Deficiencies in the Risk Assessment of Genetically Engineered Bt Cowpea Approved for Cultivation in Nigeria: A Critical Review
Abstract
:1. Introduction
2. Results
2.1. Gene Expression of the Inserted Genes
2.1.1. Relevant Issues for Risk Assessment
2.1.2. Risk Assessment Performed Regarding Gene Expression
2.2. Impact on Non-Target Organisms
2.2.1. Relevant Issues for Risk Assessment
2.2.2. Risk Assessment Performed on Non-Target Organisms
2.3. Impact on Bio-Geochemical Processes
2.3.1. Relevant Issues for Risk Assessment
2.3.2. Risk Assessment Performed on Bio-Geochemical Processes
2.4. Food Safety
2.4.1. Relevant Issues for Risk Assessment
2.4.2. Risk Assessment as Performed in Regard to Food Safety
2.5. Gene Flow to Other Cultivated Varieties or Wild Relatives
2.5.1. Relevant Issues for Risk Assessment
2.5.2. Risk Assessment Performed in Regard to Gene Flow
3. Discussion
3.1. Molecular Data and Gene Expression
3.2. Impact on Non-Target Organisms
3.3. Impact on Bio-Geochemical Processes
3.4. Food Safety
3.5. Gene Flow to Other Cultivated Varieties or Wild Relatives
3.6. The NBC Risk Assessment
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cowpea: Post-Harvest Operations (FAO). Available online: http://www.fao.org/3/a-au994e.pdf (accessed on 17 December 2021).
- Fatokun, C.; Girma, G.; Abberton, M.; Gedil, M.; Unachukwu, N.; Oyatomi, O.; Yusuf, M.; Rabbi, I.; Boukar, O. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 2018, 8, 16035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decision Document for a Permit for the Commercial Release of Pod Borer-Resistant Cowpea (PBR-Cowpea)—Event AAT 709A Genetically Modified for Lepidopteran Insect Pest (Maruca vitrata) Resistance Issued to Institute for Agricultural Research (IAR) Zaria—NBMA/CM/002. Available online: https://bch.cbd.int/en/database/BCH-DEC-NG-114250-1 (accessed on 29 December 2021).
- Application Form for Permit—General Release/Commercialization of Genetically Modified Organisms (GMOs) in Nigeria—Ref. No. AAT/DPS-18VUIR-NG—Insect Resistant Cowpea Event 709A—Supporting Dossier for the Permit Application for General Release/Commercialization of a Genetically Modified Organism in Nigeria (2018). Available online: https://www.testbiotech.org/content/application-bt-cowpea (accessed on 29 December 2021).
- Cartagena Protocol on Biosafety to the Convention on Biological Diversity. 2000. Available online: https://bch.cbd.int/protocol/ (accessed on 29 December 2021).
- EFSA Guidance on the environmental risk assessment of genetically modified plants. EFSA J. 2010, 8, 1879. [CrossRef]
- Nigeria Biosafety Guidelines (Biosafety Law, Regulation, Guidelines and Agreements). Available online: https://bch.cbd.int/en/countries/ng (accessed on 29 December 2021).
- Commission Implementing Regulation (EU) No 503/2013 on Applications for Authorisation of Genetically Modified Food and Feed in Accordance with Regulation (EC) No 1829/2003 of the European Parliament and of the Council and Amending Commission Regulations (EC) No 641/2004 and (EC) No 1981/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32013R0503 (accessed on 17 December 2021).
- Gelvin, S.B. Integration of Agrobacterium T-DNA into the Plant Genome. Annu. Rev. Genet. 2017, 51, 195–217. [Google Scholar] [CrossRef] [PubMed]
- Forsbach, A.; Schubert, D.; Lechtenberg, B.; Gils, M.; Schmidt, R. A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant. Mol. Biol. 2003, 52, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-R.; Lee, J.; Jun, S.-H.; Park, S.; Kang, H.-G.; Kwon, S.; An, G. Transgene structures in T-DNA-inserted rice plants. Plant. Mol. Biol. 2003, 52, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Latham, J.R.; Wilson, A.K.; Steinbrecher, R.A. The mutational consequences of plant transformation. J. Biomed. Biotechnol. 2006, 2, 25376. [Google Scholar] [CrossRef] [PubMed]
- Makarevitch, I.; Svitashev, S.K.; Somers, D.A. Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant. Mol. Biol. 2003, 52, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Rang, A.; Linke, B.; Jansen, B. Detection of RNA variants transcribed from the transgene in Roundup Ready soybean. Eur. Food Res. Technol. 2005, 220, 438–443. [Google Scholar] [CrossRef]
- Windels, P.; De Buck, S.; Van Bockstaele, E.; De Loose, M.; Depicker, A. T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. Plant. Physiol. 2003, 133, 2061–2068. [Google Scholar] [CrossRef] [Green Version]
- Jupe, F.; Rivkin, A.C.; Michael, T.P.; Zander, M.; Motley, S.T.; Sandoval, J.P.; Slotkin, R.K.; Chen, H.; Castanon, R.; Nery, J.R.; et al. The complex architecture and epigenomic impact of plant T-DNA insertions. PLoS Genet. 2019, 15, e1007819. [Google Scholar] [CrossRef] [Green Version]
- Adamczyk, J.J., Jr.; Meredith, W.R., Jr. Genetic basis for variability of Cry1Ac expression among commercial transgenic Bacillus thuringiensis (Bt) cotton cultivars in the United States. J. Cotton Sci. 2004, 8, 17–23. Available online: https://pubag.nal.usda.gov/catalog/10670 (accessed on 29 December 2021).
- Adamczyk, J.J., Jr.; Perera, O.; Meredith, W.R., Jr. Production of mRNA from the cry1Ac transgene differs among Bollgard® lines which correlates to the level of subsequent protein. Transgenic Res. 2009, 18, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Ye, G.; Yang, C.; Chen, Y.; Wu, Y. The effect of high temperature on the insecticidal properties of Bt cotton. Environ. Exp. Bot. 2005, 53, 333–342. [Google Scholar] [CrossRef]
- Dong, H.Z.; Li, W.J. Variability of endotoxin expression in Bt transgenic cotton. J. Agron. Crop. Sci. 2006, 19, 21–29. [Google Scholar] [CrossRef]
- Huang, J.; Mi, J.; Chen, R.; Su, H.; Wu, K.; Qiao, F.; Hu, R. Effect of farm management practices in the Bt toxin production by Bt cotton: Evidence from farm fields in China. Transgenic Res. 2014, 23, 397–406. [Google Scholar] [CrossRef]
- Luo, Z.; Dong, H.; Li, W.; Ming, Z.; Zhu, Y. Individual and combined effects of salinity and waterlogging on Cry1Ac expression and insecticidal efficacy of Bt cotton. Crop. Prot. 2008, 27, 1485–1490. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Jehle, J.A. Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize MON810. J. Plant. Dis. Prot. 2007, 114, 82–87. [Google Scholar] [CrossRef]
- Then, C.; Lorch, A. A simple question in a complex environment: How much Bt toxin do genetically engineered MON810 maize plants actually produce? In Implications of GM-Crop. Cultivation at Large Spatial Scales; Breckling, B., Reuter, H., Verhoeven, R., Eds.; Peter Lang: Frankfurt, Germany, 2008; pp. 17–21. [Google Scholar]
- Trtikova, M.; Wikmark, O.G.; Zemp, N.; Widmer, A.; Hilbeck, A. Transgene expression and Bt protein content in transgenic Bt maize (MON810) under optimal and stressful environmental conditions. PLoS ONE 2015, 10, e0123011. [Google Scholar] [CrossRef]
- Reinbothe, S.; Mollenhauer, B.; Reinbothe, C. JIPs and RIPs: The regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant. Cell 1994, 6, 1197–1209. [Google Scholar] [CrossRef] [Green Version]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef]
- Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant. Bio. 2008, 59, 41–66. [Google Scholar] [CrossRef] [Green Version]
- National Biosafety Management Agency (NBMA) Recommmendation of National Biosafety Committee (NBC) on an Application by Institute of Agricultural Research (IAR), Ahmadu Bello University Zaria for General Release/Commercialisation of Cowpea Genetically Modified for Insect Resistance (AAT 709A), Application Ref: NBMA/CM/002. 2018. Available online: https://bch.cbd.int/en/database/RA/BCH-RA-NG-114249/1 (accessed on 29 December 2021).
- Hilbeck, A.; Schmidt, J.E.U. Another view on Bt proteins—How specific are they and what else might they do? Biopestic Int. 2006, 2, 1–50. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.319.4683&rep=rep1&type=pdf (accessed on 29 December 2021).
- Hilbeck, A.; Otto, M. Specificity and combinatorial effects of Bacillus thuringiensis Cry toxins in the context of GMO risk assessment. Front. Environ. Sci. 2015, 3, 71. [Google Scholar] [CrossRef]
- Then, C. Risk assessment of toxins derived from Bacillus thuringiensis—Synergism, efficacy, and selectivity. Environ. Sci. Pollut. Res. Int. 2010, 17, 791–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latham, J.; Love, M.; Hilbeck, A. The distinct properties of natural and GM cry insecticidal proteins. Biotechnol Genet. Eng. Rev. 2017, 33, 62–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insecticidal Bt Crops—EFSA’s Risk Assessment Approach for GM Bt Plants Fails by Design. Available online: https://www.testbiotech.org/en/content/rages-subreport-insecticidal-bt-crops (accessed on 17 December 2021).
- Ma, Y.; Zhang, Y.; Chen, R.-R.; Ren, X.-L.; Wan, P.-J.; Mu, L.-L.; Li, G.-Q. Combined effects of three crystalline toxins from Bacillus thuringiensis with seven proteinase inhibitors on beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Pestic Biochem Physiol 2013, 105, 169–176. [Google Scholar] [CrossRef]
- Mesén-Porras, E.; Dahdouh-Cabia, S.; Jimenez-Quiros, C.; Mora-Castro, R.; Rodríguez, C.; Pinto-Tomás, A. Soybean protease inhibitors increase Bacillus thuringiensis subs. israelensis toxicity against Hypothenemus hampei. Agron. Mesoam. 2020, 31, 461–478. [Google Scholar] [CrossRef]
- Pardo-López, L.; Muñoz-Garay, C.; Porta, H.; Rodríguez-Almazán, C.; Soberón, M.; Bravo, A. Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 2009, 30, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, C.; Qin, J. The interactions between soybean trypsin inhibitor and δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera larva. J. Invertebr. Pathol. 2000, 74, 259–266. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Abel, C.A.; Chen, M.S. Interaction of Cry1Ac toxin (Bacillus thuringiensis) and proteinase inhibitors on the growth, development, and midgut proteinase activities of the bollworm, Helicoverpa zea. Pestic. Biochem. Physiol. 2007, 87, 39–46. [Google Scholar] [CrossRef]
- Cui, J.; Luo, J.; Van Der Werf, W.; Ma, Y.; Xia, J. Effect of pyramiding Bt and CpTI genes on resistance of cotton to Helicoverpa armigera (Lepidoptera: Noctuidae) under laboratory and field conditions. J. Econ. Entomol. 2011, 104, 673–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Shi, X.; Zhao, J.; Zhao, R.; Fan, Y. Insecticidal activity of transgenic tobacco plants expressing both Bt and CpTI genes on cotton bollworm (Helicoverpa armigera). Chin. J. Biotechnol. 1999, 15, 1–5. Available online: https://europepmc.org/article/med/10668128 (accessed on 29 December 2021). [PubMed]
- Gujar, T.; Kalia, V.; Kumari, A.; Prasad, T.V. Potentiation of insecticidal activity of Bacillus thuringiensis subsp. kurstaki HD-1 by proteinase inhibitors in the American bollworm, Helicoverpa armigera (Hübner). Indian J. Exp. Biol. 2004, 42, 157–163. Available online: http://nopr.niscair.res.in/handle/123456789/23352 (accessed on 29 December 2021).
- MacIntosh, S.C.; Kishore, G.M.; Perlak, F.J.; Marrone, P.G.; Stone, T.B.; Sims, S.R.; Fuchs, R.L. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. J. Agric. Food Chem. 1990, 38, 1145–1152. [Google Scholar] [CrossRef]
- Zhao, J.Z.; Fan, Y.L.; Fan, X.L.; Shi, X.P.; Lu, M.G. Evaluation of transgenic tobacco expressing two insecticidal genes to delay resistance development of Helicoverpa armigera. Chin. Sci. Bull. 1999, 44, 1871–1874. [Google Scholar] [CrossRef]
- Babendreier, D.; Kalberer, N.M.; Romeis, J.; Fluri, P.; Mulligan, E.; Bigler, F. Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees. Apidologie 2005, 36, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Niu, C.-Y.; Lei, C.-L.; Cui, J.-J.; Desneux, N. Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology 2010, 19, 1452–1459. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Q.; Zhao, J.-Z.; Li, J.; Xu, B.; Ma, X. Effects of Bt transgenic cotton lines on the cotton bollworm parasitoid Microplitis mediator in the laboratory. Biol. Control. 2005, 35, 134–141. [Google Scholar] [CrossRef]
- Liu, X.D.; Zhai, B.P.; Zhang, X.X.; Zong, J.M. Impact of transgenic cotton plants on a non target pest, Aphis gossypii Glover. Ecol. Entomol. 2005, 30, 307–315. [Google Scholar] [CrossRef]
- Vachon, V.; Laprade, R.; Schwartz, J.L. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr Pathol 2012, 111, 1–12. [Google Scholar] [CrossRef]
- Consensus Document on the Biology of Cowpea (Vigna unguiculata (L.) Walp.). Series on Harmonisation of Regulatory Oversight in Biotechnology, No. 60 (OECD). 2015. Available online: https://web.archive.org/web/20210310102358/ (accessed on 29 December 2021).
- Obrist, L.B.; Dutton, A.; Albajes, R.; Bigler, F. Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecol. Entomol. 2006, 31, 143–154. [Google Scholar] [CrossRef]
- Paula, D.P.; Andow, D.A. Uptake and bioaccumulation of Cry toxins by an aphidophagous predator. Environ. Pollut. 2016, 209, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.F.; Wan, F.H.; Lövei, G.L.; Liu, W.X.; Guo, J.X. Transmission of Bt toxin to the predator Propylaea japonica (Coleoptera: Coccinellidae) through its aphid prey feeding on transgenic Bt cotton. Environ. Entomol. 2006, 35, 143–150. [Google Scholar] [CrossRef]
- Zhou, J.; Xiao, K.; Wei, B.; Wang, Z.; Tian, Y.; Tian, Y.; Song, Q. Bioaccumulation of Cry1Ab protein from an herbivore reduces anti-oxidant enzyme activities in two spider species. PLoS ONE 2014, 9, e84724. [Google Scholar] [CrossRef] [Green Version]
- Van Frankenhuyzen, K. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J. Invertebr Pathol 2013, 114, 76–85. [Google Scholar] [CrossRef]
- Walters, F.S.; de Fontes, C.M.; Hart, H.; Warren, G.W.; Chen, J.S. Lepidopteran active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl. Environ. Microbiol. 2010, 76, 3082–3088. [Google Scholar] [CrossRef] [Green Version]
- Perlak, F.J.; Fuchs, R.L.; Dean, D.A.; McPherson, S.L.; Fischhoff, D.A. Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 1991, 88, 3324–3328. [Google Scholar] [CrossRef] [Green Version]
- de Maagd, R.A.; Bravo, A.; Crickmore, N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 2001, 17, 193–199. [Google Scholar] [CrossRef]
- Huesing, J.E.; Romeis, J.; Ellstrand, N.C.; Raybould, A.; Hellmich, R.L.; Wolt, J.D.; Ehlers, J.D.; Dabiré-Binso, L.C.; Fatokun, C.A.; Hokanson, K.E. Regulatory considerations surrounding the deployment of Bt-expressing cowpea in Africa: Report of the deliberations of an expert panel. GM Crops 2011, 2, 211–224. [Google Scholar] [CrossRef]
- Koch, M.S.; Ward, J.M.; Levine, S.L.; Baum, J.A.; Vicini, J.L.; Hammond, B.G. The food and environmental safety of Bt crops. Front. Plant. Sci. 2015, 6, 283. [Google Scholar] [CrossRef]
- Ba, M.N.; Huesing, J.E.; Tamò, M.; Higgins, T.J.V.; Pittendrigh, B.R.; Murdock, L.L. An assessment of the risk of Bt-cowpea to non-target organisms in West Africa. J. Pest. Sci. 2018, 91, 1165–1179. [Google Scholar] [CrossRef]
- Chen, Z.H.; Chen, L.J.; Zhang, Y.L.; Wu, Z.J. Microbial properties, enzyme activities and the persistence of exogenous proteins in soil under consecutive cultivation of transgenic cottons (Gossypium hirsutum L.). Plant. Soil Environ. 2011, 57, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.H.; Chen, L.J.; Wu, Z.J. Relationships among persistence of Bacillus thuringiensis and Cowpea trypsin inhibitor proteins, microbial properties and enzymatic activities in rhizosphere soil after repeated cultivation with transgenic cotton. Appl. Soil Ecol. 2012, 53, 23–30. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, K.; Chen, L.; Wu, Z.; Luo, J.; Cui, J. Effects of the consecutive cultivation and periodic residue incorporation of Bacillus thuringiensis (Bt) cotton on soil microbe-mediated enzymatic properties. Agric. Ecosyst. Environ. 2017, 239, 154–160. [Google Scholar] [CrossRef]
- Shu, Y.; Zhang, Y.; Zeng, H.; Zhang, Y.; Wang, J. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida. Chemosphere 2017, 173, 1–13. [Google Scholar] [CrossRef]
- Singh, A.; Singh, M.; Dubey, S. Changes in Actinomycetes community structure under the influence of Bt transgenic brinjal crop in a tropical agroecosystem. BMC Microbiol. 2013, 13, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, K.J.; de Armas, R.D.; Soares, C.R.F.; Ogliari, J.B. Communities of endophytic microorganisms in different developmental stages from a local variety as well as transgenic and conventional isogenic hybrids of maize. World J. Microbiol. Biotechnol. 2016, 32, 189. [Google Scholar] [CrossRef]
- Van Wyk, D.A.; Adeleke, R.; Rhode, O.H.; Bezuidenhout, C.C.; Mienie, C. Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt maize cultivation under field conditions in North West Province of South Africa. J. Basic Microbiol. 2017, 57, 781–792. [Google Scholar] [CrossRef]
- Marzan, L.W.; Alam, R.; Hossain, M.A. Characterization, identification and antibiogram studies of endophytic bacteria from cowpea [Vigna unguiculata (L.) Walp]. Bangladesh J. Agril. Res. 2018, 43, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Schnepf, E.; Crickmore, N.; van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D.R.; Dean, D.H. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806. [Google Scholar] [CrossRef] [Green Version]
- Blackwood, C.B.; Buyer, J.S. Soil microbial mommunities associated with Bt and non-Bt corn in three soils. J. Environ. Qual. 2004, 33, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Then, C.; Bauer-Panskus, A. Possible health impacts of Bt toxins and residues from spraying with complementary herbicides in genetically engineered soybeans and risk assessment as performed by the European Food Safety Authority EFSA. Environ. Sci. Eur. 2017, 29, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finamore, A.; Roselli, M.; Britti, S.; Monastra, G.; Ambra, R.; Turrini, A.; Mengheri, E. Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. J. Agri. Food Chem. 2008, 56, 11533–11539. [Google Scholar] [CrossRef] [PubMed]
- González-González, E.; García-Hernández, A.L.; Flores-Mejía, R.; López-Santiago, R.; Moreno-Fierros, L. The protoxin Cry1Ac of Bacillus thuringiensis improves the protection conferred by intranasal immunization with Brucella abortus RB51 in a mouse model. Vet. Microbiol. 2015, 175, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, G.G.; Dean, D.H.; Moreno-Fierros, L. Structural implication of the induced immune response by Bacillus thuringiensis cry proteins: Role of the N-terminal region. Mol. Immunol. 2004, 41, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, G.G.; Moreno-Fierros, L. Carrier potential properties of Bacillus thuringiensis Cry1A toxins for a diphtheria toxin epitope. Scand. J. Immunol. 2007, 66, 610–618. [Google Scholar] [CrossRef]
- Ibarra-Moreno, S.; García-Hernández, A.L.; Moreno-Fierros, L. Coadministration of protoxin Cry1Ac from Bacillus thuringiensis with metacestode extract confers protective immunity to murine cysticercosis. Parasite Immunol. 2014, 36, 266–270. [Google Scholar] [CrossRef]
- Legorreta-Herrera, M.; Oviedo Meza, R.; Moreno-Fierros, L. Pretreatment with Cry1Ac protoxin modulates the immune response, and increases the survival of plasmodium -infected CBA/Ca mice. J. Biomed. Biotechnol. 2010, 2010, 198921. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Fierros, L.; García, N.; Gutiérrez, R.; López-Revilla, R.; Vázquez-Padrón, R.I. Intranasal, rectal and intraperitoneal immunization with protoxin Cry1Ac from Bacillus thuringiensis induces compartmentalized serum, intestinal, vaginal and pulmonary immune responses in Balb/c mice. Microbes Infect. 2000, 2, 885–890. [Google Scholar] [CrossRef]
- Moreno-Fierros, L.; García-Hernández, A.L.; Ilhuicatzi-Alvarado, D.; Rivera-Santiago, L.; Torres-Martínez, M.; Rubio-Infante, N.; Legorreta-Herrera, M. Cry1Ac protoxin from Bacillus thuringiensis promotes macrophage activation by upregulating CD80 and CD86 and by inducing IL-6, MCP-1 and TNF-α cytokines. Int. Immunopharmacol. 2013, 17, 1051–1066. [Google Scholar] [CrossRef]
- Rubio-Infante, N.; Ilhuicatzi-Alvarado, D.; Torres-Martínez, M.; Reyes-Grajeda, J.P.; Nava-Acosta, R.; González-González, E.; Moreno-Fierros, L. The macrophage activation induced by Bacillus thuringiensis Cry1Ac protoxin involves ERK1/2 and p38 pathways and the interaction with Cell-Surface-HSP70. J. Cell Biochem. 2018, 119, 580–598. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Infante, N.; Moreno-Fierros, L. An overview of the safety and biological effects of Bacillus thuringiensis Cry toxins in mammals. J. App. Toxicol. 2016, 36, 630–648. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Padrón, R.I.; Moreno-Fierros, L.; Neri-Bazán, L.; de la Riva, G.A.; López-Revilla, R. Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal antibody responses in mice. Life Sci. 1999, 64, 1897–1912. [Google Scholar] [CrossRef]
- Santos-Vigil, K.I.; Ilhuicatzi-Alvarado, D.; García-Hernández, A.L.; Herrera-García, J.S.; Moreno-Fierros, L. Study of the allergenic potential of Bacillus thuringiensis Cry1Ac toxin following intra-gastric administration in a murine model of food-allergy. Int. J. Immunopharmacol. 2018, 61, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Consensus Document on Compositional Considerations for New Varieties of Cowpea (Vigna unguiculata): Key Food and Feed Nutrients, Anti-Nutrients and Other Constituents. OECD Series on the Safety of Novel Foods and Feeds, 2018 No. 30. Available online: https://web.archive.org/web/20210310033952/ (accessed on 17 December 2021).
- Rao, T.R.; Rao, D.N.; Kotilingam, K.; Athota, R.R. Isolation and characterization of allergens from the seeds of Vigna sinensis. Asian Pac. J. Allergy Immunol. 2000, 18, 9–14. [Google Scholar]
- Xiong, H.; Shi, A.; Mou, B.; Qin, J.; Motes, D.; Lu, W.; Ma, J.; Weng, Y.; Yang, W.; Wu, D. Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS ONE 2016, 11, e0160941. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, E.H.; Kuribara, H.; Hino, A.; Sultana, P.; Mikami, O.; Shimada, N.; Guruge, K.S.; Saito, M.; Nakajima, Y. Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J. Anim. Sci. 2003, 81, 2546–2551. [Google Scholar] [CrossRef]
- Walsh, M.C.; Buzoianu, S.G.; Gardiner, G.E.; Rea, M.C.; Gelencser, E.; Janosi, A.; Epstein, M.M.; Ross, R.P.; Lawlor, P.G. Fate of transgenic DNA from orally administered Bt MON810 maize and effects on immune response and growth in pigs. PLoS ONE 2011, 6, e27177. [Google Scholar] [CrossRef] [Green Version]
- AllergenOnline Database, Curated by the Food Allergy Research and Resource Program (FARRP) at the University of Nebraska (U.S.). Available online: www.allergenonline.org/ (accessed on 17 December 2021).
- Safety Assessment of Transgenic Organisms in the Environment: OECD Consensus Documents, Volume 6, Chapter 5. 2016. Available online: www.oecd-ilibrary.org/docserver/9789264253421-8-en.pdf?expires=1568975050&id=id&accname=guest&checksum=D1AF6F1763B8F7F34E1EA7F71F5038EC (accessed on 17 December 2021).
- Kouam, E.B.; Pasquet, R.S.; Campagne, P.; Tignegre, J.-B.; Thoen, K.; Gaudin, R.; Ouedraogo, J.T.; Salifu, A.B.; Muluvi, G.M.; Gepts, B. Genetic structure and mating system of wild cowpea populations in West Africa. BMC Plant. Biol. 2012, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Cowpea—African Biosafety Network of Expertise. Available online: http://nepad-abne.net/biotechnology/gm-crops-under-research-in-africa/cowpea/ (accessed on 17 December 2021).
- Global Strategy for the Conservation of Cowpea (Vigna unguiculata subsp. unguiculata). Available online: https://www.croptrust.org/wp/wp-content/uploads/2014/12/Cowpea-Strategy-FINAL-27May2010.pdf (accessed on 17 December 2021).
- Bollinedi, H.; Prabhu, K.V.; Singh, N.K.; Mishra, S.; Khurana, J.P.; Singh, A.K. Molecular and functional characterization of GR2-R1 event based backcross derived lines of golden rice in the genetic background of a mega rice variety Swarna. PLoS ONE 2017, 12, e0169600. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.-J.; Xia, H.; Yang, X.; Lu, B.-R. Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: Implication for environmental biosafety assessment. J. Integr. Plant. Biol. 2009, 51, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Kawata, M.; Murakami, K.; Ishikawa, T. Dispersal and persistence of genetically modified oilseed rape around Japanese harbors. Environ. Sci. Pollut. Res. 2009, 16, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.-R.; Yang, C. Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnol. Adv. 2009, 27, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Vacher, C.; Weis, A.E.; Hermann, D.; Kossler, T.; Young, C.; Hochberg, M.E. Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theor. Appl. Genet. 2004, 109, 806–814. [Google Scholar] [CrossRef]
- Yang, X.; Li, L.; Jiang, X.; Wang, W.; Cai, X.; Su, J.; Wang, F.; Lu, B.-R. Genetically engineered rice endogenous 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) transgene alters phenology and fitness of crop-wild hybrid offspring. Sci. Rep. 2017, 7, 6834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer-Panskus, A.; Miyazaki, J.; Kawall, K.; Then, C. Risk assessment of genetically engineered plants that can persist and propagate in the environment. Environ. Sci. Eur. 2020, 32, 32. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Nan, P.; Gu, Z.; Ge, X.; Feng, Y.-Q.; Lu, B.-R. Overexpressing exogenous 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes increases fecundity and auxin content of transgenic arabidopsis plants. Front. Plant. Sci. 2018, 9, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.; Jones, H.; Gans, P.; Coates, S.; Smith, L.M. Toxic secondary metabolite production in genetically modified potatoes in response to stress. J. Agric. Food Chem. 2005, 53, 7766–7776. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.; Linn, F.; Heidmann, I.; Meyer, H.; Niedenhof, I.; Saedler, H. Endogenous and environmental factors influence 35S promoter methylation of a maize A1 gene construct in transgenic petunia and its colour phenotype. Mol. Gen. Genet. 1992, 231, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Zeller, S.L.; Kalinina, O.; Brunner, S.; Keller, B.; Schmid, B. Transgene × environment interactions in genetically modified wheat. PLoS ONE 2010, 5, e11405. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Sun, L.; Kuppu, S.; Hu, R.; Mishra, N.; Smith, J.; Esmaeili, N.; Herath, M.; Gore, M.A.; Payton, P.; et al. The yield difference between wild-type cotton and transgenic cotton that expresses IPT depends on when water-deficit stress is applied. Sci. Rep. 2018, 8, 2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nature Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef] [PubMed]
- National Biodiversity Strategy and Action Plan, 2016–2020 (Federal Republic of Nigeria). Available online: https://www.cbd.int/doc/world/ng/ng-nbsap-v2-en.pdf (accessed on 17 December 2021).
- Nigeria—First National Biodivesity Report 2001. Available online: https://www.cbd.int/doc/world/ng/ng-nr-01-en.pdf (accessed on 17 December 2021).
- Terborgh, J.; Van Schaik, C.; Davenport, L.; Rao, M. Making Parks Work: Strategies for Preserving Tropical Nature; Island Press: Washington, DC, USA, 2002; p. 65. [Google Scholar]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farias, G.C.; Nunes, K.G.; Soares, M.A.; de Siqueira, K.A.; Lima, W.C.; Neves, A.L.R.; de Lacerda, C.F.; Filho, E.G. Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Braz. J. Microbiol. 2020, 51, 243–253. [Google Scholar] [CrossRef]
- Ashinie, S.K.; Tesfaye, B.; Wakeyo, G.K.; Fenta, B.A. Genetic diversity for immature pod traits in Ethiopian cowpea [Vigna unguiculata (L.) Walp.] landrace collections. Afr. J. Biotechnol. 2020, 19, 171–182. [Google Scholar] [CrossRef] [Green Version]
- D’Andrea, A.C.; Kahlheber, S.; Logan, A.L.; Watson, D.J. Early domesticated cowpea (Vigna unguiculata) from Central Ghana. Antiquity 2007, 81, 686–698. [Google Scholar] [CrossRef]
- Boukar, O.; Belko, N.; Chamarthi, S.; Togola, A.; Batieno, J.; Owusu, E.; Haruna, M.; Diallo, S.; Umar, M.L.; Olufajo, O.; et al. Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant. Breeding 2019, 138, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, L.; Liu, X.; Hu, L.; Wang, S.; Cheng, X. De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development. BMC Genet. 2017, 18, 65. [Google Scholar] [CrossRef] [Green Version]
- Ghalmi, N.; Malice, M.; Jacquemin, J.M.; Ounane, S.M.; Mekliche, L.; Baudoin, J.P. Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genet. Resour. Crop. Evol. 2010, 57, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Ogunkanmi, L.A.; Ogundipe, O.T.; Ng, N.Q.; Fatokun, C.A. Genetic diversity in wild relatives of cowpea (Vigna unguiculata) as revealed by simple sequence repeats (SSR) markers. J. Food Agirc Environ. 2008, 6, 263–268. Available online: https://www.academia.edu/15125721/Genetic_diversity_in_wild_relatives_of_cowpea_Vigna_unguiculata_as_revealed_by_simple_sequence_repeats_SSR_markers (accessed on 29 December 2021).
- Oyatomi, O.; Fatokun, C.; Boukar, O.; Abberton, M.; Ilori, C. Screening wild Vigna species and cowpea (Vigna unguiculata) landraces for sources of resistance to Striga gesnerioides. In Enhancing Crop Genepool Use: Capturing Wild Relatives and Landrace Diversity for Crop Improvement; Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V., Eds.; CABI: Boston, MA, USA, 2016; pp. 27–31. [Google Scholar]
- Zannouou, A.; Kossou, D.K.; Ahanchede, A.; Zoundjihékpon, J.; Agbicodo, E.; Struik, P.C.; Sanni, A. Genetic variability of cultivated cowpea in Benin assessed by random amplified polymorphic DNA. Afr. J. Biotechnol. 2008, 7, 4407–4414. Available online: https://edepot.wur.nl/40230 (accessed on 29 December 2021).
- Vázquez-Barrios, V.; Boege, K.; Sosa-Fuentes, T.G.; Rojas, P.; Wegier, A. Ongoing ecological and evolutionary consequences by the presence of transgenes in a wild cotton population. Sci Rep. 2021, 11, 1959. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Then, C.; Miyazaki, J.; Bauer-Panskus, A. Deficiencies in the Risk Assessment of Genetically Engineered Bt Cowpea Approved for Cultivation in Nigeria: A Critical Review. Plants 2022, 11, 380. https://doi.org/10.3390/plants11030380
Then C, Miyazaki J, Bauer-Panskus A. Deficiencies in the Risk Assessment of Genetically Engineered Bt Cowpea Approved for Cultivation in Nigeria: A Critical Review. Plants. 2022; 11(3):380. https://doi.org/10.3390/plants11030380
Chicago/Turabian StyleThen, Christoph, Juliana Miyazaki, and Andreas Bauer-Panskus. 2022. "Deficiencies in the Risk Assessment of Genetically Engineered Bt Cowpea Approved for Cultivation in Nigeria: A Critical Review" Plants 11, no. 3: 380. https://doi.org/10.3390/plants11030380