [Google Scholar] [CrossRef]
- Zainith, S.; Saxena, G.; Kishor, R.; Bharagava, R.N. Application of Microalgae in Industrial Effluent Treatment, Contaminants Removal, and Biodiesel Production: Opportunities, Challenges, and Future Prospects. In Bioremediation for Environmental Sustainability, Toxicity, Mechanisms of Contaminants Degradation, Detoxification, and Challenges; Elsevier: Amsterdam, The Netherlands, 2021; pp. 481–517. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhandari, G.; Turco, R.F.; Aminikhoei, Z.; Bhatt, K.; Simsek, H. Algae in Wastewater Treatment, Mechanism, and Application of Biomass for Production of Value-Added Product. Environ. Pollut. 2022, 309, 119688. [Google Scholar] [CrossRef]
- Khan, M.J.; Harish; Ahirwar, A.; Schoefs, B.; Pugazhendhi, A.; Varjani, S.; Rajendran, K.; Bhatia, S.K.; Saratale, G.D.; Saratale, R.G.; et al. Insights into Diatom Microalgal Farming for Treatment of Wastewater and Pretreatment of Algal Cells by Ultrasonication for Value Creation. Environ. Res. 2021, 201, 111550. [Google Scholar] [CrossRef]
- Volschan Junior, I.; de Almeida, R.; Cammarota, M.C. A Review of Sludge Pretreatment Methods and Co-Digestion to Boost Biogas Production and Energy Self-Sufficiency in Wastewater Treatment Plants. J. Water Process Eng. 2021, 40, 101857. [Google Scholar] [CrossRef]
- Lin, Q.; Dong, X.; Luo, J.; Zeng, Q.; Ma, J.; Wang, Z.; Chen, G.; Guo, G. Electrochemical Pretreatment Enhancing Co-Fermentation of Waste Activated Sludge and Food Waste into Volatile Fatty Acids: Performance, Microbial Community Dynamics and Metabolism. Bioresour. Technol. 2022, 361, 127736. [Google Scholar] [CrossRef]
- Zamri, M.F.M.A.; Hasmady, S.; Akhiar, A.; Ideris, F.; Shamsuddin, A.H.; Mofijur, M.; Fattah, I.M.R.; Mahlia, T.M.I. A Comprehensive Review on Anaerobic Digestion of Organic Fraction of Municipal Solid Waste. Renew. Sustain. Energy Rev. 2021, 137, 110637. [Google Scholar] [CrossRef]
- Sari Erkan, H.; Bakaraki Turan, N. Effects of Hydrogen Peroxide and Calcium Hypochlorite on Chemical Oxygen Demand Solubilization and Disintegration of Waste Activated Sludge by Electro-Chemical Pretreatment. Environ. Technol. 2022. [Google Scholar] [CrossRef]
- Lee, J.; Park, K.Y. Impact of Hydrothermal Pretreatment on Anaerobic Digestion Efficiency for Lignocellulosic Biomass: Influence of Pretreatment Temperature on the Formation of Biomass-Degrading Byproducts. Chemosphere 2020, 256, 127116. [Google Scholar] [CrossRef]
- Cho, S.; Park, S.; Seon, J.; Yu, J.; Lee, T. Evaluation of Thermal, Ultrasonic and Alkali Pretreatments on Mixed-Microalgal Biomass to Enhance Anaerobic Methane Production. Bioresour. Technol. 2013, 143, 330–336. [Google Scholar] [CrossRef]
- Gruber-Brunhumer, M.R.; Jerney, J.; Zohar, E.; Nussbaumer, M.; Hieger, C.; Bochmann, G.; Schagerl, M.; Obbard, J.P.; Fuchs, W.; Drosg, B. Acutodesmus Obliquus as a Benchmark Strain for Evaluating Methane Production from Microalgae: Influence of Different Storage and Pretreatment Methods on Biogas Yield. Algal Res. 2015, 12, 230–238. [Google Scholar] [CrossRef]
- Shanthi, M.; Sundaramahalingam, M.A.; Rajeshbanu, J.; Sivashanmugam, P. Surfactant-Assisted Ultrasonic Fragmentation of Mixed Fruit and Vegetable Biomass: Its Impact on Biomethane Yield and Energy Analysis. Fuel 2023, 334, 126617. [Google Scholar] [CrossRef]
- Teo, H.L.; Wahab, R.A. Towards an Eco-Friendly Deconstruction of Agro-Industrial Biomass and Preparation of Renewable Cellulose Nanomaterials: A Review. Int. J. Biol. Macromol. 2020, 161, 1414–1430. [Google Scholar] [CrossRef] [PubMed]
- Godvin Sharmila, V.; Kumar, G.; Sivashanmugham, P.; Piechota, G.; Park, J.H.; Adish Kumar, S.; Rajesh Banu, J. Phase Separated Pretreatment Strategies for Enhanced Waste Activated Sludge Disintegration in Anaerobic Digestion: An Outlook and Recent Trends. Bioresour. Technol. 2022, 363, 127985. [Google Scholar] [CrossRef] [PubMed]
- Ouahabi, Y.R.; Bensadok, K.; Ouahabi, A. Optimization of the Biomethane Production Process by Anaerobic Digestion of Wheat Straw Using Chemical Pretreatments Coupled with Ultrasonic Disintegration. Sustainability 2021, 13, 7202. [Google Scholar] [CrossRef]
- Rajesh Banu, J.; Yukesh Kannah, R.; Kavitha, S.; Ashikvivek, A.; Bhosale, R.R.; Kumar, G. Cost Effective Biomethanation via Surfactant Coupled Ultrasonic Liquefaction of Mixed Microalgal Biomass Harvested from Open Raceway Pond. Bioresour. Technol. 2020, 304, 123021. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Olkiewicz, M.; Torras, C.; Salvadó, J.; Clavero, E.; Bengoa, C. Effect of Pre-Treatments on the Production of Biofuels from Phaeodactylum Tricornutum. J. Environ. Manag. 2016, 177, 240–246. [Google Scholar] [CrossRef]
- Zhao, B.; Ma, J.; Zhao, Q.; Laurens, L.; Jarvis, E.; Chen, S.; Frear, C. Efficient Anaerobic Digestion of Whole Microalgae and Lipid-Extracted Microalgae Residues for Methane Energy Production. Bioresour. Technol. 2014, 161, 423–430. [Google Scholar] [CrossRef]
- Passos, F.; García, J.; Ferrer, I. Impact of Low Temperature Pretreatment on the Anaerobic Digestion of Microalgal Biomass. Bioresour. Technol. 2013, 138, 79–86. [Google Scholar] [CrossRef]
- Rodriguez, C.; Alaswad, A.; Mooney, J.; Prescott, T.; Olabi, A.G. Pre-Treatment Techniques Used for Anaerobic Digestion of Algae. Fuel Process. Technol. 2015, 138, 765–779. [Google Scholar] [CrossRef]
Stage | Variant | Period of Sonification [s] | CODdissolved [mgO2/dm3] | TOCdissolved [mg/dm3] |
---|---|---|---|---|
S1 | V1 | 0 | 64 ± 7 | 47 ± 6 |
V2 | 50 | 290 ± 12 | 221 ± 23 | |
V3 | 100 | 471 ± 19 | 388 ± 31 | |
V4 | 150 | 496 ± 14 | 401 ± 29 | |
V5 | 200 | 512 ± 31 | 441 ± 35 | |
S2 | V1 | 0 | 59 ± 4 | 50 ± 2 |
V2 | 50 | 160 ± 8 | 132 ± 13 | |
V3 | 100 | 270 ± 21 | 170 ± 9 | |
V4 | 150 | 310 ± 17 | 217 ± 23 | |
V5 | 200 | 360 ± 12 | 263 ± 18 |
Variant | Parameter | Unit | Scenedesmus sp. | Pinnularia sp. |
V1 | Biogas | cm3/gVS | 371 ± 21 | 312 ± 14 |
CH4 | % | 49.2 ± 2.4 | 48.8 ± 3.0 | |
cm3/gVS | 183 ± 25 | 152 ± 21 | ||
V2 | Biogas | cm3/gVS | 472 ± 32 | 317 ± 23 |
CH4 | % | 53.9 ± 1.4 | 48.2 ± 2.1 | |
cm3/gVS | 254 ± 22 | 153 ± 24 | ||
V3 | Biogas | cm3/gVS | 534 ± 13 | 384 ± 31 |
CH4 | % | 53.2 ± 1.7 | 50.7 ± 1.3 | |
cm3/gVS | 284 ± 11 | 195 ± 20 | ||
V4 | Biogas | cm3/gVS | 562 ± 29 | 479 ± 17 |
CH4 | % | 54.9 ± 0.9 | 50.2 ± 2.7 | |
cm3/gVS | 309 ± 13 | 240 ± 23 | ||
V5 | Biogas | cm3/gVS | 587 ± 22 | 491 ± 26 |
CH4 | % | 53.3 ± 1.4 | 50.9 ± 1.6 | |
cm3/gVS | 313 ± 15 | 250 ± 21 |
Stage | Variant | Reactor Active Volume [cm3] | OLR [gVS/dm3] | VS Fed into the Reactor, by Mass [g] | Specific Methane Output [cm3/gVS] | Specific Methane Energy Density [Wh/dm3] | Methane Energy Density [Wh/gVS] | Energy Consumed by Disintegration [Wh/g VS] | Net Energy Gain [Wh] | Net Energy Gain Differential V(x)-V1 [Wh] * |
---|---|---|---|---|---|---|---|---|---|---|
S1 | V1 | 200 | 5 | 1 | 183 ± 25 | 9.17 | 1.678 ± 0.23 | 0 | 1.678 ± 0.23 | - |
V2 | 254 ± 22 | 2.329 ± 0.20 | 0.420 | 1.909 ± 0.20 | 0.231 ± 0.02 | |||||
V3 | 284 ± 11 | 2.604 ± 0.10 | 0.840 | 1.764 ± 0.10 | 0.086 ± 0.07 | |||||
V4 | 309 ± 13 | 2.834 ± 0.12 | 1.260 | 1.574 ± 0.12 | −0.104 ± 0.04 | |||||
V5 | 313 ± 15 | 2.870 ± 0.14 | 1.680 | 1.190 ± 0.14 | −0.488 ± 0.08 | |||||
S2 | V1 | 152 ± 21 | 1.394 ± 0.19 | 0 | 1.394 ± 0.19 | - | ||||
V2 | 153 ± 24 | 1.403 ± 0.22 | 0.460 | 0.943 ± 0.22 | −0.451 ± 0.02 | |||||
V3 | 195 ± 20 | 1.788 ± 0.18 | 0.920 | 0.868 ± 0.18 | −0.526 ± 0.05 | |||||
V4 | 240 ± 21 | 2.201 ± 0.19 | 1.380 | 0.821 ± 0.19 | −0.573 ± 0.06 | |||||
V5 | 250 ± 23 | 2.293 ± 0.21 | 1.840 | 0.453 ± 0.21 | −0.941 ± 0.07 |
Stage | Variant | Sonification Period [s] | Energy Input [Wh] | Volume [cm3] | Dry Mass [g] | Volatile Solids [g] | Energy Input [Wh/gVS] |
---|---|---|---|---|---|---|---|
S1 Scenedesmus sp. | V1 | 0 | - | 500 | 15 | 13.2 | 0 |
V2 | 50 | 5.55 | 0.42 | ||||
V3 | 100 | 11.10 | 0.84 | ||||
V4 | 150 | 16.65 | 1.26 | ||||
V5 | 200 | 22.20 | 1.68 | ||||
S2 Pinnularia sp. | V1 | 0 | - | 12.0 | 0 | ||
V2 | 50 | 5.55 | 0.46 | ||||
V3 | 100 | 11.10 | 0.92 | ||||
V4 | 150 | 16.65 | 1.38 | ||||
V5 | 200 | 22.20 | 1.84 |
Parameter | Unit | Value | ||
---|---|---|---|---|
Scenedesmus sp. | Pinnularia sp. | Anaerobic Sludge | ||
Organic dry mass (VS) | [%TS] | 88.4 ± 0.7 | 79.9 ± 1.6 | 71.2 ± 3.1 |
Mineral dry mass (MS) | [%TS] | 11.6 ± 0.7 | 20.1 ± 1.6 | 28.8 ± 2.0 |
Total nitrogen (TN) | [mg/gTS] | 44.1 ± 1.4 | 42.9 ± 1.1 | 33.8 ± 5.2 |
Total phosphorus (TP) | [mg/gTS] | 17.8 ± 1.1 | 12.7 ± 0.5 | 2.0 ± 0.3 |
Total carbon (TC) | [mg/gTS] | 511 ± 12 | 409 ± 31 | 705.8 ± 19.4 |
Total organic carbon (TOC) | [mg/gTS] | 452 ± 27 | 357 ± 19 | 577.8 ± 21.8 |
C:N ratio | - | 10.3 ± 0.8 | 8.31 ± 0.5 | 17.1 ± 0.2 |
pH | - | 7.52 ± 0.13 | 7.61 ± 0.09 | 7.23 ± 0.11 |
Protein | [%TS] | 27.5 ± 0.6 | 26.8 ± 0.5 | 21.1 ± 0.3 |
Lipids | [%TS] | 16.3 ± 0.90 | 9.4 ± 2.1 | 4.1 ± 1.3 |
Saccharides | [%TS] | 36.8 ± 2.2 | 35.3 ± 2.6 | 1.7 ± 0.5 |
Stage | OLR | Respirometer V | Required VS | Biomass Water Content | TS in the Biomass | VS | VS in the Biomass | V of Respirometer Input (Biomass) |
---|---|---|---|---|---|---|---|---|
gVS/dm3 | cm3 | g | % | g/dm3 | %TS | g/dm3 | cm3 | |
S1—Scenedesmus sp. | 5.0 | 200 | 1.0 | 97 | 30 | 88.4 | 26.5 | 37.7 |
S2—Pinnularia sp. | 79.9 | 24.0 | 41.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębowski, M.; Kazimierowicz, J.; Świca, I.; Zieliński, M. Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls—Scenedesmus sp. and Pinnularia sp. Plants 2023, 12, 53. https://doi.org/10.3390/plants12010053
Dębowski M, Kazimierowicz J, Świca I, Zieliński M. Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls—Scenedesmus sp. and Pinnularia sp. Plants. 2023; 12(1):53. https://doi.org/10.3390/plants12010053
Chicago/Turabian StyleDębowski, Marcin, Joanna Kazimierowicz, Izabela Świca, and Marcin Zieliński. 2023. "Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls—Scenedesmus sp. and Pinnularia sp." Plants 12, no. 1: 53. https://doi.org/10.3390/plants12010053
APA StyleDębowski, M., Kazimierowicz, J., Świca, I., & Zieliński, M. (2023). Ultrasonic Disintegration to Improve Anaerobic Digestion of Microalgae with Hard Cell Walls—Scenedesmus sp. and Pinnularia sp. Plants, 12(1), 53. https://doi.org/10.3390/plants12010053