Repetitive DNAs and Karyotype Evolution in Phyllostomid Bats (Chiroptera: Phyllostomidae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Chromosomal Preparation
2.2. DNA Extraction and Genome Sequencing
2.3. Bioinformatic Analyses and Satellitome Characterization
2.4. Primer Design and Conditions for Satellite Amplification
2.5. Probe Preparation and Fluorescence in Situ Hybridization (FISH)
2.6. Intraspecific Comparative Genomic Hybridization
2.7. Microscopy and Image Analysis
3. Results
3.1. Satellitome Composition of A. lituratus and C. perspicillata
3.2. Chromosomal Distribution of AliSatDNAs and CpeSatDNAs in A. lituratus and Carollia perspicillata
3.3. Chromosomal Distribution of Microsatellite and Telomeric Repeats in A. lituratus and C. perspicillata
3.4. Cross-Species Mapping of satDNAs and Chromosomal Distribution of Microsatellites and Telomeric Repeats in Other Bat Species
3.5. Intraspecific Genomic Hybridization in C. perspicillata
4. Discussion
4.1. General Features of A. lituratus and C. perspicillata Satellitomes
4.2. Heterochromatin, Telomeric Repeats, and Satellite DNA Association
4.3. Repetitive DNAs and the Evolution of Sex Chromosomes in Bats
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TE | Transposable elements |
satDNA | Satellite DNA |
rDNA | Ribosomal DNA |
2n | Diploid number |
ITS | Interstitial Telomeric Sites |
gDNA | Genomic DNA |
RE2 | RepeatExplorer2 |
PCR | Polymerase Chain Reaction |
RUL | Repeat Unit Length |
FISH | Fluorescence in situ Hybridization |
CGH | Comparative Genomic Hybridization |
CH | Constitutive Heterochromatin |
SSRs | Simple Sequence Repeats |
References
- Biscotti, M.A.; Olmo, E.; Heslop-Harrison, J.S. Repetitive DNA in Eukaryotic Genomes. Chromosome Res. 2015, 23, 415–420. [Google Scholar] [CrossRef]
- Paço, A.; Freitas, R.; Vieira-da-Silva, A. Conversion of DNA Sequences: From a Transposable Element to a Tandem Repeat or to a Gene. Genes 2019, 10, 1014. [Google Scholar] [CrossRef]
- Padeken, J.; Zeller, P.; Gasser, S.M. Repeat DNA in Genome Organization and Stability. Curr. Opin. Genet. Dev. 2015, 31, 12–19. [Google Scholar] [CrossRef]
- Pavlek, M.; Gelfand, Y.; Plohl, M.; Meštrović, N. Genome-Wide Analysis of Tandem Repeats in Tribolium castaneum Genome Reveals Abundant and Highly Dynamic Tandem Repeat Families with Satellite DNA Features in Euchromatic Chromosomal Arms. DNA Res. 2015, 22, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M. Satellite DNA: An Evolving Topic. Genes 2017, 8, 230. [Google Scholar] [CrossRef]
- Feliciello, I.; Pezer, Ž.; Kordiš, D.; Bruvo Mađarić, B.; Ugarković, Đ. Evolutionary History of Alpha Satellite DNA Repeats Dispersed within Human Genome Euchromatin. Genome Biol. Evol. 2020, 12, 2125–2138. [Google Scholar] [CrossRef]
- Rico-Porras, J.M.; Mora, P.; Palomeque, T.; Montiel, E.E.; Cabral-de-Mello, D.C.; Lorite, P. Heterochromatin is not the only place for satDNAs: The High Diversity of satDNAs in the Euchromatin of the Beetle Chrysolina americana (Coleoptera, Chrysomelidae). Genes 2024, 15, 395. [Google Scholar] [CrossRef]
- Hedges, D.J.; Deininger, P.L. Inviting Instability: Transposable Elements, Double-Strand Breaks, and the Maintenance of Genome Integrity. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2007, 616, 46–59. [Google Scholar] [CrossRef]
- Carbone, L.; Alan Harris, R.; Gnerre, S.; Veeramah, K.R.; Lorente-Galdos, B.; Huddleston, J.; Meyer, T.J.; Herrero, J.; Roos, C.; Aken, B.; et al. Gibbon Genome and the Fast Karyotype Evolution of Small Apes. Nature 2014, 513, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Paço, A.; Adega, F.; Meštrović, N.; Plohl, M.; Chaves, R. The Puzzling Character of Repetitive DNA in Phodopus Genomes (Cricetidae, Rodentia). Chromosome Res. 2015, 23, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Gregory, T.R. Animal Genome Size Database 2025; Elsevier Academic Press: San Diego, CA, USA, 2025. [Google Scholar]
- Mammal Diversity Database. 2024. Available online: https://www.mammaldiversity.org/ (accessed on 27 July 2025).
- Smith, J.D.L.; Gregory, T.R. The genome sizes of Megabats (Chiroptera: Pteropodidae) are remarkably constrained. Biol. Lett. 2009, 5, 347–351. [Google Scholar] [CrossRef]
- Smith, J.D.L.; Bickham, J.W.; Gregory, T.R. Patterns of Genome Size Diversity in Bats (Order Chiroptera). Genome 2013, 56, 457–472. [Google Scholar] [CrossRef]
- Kapusta, A.; Suh, A.; Feschotte, C. Dynamics of Genome Size Evolution in Birds and Mammals. Proc. Natl. Acad. Sci. USA 2017, 114, E1460–E1469. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; Souza, G.M.; Toma, G.A.; Dos Santos, N.; Dos Santos, R.Z.; Goes, C.A.G.; Deon, G.A.; Setti, P.G.; Porto-Foresti, F.; Utsunomia, R.; et al. Satellite DNAs, Heterochromatin, and Sex Chromosomes of the Wattled Jacana (Charadriiformes; Jacanidae): A Species with Highly Rearranged Karyotype. Genome 2024, 67, 109–118. [Google Scholar] [CrossRef]
- Kretschmer, R.; Toma, G.A.; Deon, G.A.; Dos Santos, N.; Dos Santos, R.Z.; Utsunomia, R.; Porto-Foresti, F.; Gunski, R.J.; Garnero, A.D.V.; Liehr, T.; et al. Satellitome Analysis in the Southern Lapwing (Vanellus chilensis) Genome: Implications for SatDNA Evolution in Charadriiform Birds. Genes 2024, 15, 258. [Google Scholar] [CrossRef]
- Setti, P.G.; Deon, G.A.; Zeni Dos Santos, R.; Goes, C.A.G.; Garnero, A.D.V.; Gunski, R.J.; De Oliveira, E.H.C.; Porto-Foresti, F.; De Freitas, T.R.O.; Silva, F.A.O.; et al. Evolution of Bird Sex Chromosomes: A Cytogenomic Approach in Palaeognathae Species. BMC Ecol. Evol. 2024, 24, 51. [Google Scholar] [CrossRef] [PubMed]
- Souza, G.M.; Kretschmer, R.; Toma, G.A.; De Oliveira, A.M.; Deon, G.A.; Setti, P.G.; Zeni Dos Santos, R.; Goes, C.A.G.; Del Valle Garnero, A.; Gunski, R.J.; et al. Satellitome Analysis on the Pale-Breasted Thrush Turdus leucomelas (Passeriformes; Turdidae) Uncovers the Putative Co-Evolution of Sex Chromosomes and Satellite DNAs. Sci. Rep. 2024, 14, 20656. [Google Scholar] [CrossRef]
- Sotero-Caio, C.; Baker, R.; Volleth, M. Chromosomal Evolution in Chiroptera. Genes 2017, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- Simmons, N.; Cirranello, A. Bat Species of the World: A Taxonomic and Geographic Database. 2024. Available online: https://batnames.org/ (accessed on 27 July 2025).
- Cirranello, A.; Simmons, N.B.; Solari, S.; Baker, R.J. Morphological Diagnoses of Higher-Level Phyllostomid Taxa (Chiroptera: Phyllostomidae). Acta Chiropterologica 2016, 18, 39–71. [Google Scholar] [CrossRef]
- Castillo-Figueroa, D. Ecological Morphology of Neotropical Bat Wing Structures. Zool. Stud. 2020, 59, e60. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.J.; Hood, C.S.; Honeycutt, R.L. Phylogenetic Relationships and Classification of the Higher Categories of the New World Bat Family Phyllostomidae. Syst. Zool. 1989, 38, 228. [Google Scholar] [CrossRef]
- Varella-Garcia, M.; Taddei, V.A. Citogenética de Quirópteros: Métodos e Aplicações. Rev. Bras. Zool. 1989, 6, 297–323. [Google Scholar] [CrossRef]
- Ortêncio-Filho, H.; de Lima, I.P.; Fogaça, F.N.O. Subfamília Caroliinae. In Morcegos do Brasil; Adriano, L.P., Wagner, A.P., Isaac, P.d.L., Eds.; Nelio R. dos Reis: Londrina, Brazil, 2007; p. 253. ISBN 978-85-906395-1-0. [Google Scholar]
- Hsu, T.C.; Baker, R.J.; Utakoji, T. The Multiple Sex Chromosome System of American Leaf-Nosed Bats (Chiroptera, Phyllostomidae). Cytogenet. Genome Res. 1968, 7, 27–38. [Google Scholar] [CrossRef]
- Stock, D. Chromosome Banding Pattern Homology and Its Phylogenetic Implications in the Bat Genera Carollia and Choeroniscus. Cytogenet. Genome Res. 1975, 14, 34–41. [Google Scholar] [CrossRef]
- Tucker, P.K. Sex Chromosome-Autosome Translocations in the Leaf-Nosed Bats, Family Phyllostomidae. Cytogenet. Genome Res. 1986, 43, 19–27. [Google Scholar] [CrossRef]
- Faria, K.C.; Morielle-Versute, E. Genetic Relationships Between Brazilian Species of Molossidae and Phyllostomidae (Chiroptera, Mammalia). Genetica 2006, 126, 215–225. [Google Scholar] [CrossRef]
- Tucker, P.K.; Bickham, J.W. Sex Chromosome-Autosome Translocations in the Leaf-Nosed Bats, Family Phyllostomidae. Cytogenet. Genome Res. 1986, 43, 28–37. [Google Scholar] [CrossRef]
- Calixto, M.D.S.; De Andrade, I.S.; Cabral-de-Mello, D.C.; Santos, N.; Martins, C.; Loreto, V.; De Souza, M.J. Patterns of rDNA and Telomeric Sequences Diversification: Contribution to Repetitive DNA Organization in Phyllostomidae Bats. Genetica 2014, 142, 49–58. [Google Scholar] [CrossRef]
- Baker, R.J.; Hamilton, M.J.; Parish, D.A. Preparations of Mammalian Karyotypes Under Field Conditions; Occasional papers; Museum of Texas Tech University: Lubbock, TX, USA, 2003. [Google Scholar]
- Moratelli, R.; Andrade, C.M.; Armada, J.L.A. A Technique to Obtain Fibroblast Cells from Skin Biopsies of Living Bats (Chiroptera) for Cytogenetic Studies. Genet. Mol. Res. 2002, 1, 128–130. [Google Scholar]
- Sambrook, J.; Russell, D.W. Isolation of High-molecular-weight DNA from Mammalian Cells Using Proteinase K and Phenol. CSH Protocol. 2006, 2006, pdb.prot4036. [Google Scholar] [CrossRef]
- Ruiz-Ruano, F.J.; López-León, M.D.; Cabrero, J.; Camacho, J.P.M. High-Throughput Analysis of the Satellitome Illuminates Satellite DNA Evolution. Sci. Rep. 2016, 6, 28333. [Google Scholar] [CrossRef]
- Utsunomia, R.; Silva, D.M.Z.D.A.; Ruiz-Ruano, F.J.; Goes, C.A.G.; Melo, S.; Ramos, L.P.; Oliveira, C.; Porto-Foresti, F.; Foresti, F.; Hashimoto, D.T. Satellitome Landscape Analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) Reveals Intense Accumulation of Satellite Sequences on the Heteromorphic Sex Chromosome. Sci. Rep. 2019, 9, 5856. [Google Scholar] [CrossRef]
- Novák, P.; Neumann, P.; Pech, J.; Steinhaisl, J.; Macas, J. RepeatExplorer: A Galaxy-Based Web Server for Genome-Wide Characterization of Eukaryotic Repetitive Elements from next-Generation Sequence Reads. Bioinformatics 2013, 29, 792–793. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Fast Identification and Removal of Sequence Contamination from Genomic and Metagenomic Datasets. PLoS ONE 2011, 6, e17288. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Smit, A.; Hubley, R.; Green, P. RepeatMasker Open-4.0. 2013–2015. Available online: http://www.repeatmasker.org (accessed on 15 May 2024).
- IJdo, J.W.; Wells, R.A.; Baldini, A.; Reeders, S.T. Improved Telomere Detection Using a Telomere Repeat Probe (TTAGGG)n Generated by PCR. Nucl. Acids Res. 1991, 19, 4780. [Google Scholar] [CrossRef] [PubMed]
- Yano, C.F.; Bertollo, L.A.C.; Cioffi, M.D.B. Fish-FISH: Molecular Cytogenetics in Fish Species. In Fluorescence In Situ Hybridization (FISH); Liehr, T., Ed.; Springer Protocols Handbooks; Springer: Berlin/Heidelberg, Germany, 2017; pp. 429–443. ISBN 978-3-662-52957-7. [Google Scholar]
- Seabright, M. A rapid banding technique for human chromosomes. Lancet 1971, 298, 971–972. [Google Scholar] [CrossRef] [PubMed]
- Sumner, A.T. A Simple Technique for Demonstrating Centromeric Heterochromatin. Exp. Cell Res. 1972, 75, 304–306. [Google Scholar] [CrossRef]
- Traut, W.; Eickhoff, U.; Schorch, J.-C. Identification and Analysis of Sex Chromosomes by Comparative Genomic Hybridization (CGH). In Chromosome Painting; Sharma, A.K., Sharma, A., Eds.; Springer: Dordrecht, The Netherland, 2001; pp. 155–161. ISBN 978-94-010-3840-9. [Google Scholar]
- Valeri, M.P.; Dias, G.B.; Do Espírito Santo, A.A.; Moreira, C.N.; Yonenaga-Yassuda, Y.; Sommer, I.B.; Kuhn, G.C.S.; Svartman, M. First Description of a Satellite DNA in Manatees’ Centromeric Regions. Front. Genet. 2021, 12, 694866. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.; Aleix-Mata, G.; Montiel, E.E.; Cabral-de-Mello, D.C.; Marchal, J.A.; Sánchez, A. Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae. Genes 2022, 14, 117. [Google Scholar] [CrossRef]
- Aleix Mata, G.; Montiel, E.E.; Mora-Ruiz, P.; Yurchenko, A.; Rico-Porras, J.M.; Anguita, F.; Palomo, F.; Marchal, J.A.; Rovatsos, M.; Sánchez Baca, A. Satellitome Analysis on Microtus thomasi (Arvicolinae) Genome, a Mammal Species with High Karyotype and Sex Chromosome Variations. Genome 2025, 68, gen-2024-0141. [Google Scholar] [CrossRef] [PubMed]
- Pagan, H.J.T.; Macas, J.; Novak, P.; McCulloch, E.S.; Stevens, R.D.; Ray, D.A. Survey Sequencing Reveals Elevated DNA Transposon Activity, Novel Elements, and Variation in Repetitive Landscapes among Vesper Bats. Genome Biol. Evol. 2012, 4, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, R.; Goes, C.A.G.; Bertollo, L.A.C.; Ezaz, T.; Porto-Foresti, F.; Toma, G.A.; Utsunomia, R.; De Bello Cioffi, M. Satellitome Analysis Illuminates the Evolution of ZW Sex Chromosomes of Triportheidae Fishes (Teleostei: Characiformes). Chromosoma 2022, 131, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Vozdova, M.; Kubickova, S.; Martínková, N.; Galindo, D.J.; Bernegossi, A.M.; Cernohorska, H.; Kadlcikova, D.; Musilová, P.; Duarte, J.M.; Rubes, J. Satellite DNA in Neotropical Deer Species. Genes 2021, 12, 123. [Google Scholar] [CrossRef]
- Camacho, J.P.M.; Cabrero, J.; López-León, M.D.; Martín-Peciña, M.; Perfectti, F.; Garrido-Ramos, M.A.; Ruiz-Ruano, F.J. Satellitome Comparison of Two Oedipodine Grasshoppers Highlights the Contingent Nature of Satellite DNA Evolution. BMC Biol. 2022, 20, 36. [Google Scholar]
- Yurchenko, A.; Pšenička, T.; Mora, P.; Ortega, J.A.M.; Baca, A.S.; Rovatsos, M. Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos. Genes 2024, 15, 429. [Google Scholar] [CrossRef]
- Fry, K.; Salser, W. Nucleotide Sequences of HS-α Satellite DNA from Kangaroo Rat Dipodomys ordii and Characterization of Similar Sequences in Other Rodents. Cell 1977, 12, 1069–1084. [Google Scholar] [CrossRef]
- Garrido-Ramos, M.A. Satellite DNA in Plants: More than Just Rubbish. Cytogenet. Genome Res. 2015, 146, 153–170. [Google Scholar] [CrossRef]
- Šatović-Vukšić, E.; Plohl, M. Satellite DNAs—From Localized to Highly Dispersed Genome Components. Genes 2023, 14, 742. [Google Scholar] [CrossRef]
- Kumar, S.; Suleski, M.; Craig, J.M.; Kasprowicz, A.E.; Sanderford, M.; Li, M.; Stecher, G.; Hedges, S.B. TimeTree 5: An Expanded Resource for Species Divergence Times. Mol. Biol. Evol. 2022, 39, msac174. [Google Scholar] [CrossRef] [PubMed]
- Henikoff, S.; Ahmad, K.; Malik, H.S. The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA. Science 2001, 293, 1098–1102. [Google Scholar] [CrossRef]
- Zhang, H.; Koblížková, A.; Wang, K.; Gong, Z.; Oliveira, L.; Torres, G.A.; Wu, Y.; Zhang, W.; Novák, P.; Buell, C.R.; et al. Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in Solanum Species: Rapid Evolution of DNA Sequences Associated with Centromeres. Plant Cell 2014, 26, 1436–1447. [Google Scholar] [CrossRef]
- Huang, Y.; Ding, W.; Zhang, M.; Han, J.; Jing, Y.; Yao, W.; Hasterok, R.; Wang, Z.; Wang, K. The Formation and Evolution of Centromeric Satellite Repeats in Saccharum Species. Plant J. 2021, 106, 616–629. [Google Scholar] [CrossRef]
- Sena, R.S.; Heringer, P.; Valeri, M.P.; Pereira, V.S.; Kuhn, G.C.S.; Svartman, M. Identification and Characterization of Satellite DNAs in Two-Toed Sloths of the Genus Choloepus (Megalonychidae, Xenarthra). Sci. Rep. 2020, 10, 19202. [Google Scholar] [CrossRef]
- Kejnovsky, E.; Jedlicka, P.; Lexa, M.; Kubat, Z. Factors Determining Chromosomal Localization of Transposable Elements in Plants. Plant Biol. J. 2025. [Google Scholar] [CrossRef]
- Sotero-Caio, C.G.; Cabral-de-Mello, D.C.; Calixto, M.D.S.; Valente, G.T.; Martins, C.; Loreto, V.; De Souza, M.J.; Santos, N. Centromeric Enrichment of LINE-1 Retrotransposons and Its Significance for the Chromosome Evolution of Phyllostomid Bats. Chromosome Res. 2017, 25, 313–325. [Google Scholar] [CrossRef]
- Thakur, J.; Packiaraj, J.; Henikoff, S. Sequence, Chromatin and Evolution of Satellite DNA. IJMS 2021, 22, 4309. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.; Fagundes, V.; Yonenaga-Yassuda, Y.; Jose, M. Comparative Karyology of Brazilian Vampire Bats Desmodus rotundus and Diphylla ecaudata (Phyllostomidae, Chiroptera): Banding Patterns, Base-Specific Fluorochromes and FISH of Ribosomal Genes. Hereditas 2001, 134, 189–194. [Google Scholar] [CrossRef]
- Silva, A.M.D.; Marques-Aguiar, S.A.; Barros, R.M.D.S.; Nagamachi, C.Y.; Pieczarka, J.C. Comparative Cytogenetic Analysis in the Species Uroderma magnirostrum and U. bilobatum (Cytotype 2n = 42) (Phyllostomidae, Stenodermatinae) in the Brazilian Amazon. Genet. Mol. Biol. 2005, 28, 248–253. [Google Scholar] [CrossRef]
- Faria, K.D.C.; Morielle-Versute, E. In Situ Hybridization of Bat Chromosomes with Human (TTAGGG)n Probe, after Previous Digestion with Alu I. Genet. Mol. Biol. 2002, 25, 365–371. [Google Scholar] [CrossRef]
- Cabral-de-Mello, D.C.; Palacios-Gimenez, O.M. Repetitive DNAs: The ‘Invisible’ Regulators of Insect Adaptation and Speciation. Curr. Opin. Insect Sci. 2025, 67, 101295. [Google Scholar] [CrossRef]
- Gotoh, T.; Suzuki, H.; Moriyama, M.; Futahashi, R.; Osanai-Futahashi, M. Acquisition and Repeated Alteration of (TTGGG)n Telomeric Repeats in Odonata (Dragonflies and Damselflies). Insect. Biochem. Mol. Biol. 2025, 182, 104353. [Google Scholar] [CrossRef]
- Ingles, E.D.; Deakin, J.E. Global DNA Methylation Patterns on Marsupial and Devil Facial Tumour Chromosomes. Mol. Cytogenet. 2015, 8, s13039–s14015. [Google Scholar] [CrossRef]
- Liehr, T.; Starke, H.; Senger, G.; Melotte, C.; Weise, A.; Vermeesch, J.R. Overrepresentation of small supernumerary marker chromosomes (sSMC) from chromosome 6 origin in cases with multiple sSMC. Am. J. Med. Genet.-Part A 2006, 140, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A.; De La Herrán, R.; Ruiz Rejón, C.; Ruiz Rejón, M. A Satellite DNA of the Sparidae Family (Pisces, Perciformes) Associated with Telomeric Sequences. Cytogenet. Genome Res. 1998, 83, 3–9. [Google Scholar] [CrossRef]
- Navajas-Pérez, R.; Quesada Del Bosque, M.E.; Garrido-Ramos, M.A. Effect of Location, Organization, and Repeat-Copy Number in Satellite-DNA Evolution. Mol. Genet Genom. 2009, 282, 395–406. [Google Scholar] [CrossRef]
- Rovatsos, M.T.; Marchal, J.A.; Romero-Fernández, I.; Fernández, F.J.; Giagia-Athanosopoulou, E.B.; Sánchez, A. Rapid, Independent, and Extensive Amplification of Telomeric Repeats in Pericentromeric Regions in Karyotypes of Arvicoline Rodents. Chromosome Res. 2011, 19, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Rovatsos, M.; Marchal, J.A.; Giagia-Athanasopoulou, E.; Sánchez, A. Molecular Composition of Heterochromatin and Its Contribution to Chromosome Variation in the Microtus thomasi/Microtus atticus Species Complex. Genes 2021, 12, 807. [Google Scholar] [CrossRef] [PubMed]
- Glugoski, L.; Nogaroto, V.; Deon, G.A.; Azambuja, M.; Moreira-Filho, O.; Vicari, M.R. Enriched Tandem Repeats in Chromosomal Fusion Points of Rineloricaria latirostris (Boulenger, 1900) (Siluriformes: Loricariidae). Genome 2022, 65, 479–489. [Google Scholar] [CrossRef]
- Ferreira, A.M.V.; Viana, P.F.; Marajó, L.; Feldberg, E. First Karyotypic Insights into Potamotrygon schroederi Fernández-Yépez, 1958: Association of Different Classes of Repetitive DNA. Cytogenet. Genome Res. 2024, 164, 60–68. [Google Scholar] [CrossRef]
- Kim, T.-S.; Hong, C.-Y.; Oh, S.-J.; Choe, Y.-H.; Hwang, T.-S.; Kim, J.; Lee, S.-L.; Yoon, H.; Bok, E.-Y.; Cho, A.; et al. RNA Sequencing Provides Novel Insights into the Pathogenesis of Naturally Occurring Myxomatous Mitral Valve Disease Stage B1 in Beagle Dogs. PLoS ONE 2024, 19, e0300813. [Google Scholar] [CrossRef]
- Rodrigues, L.R.R.; Barros, R.M.S.; Marques-Aguiar, S.; Assis, M.D.F.L.; Pieczarka, J.C.; Nagamachi, C.Y. Comparative Cytogenetics of Two Phyllostomids Bats. A New Hypothesis to the Origin of the Rearranged X Chromosome from Artibeus Lituratus (Chiroptera, Phyllostomidae). Caryologia 2003, 56, 413–419. [Google Scholar] [CrossRef]
- Noronha, R.C.R.; Nagamachi, C.Y.; O’Brien, P.C.M.; Ferguson-Smith, M.A.; Pieczarka, J.C. Meiotic Analysis of XX/XY and Neo-XX/XY Sex Chromosomes in Phyllostomidae by Cross-Species Chromosome Painting Revealing a Common Chromosome 15-XY Rearrangement in Stenodermatinae. Chromosome Res. 2010, 18, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Pieczarka, J.C.; Gomes, A.J.B.; Nagamachi, C.Y.; Rocha, D.C.C.; Rissino, J.D.; O’Brien, P.C.M.; Yang, F.; Ferguson-Smith, M.A. A Phylogenetic Analysis Using Multidirectional Chromosome Painting of Three Species (Uroderma magnirostrum, U. bilobatum and Artibeus obscurus) of Subfamily Stenodermatinae (Chiroptera-Phyllostomidae). Chromosome Res. 2013, 21, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.J.B.; Nagamachi, C.Y.; Rodrigues, L.R.R.; Benathar, T.C.M.; Ribas, T.F.A.; O’Brien, P.C.M.; Yang, F.; Ferguson-Smith, M.A.; Pieczarka, J.C. Chromosomal Phylogeny of Vampyressine Bats (Chiroptera, Phyllostomidae) with Description of Two New Sex Chromosome Systems. BMC Evol. Biol. 2016, 16, 119. [Google Scholar] [CrossRef]
- Noronha, R.C.R.; Nagamachi, C.Y.; O’Brien, P.C.M.; Ferguson-Smith, M.A.; Pieczarka, J.C. Neo-XY Body: An Analysis of XY1Y2 Meiotic Behavior in Carollia (Chiroptera, Phyllostomidae) by Chromosome Painting. Cytogenet. Genome Res. 2009, 124, 37–43. [Google Scholar] [CrossRef]
- Milioto, V.; Arizza, V.; Vizzini, A.; Perelman, P.L.; Roelke-Parker, M.E.; Dumas, F. Comparative Genomic Hybridization (CGH) in New World Monkeys (Primates) Reveals the Distribution of Repetitive Sequences in Cebinae and Callitrichinae. Biology 2024, 14, 22. [Google Scholar] [CrossRef]
- Palacios-Gimenez, O.M.; Marti, D.A.; Cabral-de-Mello, D.C. Neo-Sex Chromosomes of Ronderosia bergi: Insight into the Evolution of Sex Chromosomes in Grasshoppers. Chromosoma 2015, 124, 353–365. [Google Scholar] [CrossRef]
- Palacios-Gimenez, O.M.; Dias, G.B.; De Lima, L.G.; Kuhn, G.C.E.S.; Ramos, É.; Martins, C.; Cabral-de-Mello, D.C. High-Throughput Analysis of the Satellitome Revealed Enormous Diversity of Satellite DNAs in the Neo-Y Chromosome of the Cricket Eneoptera surinamensis. Sci. Rep. 2017, 7, 6422. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Gimenez, O.M.; Milani, D.; Lemos, B.; Castillo, E.R.; Martí, D.A.; Ramos, E.; Martins, C.; Cabral-de-Mello, D.C. Uncovering the Evolutionary History of Neo-XY Sex Chromosomes in the Grasshopper Ronderosia bergii (Orthoptera, Melanoplinae) through Satellite DNA Analysis. BMC Evol. Biol. 2018, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, A.B.S.M.; Milani, D.; Palacios-Gimenez, O.M.; Ruiz-Ruano, F.J.; Cabral-de-Mello, D.C. High Dynamism for Neo-Sex Chromosomes: Satellite DNAs Reveal Complex Evolution in a Grasshopper. Heredity 2020, 125, 124–137. [Google Scholar] [CrossRef] [PubMed]
Subfamily | Species | 2n | SCS | N |
---|---|---|---|---|
Sternodermatinae | Artibeus lituratus * | 2n = 30♀/31♂ | XY1Y2 | 2♂ |
Dermanura cinerea | 2n = 30♀♂ | neo-XY | 1♀ | |
Sturnira lilium | 2n = 30♀♂ | neo-XY | 1♂ | |
Uroderma bilobatum | 2n = 42♀♂ | neo-XY | 2♂ | |
Uroderma magnirostrum | 2n = 36♀♂ | neo-XY | 1♀ | |
Carolliinae | Carollia perspicillata * | 2n = 20♀/21♂ | XY1Y2 | 3♀/5♂ |
SF | satDNA Family | Monomer Size | Abundance | Divergence | A+T (%) |
---|---|---|---|---|---|
AliSat01-19 | 19 | 0.010222866 | 23.74 | 47.4 | |
AliSat02-51 | 51 | 0.003122652 | 11.58 | 19.6 | |
AliSat03-1388 | 1388 | 0.000778856 | 4.21 | 57.3 | |
AliSat04-312 | 312 | 0.000475007 | 4.21 | 59.3 | |
2 | CpeSat01-30 | 30 | 0.030872539 | 6.02 | 60 |
2 | CpeSat02-24 | 24 | 0.019716908 | 15.31 | 50 |
1 | CpeSat03-838 | 838 | 0.008007920 | 3.44 | 55 |
1 | CpeSat04-535 | 535 | 0.006001807 | 5.38 | 56 |
2 | CpeSat05-72 | 72 | 0.005138635 | 8.8 | 56 |
CpeSat06-24 | 24 | 0.002154351 | 7.42 | 33 | |
2 | CpeSat07-1531 | 1531 | 0.000667462 | 15.53 | 58 |
2 | CpeSat08-21 | 21 | 0.000527628 | 19.33 | 38 |
CpeSat09-1681 | 1681 | 0.000375722 | 7.47 | 53 | |
CpeSat10-13 | 13 | 0.000085140 | 9.96 | 38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deon, G.A.; Ezaz, T.; Stornioli, J.H.F.; dos Santos, R.Z.; Gomes, A.J.B.; Setti, P.G.; de Oliveira, E.H.C.; Porto-Foresti, F.; Utsunomia, R.; Liehr, T.; et al. Repetitive DNAs and Karyotype Evolution in Phyllostomid Bats (Chiroptera: Phyllostomidae). Biomolecules 2025, 15, 1248. https://doi.org/10.3390/biom15091248
Deon GA, Ezaz T, Stornioli JHF, dos Santos RZ, Gomes AJB, Setti PG, de Oliveira EHC, Porto-Foresti F, Utsunomia R, Liehr T, et al. Repetitive DNAs and Karyotype Evolution in Phyllostomid Bats (Chiroptera: Phyllostomidae). Biomolecules. 2025; 15(9):1248. https://doi.org/10.3390/biom15091248
Chicago/Turabian StyleDeon, Geize Aparecida, Tariq Ezaz, José Henrique Forte Stornioli, Rodrigo Zeni dos Santos, Anderson José Baia Gomes, Príncia Grejo Setti, Edivaldo Herculano Correa de Oliveira, Fábio Porto-Foresti, Ricardo Utsunomia, Thomas Liehr, and et al. 2025. "Repetitive DNAs and Karyotype Evolution in Phyllostomid Bats (Chiroptera: Phyllostomidae)" Biomolecules 15, no. 9: 1248. https://doi.org/10.3390/biom15091248
APA StyleDeon, G. A., Ezaz, T., Stornioli, J. H. F., dos Santos, R. Z., Gomes, A. J. B., Setti, P. G., de Oliveira, E. H. C., Porto-Foresti, F., Utsunomia, R., Liehr, T., & Cioffi, M. d. B. (2025). Repetitive DNAs and Karyotype Evolution in Phyllostomid Bats (Chiroptera: Phyllostomidae). Biomolecules, 15(9), 1248. https://doi.org/10.3390/biom15091248