The Effects of Physical, Social, and Housing Disorder on Neighborhood Crime: A Contemporary Test of Broken Windows Theory
Abstract
:1. Introduction
1.1. Literature Review
1.1.1. Broken Windows Theory
1.1.2. Testing Broken Windows Theories
1.2. Current Study
2. Methods and Materials
2.1. Sample and Data
2.2. Dependent Variables
2.3. Independent Variables
2.4. Analysis Plan
3. Results
3.1. Descriptive Statistics
3.2. Multivariate Statistics
4. Discussion
4.1. Policy Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, R.E.; Burgess, E.W.; McKenzie, R.D. The City; University of Chicago Press: Chicago, IL, USA, 2019; ISBN 0-226-63650-X. [Google Scholar]
- Shaw, C.R.; McKay, H.D. Juvenile Delinquency and Urban Areas; University of Chicago Press: Chicago, IL, USA, 1942. [Google Scholar]
- Zimbardo, P.G. The Human Choice: Individuation, Reason, and Order Versus Deindividuation, Impulse, and Chaos; University of Nebraska Press: Lincoln, NE, USA, 1969. [Google Scholar]
- Wilson, J.Q.; Kelling, G.L. Broken windows. Atl. Mon. 1982, 249, 29–38. [Google Scholar]
- Bottoms, A. Disorder, order and control signals. Br. J. Sociol. 2009, 60, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, J.; Laub, J. The fear of crime: Broadening our perspective. Victimology 1978, 3, 242–253. [Google Scholar]
- Innes, M. Signal crimes and signal disorders: Notes on deviance as communicative action 1. Br. J. Sociol. 2004, 55, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Maxfield, M.G. Fear in the neighborhoods: An investigation of the impact of crime. J. Res. Crime Delinq. 1980, 17, 160–189. [Google Scholar] [CrossRef]
- Rohe, W.M.; Burby, R.J. Fear of crime in public housing. Environ. Behav. 1988, 20, 700–720. [Google Scholar] [CrossRef]
- Skogan, W.G. Disorder and Decline: Crime and the Spiral of Decay in American Neighborhoods; Univ. of California Press: Berkeley, CA, USA, 1992; ISBN 0-520-07693-1. [Google Scholar]
- Gates, L.B.; Rohe, W.M. Fear and reactions to crime: A revised model. Urban Aff. Q. 1987, 22, 425–453. [Google Scholar] [CrossRef]
- Franklin, C.A.; Franklin, T.W. Predicting fear of crime: Considering differences across gender. Fem. Criminol. 2009, 4, 83–106. [Google Scholar] [CrossRef]
- Innes, M. Why ‘soft’policing is hard: On the curious development of reassurance policing, how it became neighbourhood policing and what this signifies about the politics of police reform. J. Community Appl. Soc. Psychol. 2005, 15, 156–169. [Google Scholar] [CrossRef]
- LaGrange, R.L.; Ferraro, K.F.; Supancic, M. Perceived risk and fear of crime: Role of social and physical incivilities. J. Res. Crime Delinq. 1992, 29, 311–334. [Google Scholar] [CrossRef]
- Kelling, G.L.; Coles, C.M. Fixing Broken Windows: Restoring Order and Reducing Crime in Our Communities; Simon and Schuster: New York, NY, USA, 1997; ISBN 0-684-83738-2. [Google Scholar]
- National Research Council. Fairness and Effectiveness in Policing: The Evidence; National Academies Press: Washington, DC, USA, 2004; ISBN 0-309-28965-3. [Google Scholar]
- Harcourt, B.E.; Ludwig, J. Broken windows: New evidence from New York City and a five-city social experiment. U. Chi. L. Rev. 2006, 73, 271. [Google Scholar]
- Kelling, G.; Sousa, W. Do Police Matter? An Analysis of the Impact of New York City’s Police Reforms; Center for Civic Innovation at the Manhattan Institute: Manhattan, NY, USA, 2001. [Google Scholar]
- Sullivan, C.M.; O’Keeffe, Z.P. Evidence that curtailing proactive policing can reduce major crime. Nat. Hum. Behav. 2017, 1, 730. [Google Scholar] [CrossRef] [PubMed]
- Harcourt, B.E. Illusion of Order: The False Promise of Broken Windows Policing; Harvard University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Sherman, L.W. Hot spots of crime and criminal careers of places. Crime Place 1995, 4, 35–52. [Google Scholar]
- Weisburd, D.; Hinkle, J.C.; Braga, A.A.; Wooditch, A. Understanding the mechanisms underlying broken windows policing: The need for evaluation evidence. J. Res. Crime Delinq. 2015, 52, 589–608. [Google Scholar] [CrossRef]
- De Biasi, A. Transforming vacant lots: Investigating an alternative approach to reducing fear of crime. J. Environ. Psychol. 2017, 50, 125–137. [Google Scholar] [CrossRef]
- Garis, L.; Thomas, L.; Tyakoff, A. Distressed Properties: Pathways of Decline and the Emergence of Public Safety Risk; University of the Fraser Valley: Abootsford, BC, Canada, 2016. [Google Scholar]
- Gladwell, M. The Tipping Point: How Little Things Can Make a Big Difference; Little, Brown, & Company: Boston, MA, USA, 2006; ISBN 0-7595-7473-1. [Google Scholar]
- Perkins, D.D.; Meeks, J.W.; Taylor, R.B. The physical environment of street blocks and resident perceptions of crime and disorder: Implications for theory and measurement. J. Environ. Psychol. 1992, 12, 21–34. [Google Scholar] [CrossRef]
- Baumer, T.L. Research on fear of crime in the United States. Victimology 1978, 3, 254–264. [Google Scholar]
- Covington, J.; Taylor, R.B. Fear of crime in urban residential neighborhoods: Implications of between- and within-neighborhood sources for current models. Sociol. Q. 1991, 32, 231–249. [Google Scholar] [CrossRef]
- Ross, C.E.; Jang, S.J. Neighborhood disorder, fear, and mistrust: The buffering role of social ties with neighbors. Am. J. Community Psychol. 2000, 28, 401–420. [Google Scholar] [CrossRef]
- Taylor, R.B.; Shumaker, S.A.; Gottfredson, S.D. Neighborhood-level links between physical features and local sentiments: Deterioration, fear of crime, and confidence. J. Archit. Plan. Res. 1985, 2, 261–275. [Google Scholar]
- Cohen, D.A.; Inagami, S.; Finch, B. The built environment and collective efficacy. Health Place 2008, 14, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schachterle, S.E.; Bishai, D.; Shields, W.; Stepnitz, R.; Gielen, A.C. Proximity to vacant buildings is associated with increased fire risk in Baltimore, Maryland, homes. Inj. Prev. 2012, 18, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Spelman, W. Abandoned buildings: Magnets for crime? J. Crim. Justice 1993, 21, 481–495. [Google Scholar] [CrossRef]
- Sampson, R.J.; Raudenbush, S.W. Systematic social observation of public spaces: A new look at disorder in urban neighborhoods. Am. J. Sociol. 1999, 105, 603–651. [Google Scholar] [CrossRef] [Green Version]
- United States Census Bureau American FactFinder. Available online: https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml (accessed on 18 May 2017).
- Bellair, P.E.; Browning, C.R. Contemporary disorganization research: An assessment and further test of the systemic model of neighborhood crime. J. Res. Crime Delinq. 2010, 47, 496–521. [Google Scholar] [CrossRef]
- Grannis, R. The importance of trivial streets: Residential streets and residential segregation. Am. J. Sociol. 1998, 103, 1530–1564. [Google Scholar] [CrossRef]
- Lee, M.R.; Ousey, G.C. Institutional access, residential segregation, and urban black homicide. Sociol. Inq. 2005, 75, 31–54. [Google Scholar] [CrossRef]
- Massey, D.S.; Tannen, J. A research note on trends in black hypersegregation. Demography 2015, 52, 1025–1034. [Google Scholar] [CrossRef] [Green Version]
- Rugh, J.S.; Massey, D.S. Segregation in post-civil rights America: Stalled integration or end of the segregated century? Bois Rev. Soc. Sci. Res. Race 2014, 11, 205–232. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Vaughn, M.S.; Lim, H. The impact of neighborhood crime levels on police use of force: An examination at micro and meso levels. J. Crim. Justice 2014, 42, 491–499. [Google Scholar] [CrossRef]
- Warner, B.D.; Konkel, R.H. Neighborhood churches, social ties, values, and informal social control. J. Urban Affairs 2019, 41, 1183–1284. [Google Scholar] [CrossRef]
- Konkel, R.H. Service providers and parolees: The divergent effects of neighborhood providers on general and technical parole violation reincarceration. Corrections 2019. [Google Scholar] [CrossRef]
- Blau, P.M. Inequality and Heterogeneity: A Primitive Theory of Social Structure; Free Press: New York, NY, USA, 1977; Volume 7. [Google Scholar]
- Cahill, M.; Mulligan, G. Using geographically weighted regression to explore local crime patterns. Soc. Sci. Comput. Rev. 2007, 25, 174–193. [Google Scholar] [CrossRef]
- Sampson, R.J.; Groves, W.B. Community structure and crime: Testing social-disorganization theory. Am. J. Sociol. 1989, 94, 774–802. [Google Scholar] [CrossRef] [Green Version]
- Montgumery, D.C.; Peck, E.A. Introduction to Linear Regression Analysis, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1982; ISBN 978-0-471-53387-0. [Google Scholar]
- O’Brien, D.T.; Sampson, R.J.; Winship, C. Ecometrics in the age of big data: Measuring and assessing “broken windows” using large-scale administrative records. Sociol. Methodol. 2015, 45, 101–147. [Google Scholar] [CrossRef]
- Gau, J.M.; Pratt, J.C. Broken Windows or window dressing? Citizens’ in(ability) to tell the difference between disorder and crime. Criminol. Public Saf. 2008, 7, 163–194. [Google Scholar] [CrossRef]
- Braga, A.A.; Welsh, B.C.; Schnell, C. Can Policing Disorder Reduce Crime? A Systematic Review and Meta-analysis. J. Res. Crime Delinq. 2015, 52, 567–588. [Google Scholar] [CrossRef]
- Bornstein, A. Institutional Racism, Numbers Management, and Zero-Tolerance Policing in New York City. New Am. Dialogue 2015, 18, 51–62. [Google Scholar] [CrossRef]
- Fagan, J.; Davies, G. Street Stops and Broken Windows: Terry, Race and Disorder in New York City. Fordham Urban Law J. 2000, 28, 457. [Google Scholar] [CrossRef] [Green Version]
- Greene, J.A. Zero Tolerance: A Case Study of Police Policies and Practices in New York City. Crime Delinq. 1999, 45, 171–187. [Google Scholar] [CrossRef]
- Jenkins, M. Police Support for Community Problem-Solving and Broken Windows Policing. Am. J. Crim. Justice 2015, 41, 220–235. [Google Scholar] [CrossRef]
- Murty, K.; Roebuck, J.; Smith, J. The image of the police in black Atlanta communities. J. Police Sci. Adm. 1990, 17, 250–257. [Google Scholar]
Mean | Std. Dev. | Minimum | Maximum | |
---|---|---|---|---|
Dependent Variables | ||||
All Crime Rate | 62.42 | 32.85 | 3.15 | 131.28 |
Part 1 Crime Rate | 46.62 | 23.40 | 3.15 | 98.96 |
Part 2 Crime Rate | 15.80 | 11.20 | 0.00 | 43.18 |
Independent Variables | ||||
Neighborhood Disorder | 16.05 | 16.41 | 0.00 | 80.00 |
Social Disorder | 1.60 | 2.97 | 0.00 | 15.00 |
Public Space Disorder | 4.20 | 4.44 | 0.00 | 16.00 |
Housing Disorder | 11.85 | 13.16 | 0.00 | 64.00 |
Disadvantage | 0.00 | 1.00 | −1.64 | 2.06 |
Renter | 54.59 | 22.13 | 2.34 | 84.79 |
Evictions | 9.42 | 9.09 | 0.00 | 42.00 |
Population Density | 1340.99 | 775.91 | 190.93 | 3541.44 |
Racial Heterogeneity | 0.35 | 0.18 | 0.00 | 0.707 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | B | Std. Error | B | Std. Error | B | Std. Error | B | Std. Error | B | Std. Error | |
Intercept | 26.401 | 15.153 | 34.148 | 13.384 | 24.011 | 12.753 | 31.446 | 15.501 | 26.952 | 15.126 | 33.712 | 14.879 |
Neighborhood Disorder | 0.073 | 0.258 | −−− | −−− | −−− | −−− | −−− | −−− | 0.148 | 0.291 | −−− | −−− |
Social Disorder | −−− | −−− | −0.076 | 1.164 | −−− | −−− | −−− | −−− | −0.132 | 1.313 | −0.116 | 1.268 |
Public Space Disorder | −−− | −−− | −−− | −−− | 0.227* | 0.820 | −−− | −−− | −−− | −−− | 0.312* | 0.940 |
Housing Disorder | −−− | −−− | −−− | −−− | −−− | −−− | −0.006 | 0.318 | −−− | −−− | −0.111 | 0.379 |
Disadvantage | 0.385* | 6.112 | 0.475** | 5.036 | 0.315† | 5.189 | 0.453* | 6.133 | 0.367† | 6.121 | 0.403* | 5.920 |
Renters | 0.311* | 0.224 | 0.290† | 0.218 | 0.300* | 0.211 | 0.290† | 0.227 | 0.328* | 0.225 | 0.266† | 0.221 |
Evictions | 0.077 | 0.435 | 0.092 | 0.440 | 0.064 | 0.421 | 0.078 | 0.436 | 0.101 | 0.441 | 0.080 | 0.426 |
Population Density | −0.102 | 0.005 | −0.119 | 0.005 | −0.102 | 0.005 | −0.100 | 0.005 | −0.138 | 0.005 | −0.129 | 0.005 |
Racial Heterogeneity | 0.187† | 17.516 | 0.156 | 17.334 | 0.172† | 16.313 | 0.171† | 17.885 | 0.174† | 17.604 | 0.119 | 17.519 |
R2 | 0.560 | 0.562 | 0.590 | 0.558 | 0.571 | 0.609 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | B | Std. Error | B | Std. Error | B | Std. Error | B | Std. Error | B | Std. Error | |
Intercept | 13.716 | 11.266 | 20.146 | 10.009 | 14.019 | 9.596 | 16.444 | 11.548 | 14.068 | 11.281 | 17.792 | 11.343 |
Neighborhood Disorder | 0.108 | 0.192 | −−− | −−− | −−− | −−− | −−− | −−− | 0.176 | 0.217 | −−− | −−− |
Social Disorder | −−− | −−− | −0.052 | 0.871 | −−− | −−− | −−− | −−− | −0.119 | 0.980 | −0.107 | 0.966 |
Public Space Disorder | −−− | −−− | −−− | −−− | 0.208† | 0.617 | −−− | −−− | −−− | −−− | 0.258† | 0.717 |
Housing Disorder | −−− | −−− | −−− | −−− | −−− | −−− | 0.044 | .237 | −−− | −−− | −0.037 | 0.289 |
Disadvantage | 0.258 | 4.544 | 0.370* | 3.766 | 0.229 | 3.905 | 0.312 | 4.569 | 0.242 | 4.565 | 0.269 | 4.513 |
Renters | 0.387* | 0.167 | 0.358* | 0.163 | 0.366* | 0.159 | 0.373* | 0.169 | 0.403* | 0.168 | 0.355* | 0.168 |
Evictions | 0.034 | 0.323 | 0.046 | 0.329 | 0.022 | 0.317 | 0.036 | 0.325 | 0.056 | 0.329 | 0.040 | 0.325 |
Population Density | −0.051 | 0.003 | −0.061 | 0.004 | −0.050 | 0.003 | −0.049 | 0.004 | −0.083 | 0.004 | −0.076 | 0.004 |
Racial Heterogeneity | 0.210* | 13.023 | 0.177† | 12.964 | 0.188† | 12.275 | 0.200† | 13.324 | 0.198† | 13.129 | 0.155 | 13.356 |
R2 | 0.521 | 0.517 | 0.543 | 0.516 | 0.529 | 0.522 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | Std. Error | B | Std. Error | B | Std. Error | B | Std. Error | B | Std. Error | B | Std. Error | |
Intercept | 12.685 | 5.416 | 14.001 | 4.745 | 9.992 | 4.556 | 14.001 | 4.745 | 12.884 | 5.405 | 15.920 | 5.163 |
Neighborhood Disorder | −0.012 | 0.092 | −−− | −−− | −−− | −−− | −−− | −−− | 0.067 | 0.104 | −−− | −−− |
Social Disorder | −−− | −−− | −0.113 | 0.413 | −−− | −−− | −−− | −−− | −0.139 | 0.469 | −0.118 | 0.440 |
Public Space Disorder | −−− | −−− | −−− | −−− | 0.227† | 0.293 | −−− | −−− | −−− | −−− | 0.373** | 0.326 |
Housing Disorder | −−− | −−− | −−− | −−− | −−− | −−− | −0.113 | 0.413 | −−− | −−− | −0.246 | 0.132 |
Disadvantage | 0.585** | 2.185 | 0.614*** | 6.944 | 0.441** | 1.854 | 0.614*** | 1.785 | 0.566** | 2.187 | 0.612*** | 2.054 |
Renters | 0.102 | 0.080 | 0.103 | 0.053 | 0.113 | 0.075 | 0.103 | 0.077 | 0.120 | 0.080 | 0.039 | 0.077 |
Evictions | 0.152 | 0.155 | 0.174 | 0.217 | 0.138 | 0.150 | 0.174 | 0.156 | 0.178 | 0.158 | 0.151 | 0.148 |
Population Density | −0.192 | 0.002 | −0.220† | −0.003 | −0.194† | 0.002 | −0.220† | 0.002 | −0.229† | 0.002 | −0.217† | 0.002 |
Racial Heterogeneity | 0.110 | 6.261 | 0.088 | 5.361 | 0.111 | 5.828 | 0.088 | 6.145 | 0.096 | 6.291 | 0.023 | 6.079 |
R2 | 0.526 | 0.535 | 0.558 | 0.535 | 0.537 | 0.603 |
Part I Crime Rates | ||
---|---|---|
B | Std. Error | |
Intercept | −1.939 | 10.304 |
Social Disorder | −0.036 | 0.814 |
Public Space Disorder | 0.035 | 0.645 |
Housing Disorder | 0.111 | 0.247 |
Disadvantage | −0.097 | 4.161 |
Renters | 0.331* | 0.140 |
Evictions | −0.051 | 0.275 |
Population Density | 0.054 | 0.003 |
Racial Heterogeneity | 0.141 | 11.144 |
Part II Crime Rate | 0.599*** | 0.257 |
R2 | 0.695 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konkel, R.H.; Ratkowski, D.; Tapp, S.N. The Effects of Physical, Social, and Housing Disorder on Neighborhood Crime: A Contemporary Test of Broken Windows Theory. ISPRS Int. J. Geo-Inf. 2019, 8, 583. https://doi.org/10.3390/ijgi8120583
Konkel RH, Ratkowski D, Tapp SN. The Effects of Physical, Social, and Housing Disorder on Neighborhood Crime: A Contemporary Test of Broken Windows Theory. ISPRS International Journal of Geo-Information. 2019; 8(12):583. https://doi.org/10.3390/ijgi8120583
Chicago/Turabian StyleKonkel, Rebecca Headley, Dominick Ratkowski, and Susannah N. Tapp. 2019. "The Effects of Physical, Social, and Housing Disorder on Neighborhood Crime: A Contemporary Test of Broken Windows Theory" ISPRS International Journal of Geo-Information 8, no. 12: 583. https://doi.org/10.3390/ijgi8120583
APA StyleKonkel, R. H., Ratkowski, D., & Tapp, S. N. (2019). The Effects of Physical, Social, and Housing Disorder on Neighborhood Crime: A Contemporary Test of Broken Windows Theory. ISPRS International Journal of Geo-Information, 8(12), 583. https://doi.org/10.3390/ijgi8120583