Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.) Kosterm
Abstract
:1. Introduction
2. Results
2.1. Qualitative and Quantitative Chemical Analyses
2.2. Enantioselective Analysis
2.3. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Instruments and Chemicals
4.2. Plant Material
4.3. EO Distillation and Sample Preparation
4.4. Chemical Qualitative Analysis
4.5. Chemical Quantitative Analysis
4.6. Enantioselective Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Megadiverse Countries, UNEP-WCMC. Available online: https://www.biodiversitya-z.org/content/megadiverse-countries (accessed on 21 July 2021).
- Malagón, O.; Ramírez, J.; Andrade, J.; Morocho, V.; Armijos, C.; Gilardoni, G. Phytochemistry and ethnopharmacology of the Ecuadorian flora. A review. Nat. Prod. Commun. 2016, 11, 1934578X1601100307. [Google Scholar] [CrossRef] [Green Version]
- Chiriboga, X.; Gilardoni, G.; Magnaghi, I.; Vita Finzi, P.; Zanoni, G.; Vidari, G. New anthracene derivatives from Coussarea macrophylla. J. Nat. Prod. 2003, 66, 905–909. [Google Scholar] [CrossRef]
- Gilardoni, G.; Chiriboga, X.; Finzi, P.V.; Vidari, G. New 3,4-secocycloartane and 3,4-secodammarane triterpenes from the Ecuadorian plant Coussarea macrophylla. Chem. Biodivers. 2015, 12, 946–954. [Google Scholar] [CrossRef]
- Herrera, C.; Morocho, V.; Vidari, G.; Bicchi, C.; Gilardoni, G. Phytochemical investigation of male and female Hedyosmum scabrum (Ruiz & Pav.) Solms leaves from Ecuador. Chem. Biodivers. 2018, 15, e1700423. [Google Scholar]
- Torres-Naranjo, M.; Suárez, A.I.; Gilardoni, G.; Cartuche, L.; Flores, P.; Morocho, V. Chemical constituents of Muehlenbeckia tamnifolia (Kunth) Meisn (Polygonaceae) and its in vitro α-amilase and α-glucosidase inhibitory activities. Molecules 2016, 21, 1461. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.; Suarez, A.I.; Bec, N.; Armijos, C.; Gilardoni, G.; Larroque, C.; Vidari, G. Carnosol from Lepechinia mutica and tiliroside from Vallea stipularis: Two promising inhibitors of BuChE. Rev. Bras. Farmacogn. 2018, 28, 559–563. [Google Scholar] [CrossRef]
- Vidari, G.; Abdo, S.; Gilardoni, G.; Ciapessoni, A.; Gusmeroli, M.; Zanoni, G. Fungitoxic metabolites from Erigeron apiculatus. Fitoterapia 2006, 77, 318–320. [Google Scholar] [CrossRef] [PubMed]
- Quílez, A.; Berenguer, B.; Gilardoni, G.; Souccar, C.; De Mendonça, S.; Oliveira, L.F.S.; Martin-Calero, M.J.; Vidari, G. Anti- secretory, anti-inflammatory, and anti-Helicobacter pylori activities of several fractions isolated from Piper carpunya Ruiz & Pav. J. Ethnopharmacol. 2010, 128, 583–589. [Google Scholar]
- Morocho, V.; Valarezo, L.P.; Tapia, D.A.; Cartuche, L.; Cumbicus, N.; Gilardoni, G. A rare dirhamnosyl flavonoid and other radical-scavenging metabolites from Cynophalla mollis (Kunth) J. Presl and Colicodendron scabridum (Kunt) Seem. (Capparaceae) of Ecuador. Chem. Biodivers. 2021, 16, e2100260. [Google Scholar]
- Ramírez, J.; Andrade, M.D.; Vidari, G.; Gilardoni, G. Essential oil and major non-volatile secondary metabolites from the leaves of Amazonian Piper subscutatum. Plants 2021, 10, 1168. [Google Scholar] [CrossRef]
- Gilardoni, G.; Matute, Y.; Ramírez, J. Chemical and enantioselective analysis of the leaf essential oil from Piper coruscans Kunth (Piperaceae), a costal and Amazonian native species of Ecuador. Plants 2020, 9, 791. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.; Gilardoni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.; Cagliero, C.; Bicchi, C.; Vidari, G. Chemical composition, enantiomeric analysis, AEDA sensorial evaluation and antifungal activity of the essential oil from the Ecuadorian plant Lepechinia mutica Benth (Lamiaceae). Chem. Biodivers. 2017, 14, e1700292. [Google Scholar] [CrossRef] [PubMed]
- Gilardoni, G.; Montalván, M.; Ortiz, M.; Vinueza, D.; Montesinos, J.V. The flower essential oil of Dalea mutisii Kunth (Fabaceae) from Ecuador: Chemical, enantioselective, and olfactometric analyses. Plants 2020, 9, 1403. [Google Scholar] [CrossRef] [PubMed]
- García, J.; Gilardoni, G.; Cumbicus, N.; Morocho, V. Chemical analysis of the essential oil from Siparuna echinata (Kunth) A. DC. (Siparunaceae) of Ecuador and isolation of the rare terpenoid Sipaucin A. Plants 2020, 9, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa, S.; Bec, N.; Larroque, C.; Ramirez, J.; Sgorbini, B.; Bicchi, C.; Gilardoni, G. Chemical, enantioselective, and sensory analysis of a cholinesterase inhibitor essential oil from Coreopsis triloba S.F. Blake (Asteraceae). Plants 2019, 8, 448. [Google Scholar] [CrossRef] [Green Version]
- Espinosa, S.; Bec, N.; Larroque, C.; Ramírez, J.; Sgorbini, B.; Bicchi, C.; Cumbicus, N.; Gilardoni, G. A novel chemical profile of a selective in vitro cholinergic essential oil from Clinopodium taxifolium (Kunth) Govaerts (Lamiaceae), a native Andean species of Ecuador. Molecules 2021, 26, 45. [Google Scholar] [CrossRef]
- Calva, J.; Bec, N.; Gilardoni, G.; Larroque, C.; Cartuche, L.; Bicchi, C.; Montesinos, J. Acorenone B: AChE and BChE inhibitor as a major compound of the essential oil distilled from the Ecuadorian species Niphogeton dissecta (Benth.) JF Macbr. Pharmaceuticals 2017, 10, 84. [Google Scholar] [CrossRef] [Green Version]
- Tropicos.org. Missouri Botanical Garden. Available online: https://www.tropicos.org/name/17805788 (accessed on 21 July 2021).
- Jorgensen, P.; Leon-Yanez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; pp. 1–1182. [Google Scholar]
- Naranjo, P.; Kijjoa, A.; Giesbrecht, A.M.; Gottlieb, O.R. Ocotea quixos, American cinnamon. J. Ethnopharmacol. 1981, 4, 233–236. [Google Scholar] [CrossRef]
- Bruni, R.; Medici, A.; Andreotti, E.; Fantin, C.; Muzzoli, M.; Dehesa, M.; Romagnoli, C.; Sacchetti, G. Chemical composition and biological activities of Ishpingo essential oil, a traditional Ecuadorian spice from Ocotea quixos (Lam.) Kosterm. (Lauraceae) flower calices. Food Chem. 2004, 85, 415–421. [Google Scholar] [CrossRef]
- Sacchetti, G.; Guerrini, A.; Noriega, P.; Bianchi, A.; Bruni, R. Essential oil of wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) leaves from Amazonian Ecuador. Flavour Fragr. J. 2006, 21, 674–676. [Google Scholar] [CrossRef]
- Valarezo, E.; Vullien, A.; Conde-Rojas, D. Variability of the chemical composition of the essential oil from the Amazonian Ishpingo species (Ocotea quixos). Molecules 2021, 26, 3961. [Google Scholar] [CrossRef]
- Noriega, P.; Mosquera, T.; Paredes, E.; Parra, M.; Zappia, M.; Herrera, M.; Villegas, A.; Osorio, E. Antimicrobial and antioxidant bioautography activity of bark essential oil from Ocotea quixos (Lam.) Kosterm. J. Planar. Chromat. 2018, 31, 163–168. [Google Scholar] [CrossRef]
- Tognolini, M.; Barocelli, E.; Ballabeni, V.; Bruni, R.; Bianchi, A.; Chiavarini, M.; Impicciatore, M. Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Life Sci. 2006, 78, 1419–1432. [Google Scholar] [CrossRef]
- Ballabeni, V.; Tognolini, M.; Giorgio, C.; Bertoni, S.; Bruni, R.; Barocelli, E. Ocotea quixos Lam. essential oil: In vitro and in vivo investigation on its anti-inflammatory properties. Fitoterapia 2010, 81, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Scalvenzi, L.; Radice, M.; Toma, L.; Severini, F.; Boccolini, D.; Bella, A.; Guerrini, A.; Tacchini, M.; Sacchetti, G.; Chiurato, M.; et al. Larvicidal activity of Ocimum campechianum, Ocotea quixos and Piper aduncum essential oils against Aedes aegypti. Parasite 2019, 26, 23. [Google Scholar] [CrossRef] [Green Version]
- Ballabeni, V.; Tognolini, M.; Bertoni, S.; Bruni, R.; Guerrini, A.; Moreno-Rueda, G.; Barocelli, E. Antiplatelet and antithrombotic activities of essential oil from wild Ocotea quixos (Lam.) Kosterm. (Lauraceae) calices from Amazonian Ecuador. Pharmacol. Res. 2007, 55, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Arteaga-Crespo, Y.; Ureta-Leones, D.; García-Quintana, Y.; Montalván, M.; Gilardoni, G.; Malagón, O. Preliminary predictive model of termiticidal and repellent activities of essential oil extracted from Ocotea quixos leaves against Nasutitermes corniger (Isoptera: Termitidae) using one-factor response surface methodology design. Agronomy 2021, 11, 1249. [Google Scholar] [CrossRef]
- PROAmazonia Program. Available online: https://www.proamazonia.org (accessed on 21 July 2021).
- Adams, R.P. Identification of Essential Oil Components by Gas. Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 10-1932633219. [Google Scholar]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef] [Green Version]
- Kundakovic, T.; Fokialakis, N.; Kovacevic, N.; Chinou, I. Essential oil composition of Achillea lingulata and A. umbellate. Flavour Fragr. J. 2007, 22, 184–187. [Google Scholar] [CrossRef]
- Cho, I.H.; Namgung, H.-J.; Choi, H.-K.; Kim, Y.-S. Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.). Food Chem. 2008, 106, 71–76. [Google Scholar] [CrossRef]
- Saroglou, V.; Marin, P.D.; Rancic, A.; Veljic, M.; Skaltsa, H. Composition and antimicrobial activity of the essential oil of six Hypericum species from Serbia. Biochem. Syst. Ecol. 2007, 35, 146–152. [Google Scholar] [CrossRef]
- Adamiec, J.; Rossner, J.; Velisek, J.; Cejpek, K.; Savel, J. Minor Strecker degradation products of phenylalanine and phenylglycine. Eur. Food Res. Technol. 2001, 212, 135–140. [Google Scholar] [CrossRef]
- Mondello, L.; Dugo, P.; Basile, A.; Dugo, G. Interactive use of linear retention indices, on polar and apolar columns, with a MS-library for reliable identification of complex mixtures. J. Microcolumn Sep. 1995, 7, 581–591. [Google Scholar] [CrossRef]
- Quijano, C.E.; Linares, D.; Pino, J.A. Changes in volatile compounds of fermented cereza agria [Phyllanthus acidus (L.) Skeels] fruit. Flavour Fragr. J. 2007, 22, 392–394. [Google Scholar] [CrossRef]
- Aubert, C.; Pitrat, M. Volatile compounds in the skin and pulp of Queen Anne’s pocket melon. J. Agric. Food Chem. 2006, 54, 8177–8182. [Google Scholar] [CrossRef] [PubMed]
- Bisio, A.; Ciarallo, G.; Romussi, G.; Fontana, N.; Mascolo, N.; Capasso, R.; Biscardi, D. Chemical Composition of Essential Oils from some Salvia species. Phytother. Res. 1998, 12, s117–s120. [Google Scholar] [CrossRef]
- Raina, V.K.; Kumar, A.; Srivastava, S.K.; Syamsundar, K.V.; Kahol, A.P. Essential oil composition of ‘kewda’ (Pandanus odoratissimus) from India. Flavour Fragr. J. 2004, 19, 434–436. [Google Scholar] [CrossRef]
- Shreaz, S.; Wani, W.A.; Behbehani, J.M.; Raja, V.; Irshad, M.; Karched, M.; Ali, I.; Siddiqi, W.A.; Hun, L.T. Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 2016, 112, 116–131. [Google Scholar] [CrossRef]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Wei-Bin, M.; Jun-Tao, F.; Zhi-Li, J.; Xing, Z. Fumigant activity of 6 selected essential oil compounds and combined effect of methyl salicylate and trans-cinnamaldehyde against Culex pipiens pallens. J. Am. Mosq. Control. Assoc. 2014, 30, 199–203. [Google Scholar]
- Sen-Sung, C.; Ju-Yun, L.; Kun-Hsien, T.; Wei-June, C.; Shang-Tzen, C. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J. Agric. Food Chem. 2004, 52, 4395–4400. [Google Scholar]
- Zhu, R.; Liu, H.; Liu, C.; Wang, L.; Ma, R.; Chen, B.; Li, L.; Niu, J.; Fu, M.; Zhang, D.; et al. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res. 2017, 122, 78–89. [Google Scholar] [CrossRef]
- Park, K.-R.; Lee, H.; Cho, M.; Yun, H.-M. A phytochemical constituent, (E)-methyl-cinnamate isolated from Alpinia katsumadai Hayata suppresses cell survival, migration, and differentiation in pre-osteoblasts. Int. J. Mol. Sci. 2020, 21, 3700. [Google Scholar] [CrossRef] [PubMed]
- Tung, Y.T.; Chua, M.T.; Wang, S.Y.; Chang, S.T. Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour. Technol. 2008, 99, 3908–3913. [Google Scholar] [CrossRef] [PubMed]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463. [Google Scholar] [CrossRef]
- De Saint Laumer, J.Y.; Cicchetti, E.; Merle, P.; Egger, J.; Chaintreau, A. Quantification in gas chromatography: Prediction of flame ionization detector response factors from combustion enthalpies and molecular structures. Anal. Chem. 2010, 82, 6457–6462. [Google Scholar] [CrossRef] [PubMed]
- Tissot, E.; Rochat, S.; Debonneville, C.; Chaintreau, A. Rapid GC-FID quantification technique without authentic samples using predicted response factors. Flavour Fragr. J. 2012, 27, 290–296. [Google Scholar] [CrossRef]
No. | Compounds | DB–5ms | HP–INNOWax | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Retention Indices | Cupules | Bark | Leaves | Retention Indices | Cupules | Bark | Leaves | ||||||||||||
LRI 1 | LRI 2 | Ref. | % | σ | % | σ | % | σ | LRI 1 | LRI 2 | Ref. | % | σ | % | σ | % | σ | ||
1 | α–thujene | 924 | 924 | [32] | 0.4 | 0.12 | 0.3 | 0.05 | trace | – | 1024 | 1027 | [33] | 0.2 | 0.19 | 0.2 | 0.05 | trace | – |
2 | α–pinene | 930 | 932 | [32] | 2.0 | 0.57 | 0.7 | 0.10 | 0.5 | 0.07 | 1019 | 1028 | [34] | 1.9 | 0.54 | 0.6 | 0.09 | 0.7 | 0.1 |
3 | camphene | 947 | 946 | [32] | 0.1 | 0.03 | trace | – | 0.1 | 0.01 | 1060 | 1069 | [33] | 0.1 | 0.04 | trace | – | trace | – |
4 | benzaldehyde | 960 | 952 | [32] | 0.3 | 0.5 | 0.3 | 0.20 | 0.1 | 0.05 | 1535 | 1534 | [35] | 1.3 | 0.09 | 0.3 | 0.05 | 0.4 | 0.07 |
5 | sabinene | 971 | 969 | [32] | trace | – | trace | – | 0.4 | 0.1 | 1121 | 1122 | [33] | 0.1 | 0.04 | 0.1 | 0.03 | 0.6 | 0.11 |
6 | β–pinene | 975 | 974 | [32] | 0.2 | 0.28 | trace | – | 0.6 | 0.11 | 1107 | 1110 | [33] | 0.8 | 0.23 | 0.1 | 0.03 | 0.7 | 0.11 |
7 | β–myrcene | 989 | 988 | [32] | 0.3 | 0.07 | trace | – | trace | – | 1167 | 1167 | [36] | 0.3 | 0.17 | trace | – | 0.1 | 0.01 |
8 | α–phellandrene | 1009 | 1002 | [32] | 0.3 | 0.09 | 0.1 | 0.02 | trace | – | 1164 | 1168 | [33] | 0.3 | 0.07 | 0.1 | 0.02 | trace | – |
9 | δ–3–carene | 1011 | 1011 | [32] | 0.4 | 0.11 | 0.1 | 0.02 | trace | – | 1146 | 1147 | [33] | 0.3 | 0.08 | 0.1 | 0.02 | trace | – |
10 | α–terpinene | 1016 | 1014 | [32] | 1.5 | 0.41 | 0.7 | 0.13 | trace | – | 1178 | 1179 | [36] | 1.4 | 0.35 | 0.6 | 0.12 | 0.1 | 0.02 |
11 | p–cymene | 1022 | 1020 | [32] | 0.1 | 0.01 | trace | – | trace | – | 1272 | 1270 | [33] | 2.3 | 0.37 | 1.2 | 0.27 | trace | – |
12 | o–cymene | 1027 | 1022 | [32] | 2.2 | 0.4 | 1.3 | 0.29 | trace | – | 1275 | 1281 | [37] | trace | – | trace | – | trace | – |
13 | limonene | 1028 | 1024 | [32] | 1.0 | 0.26 | 0.5 | 0.10 | 0.2 | 0.03 | 1198 | 1198 | [33] | 0.9 | 0.21 | 0.4 | 0.08 | 0.2 | 0.04 |
14 | 1,8–cineole | 1031 | 1026 | [32] | 4.0 | 0.56 | 0.6 | 0.17 | trace | – | 1209 | 1211 | [33] | 3.9 | 0.46 | 0.6 | 0.16 | 0.1 | 0.02 |
15 | γ–terpinene | 1057 | 1054 | [32] | 2.0 | 0.44 | 0.6 | 0.12 | 0.1 | 0.01 | 1245 | 1254 | [34] | 1.9 | 0.4 | 0.6 | 0.11 | 0.1 | 0.02 |
16 | α–terpinolene | 1087 | 1086 | [32] | 0.1 | 0.02 | 0.1 | 0.01 | trace | – | 1282 | 1282 | [33] | 0.1 | 0.04 | 0.1 | 0.01 | trace | – |
17 | α–thujone | 1099 | 1101 | [32] | trace | – | trace | – | trace | – | 1424 | 1423 | [33] | trace | – | trace | – | trace | – |
18 | linalool | 1100 | 1095 | [32] | 0.9 | 0.01 | 0.1 | 0.04 | 0.3 | 0.06 | 1569 | 1556 | [34] | 1.1 | 0.07 | 0.1 | 0.03 | 0.4 | 0.07 |
19 | camphor | 1154 | 1141 | [32] | 0.1 | 0.01 | trace | – | trace | – | 1516 | 1515 | [33] | 0.1 | 0.01 | trace | – | trace | – |
20 | benzenepropanal | 1161 | 1162 | [38] | 0.7 | 0.12 | 0.6 | 0.09 | 0.1 | 0.03 | 1797 | 1793 | [39] | 0.8 | 0.09 | trace | – | 0.3 | 0.01 |
21 | δ–terpineol | 1177 | 1162 | [32] | 0.1 | 0.07 | trace | – | trace | – | 1689 | 1679 | [33] | 0.1 | 0.04 | trace | – | trace | – |
22 | 4–terpineol | 1180 | 1174 | [32] | 1.4 | 0.03 | 2.4 | 0.63 | 0.1 | 0.04 | 1615 | 1612 | [34] | 1.4 | 0.07 | 2.2 | 0.56 | 0.2 | 0.03 |
23 | α–terpineol | 1195 | 1186 | [32] | 2.2 | 0.07 | 0.7 | 0.17 | 0.1 | 0.04 | 1714 | 1718 | [36] | 2.2 | 1.07 | 0.7 | 0.11 | 0.2 | 0.03 |
24 | methyl chavicol | 1197 | 1195 | [32] | trace | – | trace | – | trace | – | 1679 | 1671 | [33] | trace | – | trace | – | trace | – |
25 | (Z)–cinnamaldehyde | 1218 | 1217 | [32] | 0.2 | 0.07 | 0.2 | 0.04 | 0.1 | 0.01 | 1910 | 1879 | [33] | 0.3 | 0.02 | 0.4 | 0.04 | 0.1 | 0.09 |
26 | o–anisaldehyde | 1237 | 1239 | [32] | trace | – | 0.1 | 0.02 | trace | – | 1979 | – | – | trace | – | 0.3 | 0.02 | trace | – |
27 | (E)–cinnamaldehyde | 1274 | 1267 | [32] | 33.8 | 1.63 | 44.7 | 1.63 | 25.1 | 0.91 | 2069 | 2033 | [33] | 35.4 | 2.9 | 47.0 | 1.41 | 28.9 | 0.99 |
28 | (E)–anethole | 1279 | 1283 | [32] | trace | – | trace | – | 0.2 | 0.01 | 1837 | 1826 | [33] | trace | – | trace | – | 0.1 | 0.01 |
29 | (E)–cinnamyl alcohol | 1299 | 1303 | [32] | trace | – | trace | – | 0.2 | 0.05 | – | – | – | – | – | – | – | – | – |
30 | carvacrol | 1306 | 1298 | [32] | trace | – | trace | – | trace | – | 1875 | 2211 | [33] | trace | – | trace | – | trace | – |
31 | (Z)–methyl cinnamate | 1310 | 1299 | [32] | trace | – | trace | – | trace | – | 1974 | 2075 | [33] | 0.1 | 0.04 | trace | – | trace | – |
32 | bicycloeleme | 1324 | 1336 | [32] | trace | – | trace | – | 0.1 | 0.07 | 1475 | 1488 | [33] | trace | – | trace | – | trace | – |
33 | α–cubebene | 1346 | 1348 | [32] | 0.5 | 0.01 | 0.4 | 0.06 | trace | – | 1459 | 1460 | [33] | 0.5 | 0.04 | 0.3 | 0.05 | 0.1 | 0.19 |
34 | eugenol | 1359 | 1356 | [32] | 0.1 | 0.09 | trace | – | trace | – | – | – | – | – | – | – | – | – | – |
35 | isoledene | 1362 | 1374 | [32] | 0.1 | 0.02 | trace | – | trace | – | – | – | – | – | – | – | – | – | – |
37 | hydrocinnamyl acetate | 1375 | 1366 | [32] | trace | – | trace | – | trace | – | 1959 | 1944 | [40] | trace | – | trace | – | trace | – |
38 | α–copaene | 1374 | 1374 | [32] | 0.3 | 0.05 | 0.1 | 0.01 | 0.6 | 0.06 | 1479 | 1475 | [41] | 0.3 | 0.03 | 0.1 | 0.03 | 0.6 | 0.06 |
39 | (E)–methyl cinnamate | 1381 | 1376 | [32] | 35.9 | 3.59 | 26.2 | 1.90 | trace | – | 2097 | 2075 | [33] | 34.2 | 3.69 | 24.4 | 2.01 | 0.6 | 0.16 |
40 | β–elemene | 1389 | 1389 | [32] | 0.2 | 0.35 | trace | – | 0.1 | 0.14 | 1578 | 1591 | [33] | trace | – | trace | – | trace | – |
41 | methyl eugenol | 1400 | 1403 | [32] | 0.1 | 0.05 | 0.1 | 0.01 | trace | – | 2047 | 2023 | [34] | 0.1 | 0.01 | 0.1 | 0.01 | 0.1 | 0.02 |
42 | (E)–β–caryophyllene | 1418 | 1417 | [32] | 0.4 | 0.05 | 0.2 | 0.01 | 7.0 | 0.32 | 1585 | 1599 | [33] | trace | – | 0.1 | 0.03 | trace | – |
43 | γ–elemene | 1421 | 1434 | [32] | trace | – | trace | – | 0.1 | 0.01 | 1631 | 1639 | [33] | trace | – | trace | – | 0.1 | 0.06 |
44 | β–duprezianene | 1425 | 1421 | [32] | trace | – | trace | – | trace | – | 1771 | – | – | trace | – | trace | – | trace | – |
45 | trans–α–bergamotene | 1439 | 1432 | [32] | trace | – | trace | – | trace | – | 1578 | 1576 | [33] | 0.4 | 0.22 | trace | – | trace | – |
46 | (Z)–β–farnesene | 1447 | 1440 | [32] | 0.1 | 0.01 | trace | – | trace | – | – | – | – | – | – | – | – | – | – |
47 | (E)–cinnamyl acetate | 1446 | 1443 | [32] | 3.2 | 0.33 | 5.2 | 0.42 | 46.0 | 1.88 | 2169 | 2153 | [40] | 3.6 | 0.26 | 5.6 | 0.52 | 50.4 | 1.32 |
48 | α–humulene | 1454 | 1452 | [32] | 0.2 | 0.02 | trace | – | 0.4 | 0.31 | 1658 | 1667 | [33] | 0.1 | 0.09 | trace | – | 0.7 | 0.07 |
49 | (E)–β–farnesene | 1459 | 1454 | [32] | trace | – | trace | – | trace | – | 1640 | 1664 | [33] | 0.1 | 0.03 | trace | – | trace | – |
50 | trans–cadina–1(6),4–diene | 1470 | 1475 | [32] | trace | – | 0.1 | 0.01 | 0.1 | 0.03 | – | – | – | trace | – | trace | – | trace | – |
51 | γ–muurolene | 1470 | 1478 | [32] | trace | – | 0.2 | 0.03 | 0.1 | 0.01 | 1683 | 1690 | [33] | trace | – | trace | – | 0.1 | 0.01 |
52 | γ–himachalene | 1479 | 1481 | [32] | trace | – | trace | – | 0.4 | 0.35 | 1705 | 1709 | [33] | trace | – | trace | – | 0.1 | 0.01 |
53 | germacrene D | 1480 | 1480 | [32] | 0.1 | 0.01 | 0.1 | 0.03 | trace | – | 1698 | 1708 | [33] | 0.1 | 0.05 | trace | – | 0.1 | 0.01 |
54 | α–amorphene | 1482 | 1483 | [32] | trace | – | trace | – | 0.1 | 0.01 | 1678 | 1693 | [33] | trace | – | trace | – | 0.1 | 0.01 |
55 | (E)–methyl isoeugenol | 1488 | 1491 | [32] | trace | – | trace | – | 7.5 | 0.4 | 2211 | – | – | trace | – | trace | – | 8.2 | 0.27 |
56 | trans–muurola–4(14),5–diene | 1489 | 1493 | [32] | trace | – | trace | – | trace | – | 1700 | – | – | trace | – | trace | – | trace | – |
57 | β–selinene | 1491 | 1489 | [32] | 1.0 | 0.1 | trace | – | trace | – | 1705 | 1717 | [33] | 1.2 | 0.62 | trace | – | trace | – |
58 | epi–cubebol | 1494 | 1493 | [32] | trace | – | 0.1 | 0.01 | trace | – | – | – | – | – | – | – | – | – | – |
59 | α–cuprenene | 1499 | 1505 | [32] | trace | – | 0.2 | 0.04 | trace | – | 1760 | – | – | trace | – | trace | – | trace | – |
60 | α–selinene | 1503 | 1498 | [32] | 0.4 | 0.05 | trace | – | trace | – | 1711 | 1725 | [33] | 0.2 | 0.32 | trace | – | trace | – |
61 | β–bisabolene | 1508 | 1505 | [32] | trace | – | trace | – | 0.1 | 0.02 | 1723 | 1728 | [33] | 0.2 | 0.03 | trace | – | trace | – |
62 | trans–β–guaiene | 1513 | 1502 | [32] | trace | – | trace | – | trace | – | – | – | – | 0.1 | 0.01 | trace | – | trace | – |
63 | δ–cadinene | 1519 | 1522 | [32] | 0.1 | 0.15 | 0.3 | 0.02 | trace | – | 1750 | 1758 | [33] | 0.4 | 0.08 | 0.3 | 0.02 | 0.3 | 0.34 |
64 | γ–cadinene | 1524 | 1513 | [32] | 0.1 | 0.07 | trace | – | trace | – | 1747 | 1763 | [33] | trace | – | trace | – | trace | – |
65 | cis–calamenene | 1527 | 1528 | [32] | trace | – | 0.1 | 0.01 | trace | – | 1827 | 1835 | [33] | 0.1 | 0.01 | 0.1 | 0.01 | trace | – |
66 | (E)–o–methoxy cinnamaldehyde | 1529 | 1527 | [32] | trace | – | 8.8 | 4.25 | trace | – | 2499 | – | – | trace | – | 9.5 | 3.62 | trace | – |
67 | α–calacorene | 1533 | 1544 | [32] | trace | – | trace | – | trace | – | – | – | – | – | – | – | – | – | – |
68 | (E)–γ–bisabolene | 1540 | 1529 | [32] | 0.5 | 0.08 | trace | – | 0.6 | 0.02 | 1753 | 1745 | [33] | 0.5 | 0.09 | trace | – | 0.6 | 0.1 |
69 | γ–dehydro–ar–himachalene | 1541 | 1530 | [32] | trace | – | trace | – | trace | – | – | – | – | – | – | – | – | – | – |
70 | trans–cadina–1,4–diene | 1547 | 1533 | [32] | 0.3 | 0.06 | trace | – | trace | – | – | – | – | – | – | – | – | – | – |
71 | elemicin | 1548 | 1555 | [32] | trace | – | 0.2 | 0.06 | trace | – | – | – | – | – | – | – | – | – | – |
72 | germacrene B | 1551 | 1559 | [32] | trace | – | trace | – | trace | – | 1816 | 1824 | [33] | trace | – | trace | – | 0.1 | 0.01 |
73 | β–calacorene | 1556 | 1564 | [32] | trace | – | trace | – | trace | – | – | – | – | – | – | – | – | – | – |
74 | spathulenol | 1576 | 1577 | [32] | trace | – | trace | – | 0.2 | 0.02 | – | – | – | – | – | – | – | – | |
75 | caryophyllene oxide | 1583 | 1582 | [32] | 0.1 | 0.04 | trace | – | 1.2 | 0.19 | 1980 | 1986 | [33] | 0.1 | 0.04 | trace | – | 0.7 | 0.53 |
76 | gleenol | 1596 | 1586 | [32] | trace | – | 0.1 | 0.01 | trace | – | – | – | – | – | – | – | – | – | – |
77 | 1–epi–cubenol | 1598 | 1627 | [32] | 0.1 | 0.05 | 0.3 | 0.02 | trace | – | 2078 | 2088 | [33] | 0.2 | 0.05 | 0.4 | 0.03 | trace | – |
78 | guaiol | 1606 | 1600 | [32] | 0.1 | 0.02 | trace | – | trace | – | – | – | – | – | – | – | – | – | – |
79 | 1,10–di–epi–cubenol | 1607 | 1619 | [32] | trace | – | trace | – | 0.1 | 0.01 | – | – | – | – | – | – | – | – | – |
80 | eremoligenol | 1623 | 1629 | [32] | trace | – | trace | – | 0.1 | 0.01 | – | – | – | – | – | – | – | – | – |
81 | 10–epi–γ–eudesmol | 1626 | 1622 | [32] | trace | – | 0.1 | 0.05 | trace | – | – | – | – | – | – | – | – | – | – |
82 | cis–cadin–4–en–7–ol | 1637 | 1635 | [32] | 0.1 | 0.04 | trace | – | trace | – | 1628 | – | – | trace | – | trace | – | trace | – |
83 | α–muurolol | 1643 | 1644 | [32] | 0.1 | 0.02 | 0.2 | 0.01 | trace | – | – | – | – | – | – | – | – | – | – |
84 | α–cadinol | 1657 | 1652 | [32] | trace | – | trace | – | trace | – | – | – | – | – | – | – | – | – | – |
85 | 7–epi–α–eudesmol | 1667 | 1662 | [32] | 0.2 | 0.03 | 0.2 | 0.04 | trace | – | – | – | – | – | – | – | – | – | – |
86 | khusinol | 1675 | 1679 | [32] | trace | – | 0.5 | 0.11 | trace | – | – | – | – | – | – | – | – | – | – |
87 | α–bisabolol | 1691 | 1685 | [32] | trace | – | trace | – | 0.1 | 0.01 | – | – | – | – | – | – | – | – | – |
88 | benzyl benzoate | 1774 | 1769 | [42] | 0.2 | 0.04 | trace | – | 1.0 | 0.14 | – | – | – | – | – | – | – | – | – |
Hydrocarbon monoterpenes | 10.6 | 4.4 | 1.9 | 10.6 | 4.1 | 2.5 | |||||||||||||
Oxygenated monoterpenes | 8.7 | 3.8 | 0.5 | 8.8 | 3.6 | 0.9 | |||||||||||||
Hydrocarbon sesquiterpenes | 4.3 | 1.8 | 9.7 | 4.2 | 0.9 | 2.9 | |||||||||||||
Oxygenated sesquiterpenes | 0.7 | 1.4 | 1.7 | 0.3 | 0.4 | 0.7 | |||||||||||||
Shikimic acid derivatives | 74.5 | 86.4 | 80.3 | 75.8 | 87.6 | 89.1 | |||||||||||||
Total | 98.8 | 97.8 | 94.1 | 99.7 | 96.6 | 96.1 |
Enantiomers | LRI 1 | Cupules | Bark | Leaves | |||
---|---|---|---|---|---|---|---|
Enantiomer Ratio (%) | e.e. 2 (%) | Enantiomer Ratio (%) | e.e. 2 (%) | Enantiomer Ratio (%) | e.e. 2 (%) | ||
(1S,5R)-(+)-α-pinene | 935 | 8.8 | 82.4 | u/t | 100.0 | 5.8 | 88.3 |
(1S,5S)-(-)-α-pinene | 943 | 91.2 | 100.0 | 94.2 | |||
(1R,4S)-(-)-camphene | 960 | 100.0 | 100.0 | u/t | – | 100.0 | 100.0 |
(1R,5R)-(+)-β-pinene | 996 | 23.1 | 53.8 | u/t | 100.0 | 14.1 | 71.8 |
(1S,5S)-(-)-β-pinene | 999 | 76.9 | 100.0 | 85.9 | |||
(1S,5S)-(−)-sabinene | 1000 | u/t | – | u/t | – | 100.0 | 100.0 |
(R)-(-)-α-phellandrene | 1032 | 31.8 | 29.4 | 100.0 | 100.0 | u/t | – |
(S)-(+)-α-phellandrene | 1034 | 61.2 | u/t | u/t | |||
(S)-(-)-limonene | 1055 | u/t | 100.0 | u/t | – | 53.9 | 7.8 |
(R)-(+)-limonene | 1061 | 100.0 | u/t | 46.1 | |||
(R)-(-)-linalool | 1202 | 100.0 | 100.0 | u/t | – | 100.0 | 100.0 |
(S)-(+)-terpinen-4-ol | 1273 | 23.1 | 53.8 | 20.9 | 58.2 | 100.0 | 100.0 |
(R)-(−)-terpinen-4-ol | 1275 | 76.9 | 79.1 | u/t | |||
(S)-(−)-α-terpineol | 1309 | 82.7 | 65.4 | 37.1 | 25.8 | u/t | – |
(R)-(+)-α-terpineol | 1315 | 17.3 | 62.9 | u/t | |||
(1R,2S,6S,7S,8S)-(-)-α-copaene | 1379 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilardoni, G.; Montalván, M.; Vélez, M.; Malagón, O. Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.) Kosterm. Plants 2021, 10, 2171. https://doi.org/10.3390/plants10102171
Gilardoni G, Montalván M, Vélez M, Malagón O. Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.) Kosterm. Plants. 2021; 10(10):2171. https://doi.org/10.3390/plants10102171
Chicago/Turabian StyleGilardoni, Gianluca, Mayra Montalván, Marjorie Vélez, and Omar Malagón. 2021. "Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.) Kosterm" Plants 10, no. 10: 2171. https://doi.org/10.3390/plants10102171
APA StyleGilardoni, G., Montalván, M., Vélez, M., & Malagón, O. (2021). Chemical and Enantioselective Analysis of the Essential Oils from Different Morphological Structures of Ocotea quixos (Lam.) Kosterm. Plants, 10(10), 2171. https://doi.org/10.3390/plants10102171