Identifying Relationship between Regional Centrality and POI Facilities: A Case Study of Seoul Metropolitan Area
Abstract
:1. Introduction
2. Literature Review
2.1. Regional Centrality
2.2. POI Big Data
3. Research Methods
3.1. Research Scope
3.2. Data Collection and Rearrangement
3.2.1. OD Data
3.2.2. POI Big Data
3.3. Analysis Flow and Methods
3.3.1. Analysis Flow
3.3.2. Social Network Analysis
3.3.3. POI Distribution Analysis
4. Results
4.1. Regional Centrality Result
4.2. POI Distribution Result
4.3. Correlation Analysis Result
5. Discussion
5.1. Identification of Growing Urban Centers
5.2. Spatial Patterns of POI Distribution
5.3. Disparities in Provision of Urban Facilities
5.4. High Demand for Particular Facility Types
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, Y. Social Network Analysis, 1st ed.; Parkyoungsa: Seoul, Republic of Korea, 2003; Volume 1. [Google Scholar]
- Kim, H.; Koo, D. The Change of Spatial Structure of Urban Networks in Korea. J. Korean Geogr. Soc. 2019, 54, 621–636. [Google Scholar]
- Beaverstock, J.; Smith, R.; Taylor, P. World-City Network: A New Metageography? Ann. Assoc. Am. Geogr. 2000, 90, 123–134. [Google Scholar] [CrossRef]
- Lee, J.; Seo, D. Accuracy of Regional Centrality Using Social Network Analysis: Evidence from Commuter Flow in South Korea. ISPRS Int. J. Geo-Inf. 2021, 10, 642. [Google Scholar] [CrossRef]
- Borgatti, S.P.; Everett, M.G. A Graph-Theoretic Perspective on Centrality. Soc Netw. 2006, 28, 466–484. [Google Scholar] [CrossRef]
- Lee, J.; Seo, Y.; Kim, S. Network Centrality Analysis Based on Regional Size: Focusing on Transformation of Commuting Data. J. Korean Reg. Dev. Assoc. 2018, 30, 71–84. [Google Scholar]
- Lee, J.; Seo, D. Analysis of Regional Centrality by Investigating Direct and Indirect Flows of Commuters. J. Agric. Ext. Community Dev. 2020, 27, 125–134. [Google Scholar] [CrossRef]
- Ahn, J.; Seo, D.; Kwon, Y. Impact of Innovation City Projects on National Balanced Development in South Korea: Identifying Regional Network and Centrality. ISPRS Int. J. Geo-Inf. 2021, 10, 169. [Google Scholar] [CrossRef]
- Lee, J.; Hyeon, S.; Park, M.; Lee, J.; Seo, D. Identifying Regional Centrality of Seoul Metropolitan Area in the Context of Relocating Public Agencies to Regional Areas: Social Network Analysis Using O-D Data. J. Korea Plan. Assoc. 2022, 57, 52–67. [Google Scholar] [CrossRef]
- Crucitti, P.; Latora, V.; Porta, S. Centrality in Networks of Urban Streets. Chaos 2006, 16, 015113. [Google Scholar] [CrossRef]
- Clark, J.; Harrison, J.; Miguelez, E. Connecting Cities, Revitalizing Regions: The Centrality of Cities to Regional Development. Reg. Stud. 2018, 52, 1025–1028. [Google Scholar] [CrossRef]
- Lu, C.; Pang, M.; Zhang, Y.; Li, H.; Lu, C.; Tang, X.; Cheng, W. Mapping Urban Spatial Structure Based on POI (Point of Interest) Data: A Case Study of the Central City of Lanzhou, China. ISPRS Int. J. Geo-Inf. 2020, 9, 92. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, J.; Liu, Y.; Luo, A. Detecting Urban Polycentric Structure from POI Data. ISPRS Int. J. Geo-Inf. 2019, 8, 283. [Google Scholar] [CrossRef]
- Han, Z.; Song, W. Identification and Geographic Distribution of Accommodation and Catering Centers. ISPRS Int. J. Geo-Inf. 2020, 9, 546. [Google Scholar] [CrossRef]
- Polyzos, S. Regional Development; Kritiki Publications: Athens, Greece, 2011. [Google Scholar]
- Nystuen, J.D.; Dacey, M.F. A Graph Theory Interpretation of Nodal Regions. Pap. Reg. Sci. Assoc. 1961, 7, 29–42. [Google Scholar] [CrossRef]
- Harary, F.; Norman, R.; Cartwright, D. Structural Models: An Introduction to the Theory of Directed Graphs; Wiley: New York, NY, USA, 1965. [Google Scholar]
- Lee, S. Network Analysis Methodology; Nonhyeong: Seoul, Republic of Korea, 2012. [Google Scholar]
- Freeman, L. Centrality in Social Networks: Conceptual Clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef]
- Bonacich, P. Factoring and Weighting Approaches to Status Scores and Clique Identification. J. Math. Sociol. 1972, 2, 113–120. [Google Scholar] [CrossRef]
- Bonacich, P. Power and Centrality: A Family of Measures. Am. J. Sociol. 1987, 92, 1170–1182. [Google Scholar] [CrossRef]
- Irwin, M.D.; Hughes, H.L. Centrality and the Structure of Urban Interaction: Measures, Concepts, and Applications. Soc. Forces 1992, 71, 17–51. [Google Scholar] [CrossRef]
- Rui, Y.; Ban, Y. Exploring the Relationship between Street Centrality and Land Use in Stockholm. Int. J. Geogr. Inf. Sci. 2014, 28, 1425–1438. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, S.; Wen, P. The Relationship between Centrality and Land Use Patterns: Empirical Evidence from Five Chinese Metropolises. Comput. Environ. Urban Syst. 2019, 78, 101356. [Google Scholar] [CrossRef]
- Marmolejo-Duarte, C. Does Urban Centrality Influence Residential Prices? An Analysis for the Barcelona Metropolitan Area. Rev. De La Construcción. J. Constr. 2017, 16, 57–65. [Google Scholar] [CrossRef]
- Bergé, L.R.; Wanzenböck, I.; Scherngell, T. Centrality of Regions in R&D Networks: A New Measurement Approach Using the Concept of Bridging Paths. Reg. Stud. 2017, 51, 1165–1178. [Google Scholar] [CrossRef]
- Hodor, K.; Staniewska, A.; Dudzic-Gyurkovich, K. Study of Centrality Measures in the Network of Green Spaces in the City of Krakow. Sustainability 2023, 15, 13458. [Google Scholar] [CrossRef]
- Lee, J.; Seo, Y.; Kim, S. Measurement of Regional Centrality Using Network Analysis: Focused on the Competitive Relationship among Regions. J. Korea Plan. Assoc. 2018, 53, 87. [Google Scholar] [CrossRef]
- Kim, H. A Study on Commuting Patterns Using Social Network Analysis in the Seoul Metropolitan Area. J. Geogr. Educ. 2008, 52, 25–43. [Google Scholar]
- Lee, J. The Establishment of Spatial Structure and Its Change in the Capital Region by Using Interaction Analysis: 1995–2005. J. Korean Urban Geogr. Soc. 2008, 11, 91–100. [Google Scholar]
- Lee, H.; Kim, H. The Transformation of the Spatial Structure by Commuting Flows in the Capital Region Using Network Analysis, 1980–2000. J. Korea Plan. Assoc. 2006, 41, 133–151. [Google Scholar]
- Lee, S.; Ha, C. Analysis on Migration and Regional Structural Change in Jeju Region. J. Korea Plan. Assoc. 2014, 49, 41–53. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, K. The Relation of Population, Jobs, Social Capitals and Centrality in Seoul Metropolitan Area, Using Social Network Theory. J. Korea Plan. Assoc. 2012, 47, 105–122. [Google Scholar]
- Park, S.; Lee, W.; Joh, C. A Study for Seoul Traffic Network Based on the Metropolitan Household Travel Survey. Geogr. J. Korea 2012, 46, 189–200. [Google Scholar]
- Yue, H.; Zhu, X. Exploring the Relationship between Urban Vitality and Street Centrality Based on Social Network Review Data in Wuhan, China. Sustainability 2019, 11, 4356. [Google Scholar] [CrossRef]
- Al-Saaidy, H.J.E.; Alobaydi, D. Studying Street Centrality and Human Density in Different Urban Forms in Baghdad, Iraq. Ain Shams Eng. J. 2021, 12, 1111–1121. [Google Scholar] [CrossRef]
- Agryzkov, T.; Tortosa, L.; Vicent, J.F.; Wilson, R. A Centrality Measure for Urban Networks Based on the Eigenvector Centrality Concept. Environ. Plan B Urban Anal. City Sci. 2019, 46, 668–689. [Google Scholar] [CrossRef]
- Aziz Amen, M. The Effects of Buildings’ Physical Characteristics on Urban Network Centrality. Ain Shams Eng. J. 2022, 13, 101765. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y. Identification of Urban Functional Areas Based on POI Data: A Case Study of the Guangzhou Economic and Technological Development Zone. Sustainability 2019, 11, 1385. [Google Scholar] [CrossRef]
- Miao, R.; Wang, Y.; Li, S. Analyzing Urban Spatial Patterns and Functional Zones Using Sina Weibo POI Data: A Case Study of Beijing. Sustainability 2021, 13, 647. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, D.; Sun, D.; Zhang, J. Identification and Analysis of Urban Functional Area in Hangzhou Based on OSM and POI Data. PLoS ONE 2021, 16, e0251988. [Google Scholar] [CrossRef]
- Statistics Korea. Available online: https://kostat.go.kr (accessed on 9 August 2023).
- Kim, S.; Lee, S. Identifying Urban Activity Centers and Their Functions Using POI Big Data: The Case of Seoul Metropolitan Area. J. Korea Plan. Assoc. 2021, 56, 36–52. [Google Scholar] [CrossRef]
- Korea Transport Database. Available online: https://www.ktdb.go.kr (accessed on 20 June 2022).
- Plane, D. The Geography of Urban Commuting Fields: Some Empirical Evidence from New England. Prof. Geogr. 1981, 33, 182–188. [Google Scholar] [CrossRef]
- Yue, Y.; Zhuang, Y.; Yeh, A.; Xie, J.; Ma, C.; Li, Q. Measurements of POI-Based Mixed Use and Their Relationships with Neighbourhood Vibrancy. Int. J. Geogr. Inf. Sci. 2017, 31, 658–675. [Google Scholar] [CrossRef]
- Cao, Y.; Lee, S. Analysis of Urban Vitality and Its Determinant Factors Using POI Bigdata in Seoul, Korea. J. Korea Plan. Assoc. 2021, 56, 87–102. [Google Scholar] [CrossRef]
- Kim, S. A Study on the Change of Spatial Structure in the Seoul Metropolitan Area between 1995 and 2010. Geogr. J. Korea 2014, 48, 57–68. [Google Scholar]
- Woo, J. Samsung Starts Operation of Mega Chip Manufacturing Line in S. Korea. Available online: https://en.yna.co.kr/view/AEN20220907009400320 (accessed on 10 December 2023).
- Shin, H. Kia Breaks Ground on Hwaseong EV Plant, Plans Huge Investments. Available online: https://koreajoongangdaily.joins.com/2023/04/11/business/industry/Korea-Kia-Hyundai-Motor/20230411174204834.html (accessed on 10 December 2023).
- Lee, W.; Lee, S.; Kim, T. Changes in the Population Structure and Policy of Gyeonggi-Do. Gyeonggi Res. Inst. Issue Diagn. 2011, 11, 1–25. [Google Scholar]
- Korean Statistical Information Service. Available online: https://kosis.kr/index/index.do (accessed on 18 November 2022).
- PYEONGTAEK CITY. Available online: https://www.pyeongtaek.go.kr/en/main.do (accessed on 10 December 2023).
- Jiang, B. A Topological Representation for Taking Cities as a Coherent Whole. Geogr. Anal. 2018, 50, 298–313. [Google Scholar] [CrossRef]
Category | Subcategory | Quantity | Proportion (%) |
---|---|---|---|
Retail | Shopping malls, supermarkets, convenience stores, etc. | 28,927 | 3.8 |
Education | Kindergartens, schools, academic institutions | 95,311 | 12.5 |
Attraction | Tourist attractions, scenic spots, resorts, etc. | 23,875 | 3.1 |
Catering | Restaurants, cafes, etc. | 393,921 | 51.7 |
Medical | Hospitals, clinics, emergency centers, pharmacies, etc. | 45,049 | 5.9 |
Transport | Subway stations, parking lots, etc. | 24,055 | 3.2 |
Residential | Apartments, villas, real estate agencies, etc. | 117,600 | 15.4 |
Financial | Banks, ATMs (Automated Teller Machine), insurance offices, etc. | 21,553 | 2.8 |
Culture | Movie theaters, museums, art galleries, etc. | 4073 | 0.5 |
Public | Government agencies, community centers, police stations, etc. | 3459 | 0.5 |
Rank | Degree Centrality | Eigenvector Centrality | ||
---|---|---|---|---|
District | Centrality | District | Centrality | |
1 | Gangnam, Seoul | 475,259 | Hwaseong | 0.937 |
2 | Seocho, Seoul | 329,666 | Gangnam, Seoul | 0.141 |
3 | Jung, Seoul | 289,278 | Pyeongtaek | 0.140 |
4 | Yeongdeungpo, Seoul | 254,177 | Yeongtong, Suwon | 0.105 |
5 | Songpa, Seoul | 243,531 | Bundang, Seongnam | 0.094 |
6 | Bundang, Seongnam | 234,844 | Seocho, Seoul | 0.093 |
7 | Hwaseong | 202,752 | Gwonseon, Suwon | 0.086 |
8 | Mapo, Seoul | 194,909 | Giheung, Yongin | 0.082 |
9 | Jongno, Seoul | 194,332 | Songpa, Seoul | 0.070 |
10 | Bucheon | 182,316 | Osan | 0.066 |
Rank | Number of POI Facilities | Density of POI (Per Population) | ||
---|---|---|---|---|
District | Quantity | District | Density | |
1 | Gangnam, Seoul | 29,966 | Jung, Seoul | 0.094 |
2 | Hwaseong | 25,191 | Gapyeong | 0.089 |
3 | Bucheon | 21,980 | Jongno, Seoul | 0.088 |
4 | Songpa, Seoul | 18,636 | Ongjin, Incheon | 0.067 |
5 | Mapo, Seoul | 18,182 | Gangnam, Seoul | 0.056 |
6 | Pyeongtaek | 17,213 | Ganghwa, Incheon | 0.056 |
7 | Namyangju | 17,156 | Mapo, Seoul | 0.050 |
8 | Seocho, Seoul | 16,671 | Jung, Incheon | 0.045 |
9 | Ganseo, Seoul | 15,216 | Yangpyeong | 0.045 |
10 | Yeongdeungpo, Seoul | 15,026 | Pocheon | 0.043 |
Number of POI | Density of POI (Per Population) | ||||
---|---|---|---|---|---|
Degree Centrality | Eigenvector Centrality | Degree Centrality | Eigenvector Centrality | ||
POI Category | Retail | 0.564 ** | 0.611 ** | −0.023 | 0.052 |
Education | 0.712 ** | 0.491 ** | 0.650 ** | 0.221 | |
Attraction | −0.281 * | 0.113 | −0.329 * | −0.085 | |
Catering | 0.808 ** | 0.450 ** | 0.304 ** | −0.011 | |
Medical | 0.892 ** | 0.285 * | 0.767 ** | 0.046 | |
Transport | 0.871 ** | 0.296 ** | 0.163 | −0.079 | |
Residential | 0.735 ** | 0.487 ** | 0.645 ** | 0.123 | |
Finance | 0.850 ** | 0.495 ** | 0.373 ** | 0.023 | |
Culture | 0.495 ** | 0.078 | 0.190 | −0.035 | |
Public | 0.472 ** | 0.286 * | −0.203 | −0.118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Seo, D. Identifying Relationship between Regional Centrality and POI Facilities: A Case Study of Seoul Metropolitan Area. ISPRS Int. J. Geo-Inf. 2024, 13, 12. https://doi.org/10.3390/ijgi13010012
Lee Y, Seo D. Identifying Relationship between Regional Centrality and POI Facilities: A Case Study of Seoul Metropolitan Area. ISPRS International Journal of Geo-Information. 2024; 13(1):12. https://doi.org/10.3390/ijgi13010012
Chicago/Turabian StyleLee, Yose, and Ducksu Seo. 2024. "Identifying Relationship between Regional Centrality and POI Facilities: A Case Study of Seoul Metropolitan Area" ISPRS International Journal of Geo-Information 13, no. 1: 12. https://doi.org/10.3390/ijgi13010012
APA StyleLee, Y., & Seo, D. (2024). Identifying Relationship between Regional Centrality and POI Facilities: A Case Study of Seoul Metropolitan Area. ISPRS International Journal of Geo-Information, 13(1), 12. https://doi.org/10.3390/ijgi13010012