Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand
Abstract
:1. Introduction
Gene | Role | SNP | Alleles | References |
---|---|---|---|---|
OCA2 | Transporter | rs74653330 | G/A | [25,26] |
rs1800414 | G/A | [17,18,25,26] | ||
DCT | Enzyme | rs2031526 | G/A | [20] |
rs3782974 | A/T | [27] | ||
rs1407995 | C/T | [17] | ||
KITLG | Signaling molecule | rs642742 | C/T | [21,22] |
rs1881227 | C/T | [28] | ||
rs4073022 | G/A | [22] | ||
rs428316 | A/T | [22] | ||
rs11104947 | G/A | [29] | ||
SLC24A2 | Transporter | rs10122939 | G/A | [23] |
2. Materials and Methods
3. Genetic Insights and Predictive Models for Skin Pigmentation
3.1. Genetic Background of Thailand
3.2. Advancements in DNA-Based Prediction of Pigmentation: Models and Techniques
3.3. Genes Associated with Skin Pigmentation Variation in Asians
3.3.1. MC1R
3.3.2. OCA2
3.3.3. DCT
3.3.4. KITLG
3.3.5. SLC24A2
4. Forensic DNA Phenotyping in Thailand: Ethical Perspectives
5. Limitations of Forensic DNA Phenotyping by Skin Color
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
cAMP | Cyclic adenosine monophosphate |
CIFS | Central institute of forensic science |
DNA | Deoxyribonucleic acid |
DUH2 | Dyschromatosis universalis hereditaria 2 |
EVC | External visible characteristic |
FDP | Forensic DNA phenotyping |
FPHH | Familial progressive hyper- and hypopigmentation |
GWAS | Genome-wide association study |
MAPK | Mitogen-activated protein kinase |
NGS | Next-generation sequencing |
PCR | Polymerase chain reaction |
PKA | Protein kinase A |
SBE | Single base extension |
SNP | Single nucleotide polymorphism |
STR | Short tandem repeat |
UV | Ultraviolet |
References
- Tie, J.; Uchigasaki, S.; Isobe, E. Evaluation and SNP Typing of DNA from Ultraviolet-Irradiated Human Bloodstains Using TaqMan Assay. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Albright, T.D. Why Eyewitnesses Fail. Proc. Natl. Acad. Sci. USA 2017, 114, 7758–7764. [Google Scholar] [CrossRef] [PubMed]
- Wixted, J.T.; Mickes, L.; Fisher, R.P. Rethinking the Reliability of Eyewitness Memory. Perspect. Psychol. Sci. 2018, 13, 324–335. [Google Scholar] [CrossRef]
- Kayser, M.; Branicki, W.; Parson, W.; Phillips, C. Recent Advances in Forensic DNA Phenotyping of Appearance, Ancestry and Age. Forensic Sci. Int. Genet. 2023, 65, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Valverde, P.; Healy, E.; Jackson, I.; Rees, J.L.; Thody, A.J. Variants of the Melanocyte-Stimulating Hormone Receptor Gene Are Associated with Red Hair and Fair Skin in Humans. Nat. Genet. 1995, 11, 328–330. [Google Scholar] [CrossRef]
- Sturm, R.A.; Teasdale, R.D.; Box, N.F. Human Pigmentation Genes: Identification, Structure and Consequences of Polymorphic Variation. Gene 2001, 277, 49–62. [Google Scholar] [CrossRef]
- Kanetsky, P.A.; Swoyer, J.; Panossian, S.; Holmes, R.; Guerry, D.P.; Rebbeck, T.R. A Polymorphism in the Agouti Signaling Protein Gene Is Associated with Human Pigmentation. Am. J. Hum. Genet. 2002, 70, 770–775. [Google Scholar] [CrossRef]
- Kayser, M.; Schneider, P.M. DNA-Based Prediction of Human Externally Visible Characteristics in Forensics: Motivations, Scientific Challenges, and Ethical Considerations. Forensic Sci. Int. Genet. 2009, 3, 154–161. [Google Scholar] [CrossRef]
- Kayser, M. Forensic DNA Phenotyping: Predicting Human Appearance from Crime Scene Material for Investigative Purposes. Forensic Sci. Int. Genet. 2015, 18, 33–48. [Google Scholar] [CrossRef]
- Liu, J.; Bitsue, H.K.; Yang, Z. Skin Colour: A Window into Human Phenotypic Evolution and Environmental Adaptation. Mol. Ecol. 2024, 33, 1–20. [Google Scholar] [CrossRef]
- Knuschke, P. Sun Exposure and Vitamin D. Curr. Probl. Dermatol. 2021, 55, 296–315. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, T.; Kobayashi, N.; Zmudzka, B.Z.; Ito, S.; Wakamatsu, K.; Yamaguchi, Y.; Korossy, K.S.; Miller, S.A.; Beer, J.Z.; Hearing, V.J. UV-Induced DNA Damage and Melanin Content in Human Skin Differing in Racial/Ethnic Origin. FASEB J. 2003, 17, 1177–1179. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, T.; Yamaguchi, Y.; Batzer, J.; Coelho, S.G.; Zmudzka, B.Z.; Miller, S.A.; Wolber, R.; Beer, J.Z.; Hearing, V.J. Mechanisms of Skin Tanning in Different Racial/Ethnic Groups in Response to Ultraviolet Radiation. J. Investig. Dermatol. 2005, 124, 1326–1332. [Google Scholar] [CrossRef]
- SzabÓ, G.; Gerald, A.B.; Pathak, M.A.; Fitzpatrick, T.B. Racial Differences in the Fate of Melanosomes in Human Epidermis. Nature 1969, 222, 1081–1082. [Google Scholar] [CrossRef] [PubMed]
- Stephen, I.D.; Coetzee, V.; Perrett, D.I. Carotenoid and Melanin Pigment Coloration Affect Perceived Human Health. Evol. Hum. Behav. 2011, 32, 216–227. [Google Scholar] [CrossRef]
- Mayrovitz, H.N.; Aoki, K.; Deehan, E.; Ruppe, M. Epidermal and Dermal Hydration in Relation to Skin Color Parameters. Skin. Res. Technol. 2024, 30, 1–8. [Google Scholar] [CrossRef]
- Edwards, M.; Bigham, A.; Tan, J.; Li, S.; Gozdzik, A.; Ross, K.; Jin, L.; Parra, E.J. Association of the OCA2 Polymorphism His615Arg with Melanin Content in East Asian Populations: Further Evidence of Convergent Evolution of Skin Pigmentation. PLoS Genet. 2010, 6, 1–8. [Google Scholar] [CrossRef]
- Yuasa, I.; Umetsu, K.; Harihara, S.; Kido, A.; Miyoshi, A.; Saitou, N.; Dashnyam, B.; Jin, F.; Lucotte, G.; Chattopadhyay, P.K.; et al. Distribution of Two Asian-Related Coding SNPs in the MC1R and OCA2 Genes. Biochem. Genet. 2007, 45, 535–542. [Google Scholar] [CrossRef]
- Alonso, S.; Izagirre, N.; Smith-Zubiaga, I.; Gardeazabal, J.; Díaz-Ramón, J.L.; Díaz-Pérez, J.L.; Zelenika, D.; Boyano, M.D.; Smit, N.; De La Rúa, C. Complex Signatures of Selection for the Melanogenic Loci TYR, TYRP1 and DCT in Humans. BMC Evol. Biol. 2008, 8, 1–14. [Google Scholar] [CrossRef]
- Myles, S.; Somel, M.; Tang, K.; Kelso, J.; Stoneking, M. Identifying Genes Underlying Skin Pigmentation Differences among Human Populations. Hum. Genet. 2007, 120, 613–621. [Google Scholar] [CrossRef]
- Miller, C.T.; Beleza, S.; Pollen, A.A.; Schluter, D.; Kittles, R.A.; Shriver, M.D.; Kingsley, D.M.M. Cis-Regulatory Changes in Kit Ligand Expression and Parallel Evolution of Pigmentation in Sticklebacks and Humans. Cell 2007, 131, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Shi, H.; Ma, P.; Zhao, S.; Kong, Q.; Bian, T.; Gong, C.; Zhao, Q.; Liu, Y.; Qi, X.; et al. Darwinian Positive Selection on the Pleiotropic Effects of KITLG Explain Skin Pigmentation and Winter Temperature Adaptation in Eurasians. Mol. Biol. Evol. 2018, 35, 2272–2283. [Google Scholar] [CrossRef]
- Wang, F.; Luo, Q.; Chen, Y.; Liu, Y.; Xu, K.; Adhikari, K.; Cai, X.; Liu, J.; Li, Y.; Liu, X.; et al. A Genome-Wide Scan on Individual Typology Angle Found Variants at SLC24A2 Associated with Skin Color Variation in Chinese Populations. J. Investig. Dermatol. 2022, 142, 1223–1227. [Google Scholar] [CrossRef] [PubMed]
- Stokowski, R.P.; Pant, P.V.K.; Dadd, T.; Fereday, A.; Hinds, D.A.; Jarman, C.; Filsell, W.; Ginger, R.S.; Green, M.R.; Van Der Ouderaa, F.J.; et al. A Genomewide Association Study of Skin Pigmentation in a South Asian Population. Am. J. Hum. Genet. 2007, 81, 1119–1132. [Google Scholar] [CrossRef]
- Amano, S.; Yoshikawa, T.; Ito, C.; Mabuchi, I.; Kikuchi, K.; Ooguri, M.; Yasuda, C. Prediction and Association Analyses of Skin Phenotypes in Japanese Females Using Genetic, Environmental, and Physical Features. Skin Res. Technol. 2023, 29, 1–13. [Google Scholar] [CrossRef]
- Yuasa, I.; Harihara, S.; Jin, F.; Nishimukai, H.; Fujihara, J.; Fukumori, Y.; Takeshita, H.; Umetsu, K.; Saitou, N. Distribution of OCA2*481Thr and OCA2*615Arg, Associated with Hypopigmentation, in Several Additional Populations. Leg. Med. 2011, 13, 215–217. [Google Scholar] [CrossRef]
- Lao, O.; De Gruijter, J.M.; Van Duijn, K.; Navarro, A.; Kayser, M. Signatures of Positive Selection in Genes Associated with Human Skin Pigmentation as Revealed from Analyses of Single Nucleotide Polymorphisms. Ann. Hum. Genet. 2007, 71, 354–369. [Google Scholar] [CrossRef]
- Coop, G.; Pickrell, J.K.; Novembre, J.; Kudaravalli, S.; Li, J.; Absher, D.; Myers, R.M.; Cavalli-Sforza, L.L.; Feldman, M.W.; Pritchard, J.K. The Role of Geography in Human Adaptation. PLoS Genet. 2009, 5, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Shido, K.; Kojima, K.; Yamasaki, K.; Hozawa, A.; Tamiya, G.; Ogishima, S.; Minegishi, N.; Kawai, Y.; Tanno, K.; Suzuki, Y.; et al. Susceptibility Loci for Tanning Ability in the Japanese Population Identified by a Genome-Wide Association Study from the Tohoku Medical Megabank Project Cohort Study. J. Investig. Dermatol. 2019, 139, 1605–1608. [Google Scholar] [CrossRef]
- Wangkumhang, P.; James Shaw, P.; Chaichoompu, K.; Ngamphiw, C.; Assawamakin, A.; Nuinoon, M.; Sripichai, O.; Svasti, S.; Fucharoen, S.; Praphanphoj, V.; et al. Insight into the Peopling of Mainland Southeast Asia from Thai Population Genetic Structure. PLoS ONE 2013, 8, 1–12. [Google Scholar] [CrossRef]
- Vongpaisarnsin, K.; Listman, J.B.; Malison, R.T.; Gelernter, J. Ancestry Informative Markers for Distinguishing between Thai Populations Based on Genome-Wide Association Datasets. Leg. Med. 2015, 17, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Kampuansai, J.; Völgyi, A.; Kutanan, W.; Kangwanpong, D.; Pamjav, H. Autosomal STR Variations Reveal Genetic Heterogeneity in the Mon-Khmer Speaking Group of Northern Thailand. Forensic Sci. Int. Genet. 2017, 27, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Huang, W.; Tian, J.Y.; Chen, X.Q.; Kong, Q.P. Exploring the Maternal History of the Tai People. J. Hum. Genet. 2016, 61, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhou, C.; Huang, X.; Lin, K.; Shi, L.; Yu, L.; Liu, S.; Chu, J.; Yang, Z. Autosomal STRs Provide Genetic Evidence for the Hypothesis That Tai People Originate from Southern China. PLoS ONE 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Srithawong, S.; Muisuk, K.; Srikummool, M.; Kampuansai, J.; Pittayaporn, P.; Ruangchai, S.; Liu, D.; Kutanan, W. Close Genetic Relationship between Central Thai and Mon People in Thailand Revealed by Autosomal Microsatellites. Int. J. Legal Med. 2021, 135, 445–448. [Google Scholar] [CrossRef]
- Kutanan, W.; Liu, D.; Kampuansai, J.; Srikummool, M.; Srithawong, S.; Shoocongdej, R.; Sangkhano, S.; Ruangchai, S.; Pittayaporn, P.; Arias, L.; et al. Reconstructing the Human Genetic History of Mainland Southeast Asia: Insights from Genome-Wide Data from Thailand and Laos. Mol. Biol. Evol. 2021, 38, 3459–3477. [Google Scholar] [CrossRef]
- Walsh, S.; Liu, F.; Ballantyne, K.N.; Van Oven, M.; Lao, O.; Kayser, M. IrisPlex: A Sensitive DNA Tool for Accurate Prediction of Blue and Brown Eye Colour in the Absence of Ancestry Information. Forensic. Sci. Int. Genet. 2011, 5, 170–180. [Google Scholar] [CrossRef]
- Liu, F.; van Duijn, K.; Vingerling, J.R.; Hofman, A.; Uitterlinden, A.G.; Janssens, A.C.J.W.; Kayser, M. Eye Color and the Prediction of Complex Phenotypes from Genotypes. Curr. Biol. 2009, 19, R192–R193. [Google Scholar] [CrossRef]
- Walsh, S.; Liu, F.; Wollstein, A.; Kovatsi, L.; Ralf, A.; Kosiniak-Kamysz, A.; Branicki, W.; Kayser, M. The HIrisPlex System for Simultaneous Prediction of Hair and Eye Colour from DNA. Forensic. Sci. Int. Genet. 2013, 7, 98–115. [Google Scholar] [CrossRef]
- Maroñas, O.; Phillips, C.; Söchtig, J.; Gomez-Tato, A.; Cruz, R.; Alvarez-Dios, J.; De Cal, M.C.; Ruiz, Y.; Fondevila, M.; Carracedo, Á.; et al. Development of a Forensic Skin Colour Predictive Test. Forensic. Sci. Int. Genet. 2014, 13, 34–44. [Google Scholar] [CrossRef]
- Chaitanya, L.; Breslin, K.; Zuñiga, S.; Wirken, L.; Pośpiech, E.; Kukla-Bartoszek, M.; Sijen, T.; de Knijff, P.; Liu, F.; Branicki, W.; et al. The HIrisPlex-S System for Eye, Hair and Skin Colour Prediction from DNA: Introduction and Forensic Developmental Validation. Forensic. Sci. Int. Genet. 2018, 35, 123–135. [Google Scholar] [CrossRef]
- Caliebe, A.; Harder, M.; Schuett, R.; Krawczak, M.; Nebel, A.; Von Wurmb-Schwark, N. The More the Merrier? How a Few SNPs Predict Pigmentation Phenotypes in the Northern German Population. Eur. J. Hum. Genet. 2016, 24, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Navarro-López, B.; Baeta, M.; Suárez-Ulloa, V.; Martos-Fernández, R.; Moreno-López, O.; Martínez-Jarreta, B.; Jiménez, S.; Olalde, I.; de Pancorbo, M.M. Exploring Eye, Hair, and Skin Pigmentation in a Spanish Population: Insights from Hirisplex-S Predictions. Genes 2024, 15, 1330. [Google Scholar] [CrossRef]
- Dario, P.; Mouriño, H.; Oliveira, A.R.; Lucas, I.; Ribeiro, T.; Porto, M.J.; Costa Santos, J.; Dias, D.; Corte Real, F. Assessment of IrisPlex-Based Multiplex for Eye and Skin Color Prediction with Application to a Portuguese Population. Int. J. Legal Med. 2015, 129, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.; Chaitanya, L.; Breslin, K.; Muralidharan, C.; Bronikowska, A.; Pospiech, E.; Koller, J.; Kovatsi, L.; Wollstein, A.; Branicki, W.; et al. Global Skin Colour Prediction from DNA. Hum. Genet. 2017, 136, 847–863. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.L.; Kimura, S.L.; Mushailov, V.; Budimlija, Z.M.; Prinz, M.; Wurmbach, E. Improved Eye- and Skin-Color Prediction Based on 8 SNPs. Croat. Med. J. 2013, 54, 248–256. [Google Scholar] [CrossRef]
- Phillips, C.; Aradas, A.F.; Kriegel, A.K.; Fondevila, M.; Bulbul, O.; Santos, C.; Rech, F.S.; Carceles, M.D.P.; Carracedo, Á.; Schneider, P.M.; et al. Eurasiaplex: A Forensic SNP Assay for Differentiating European and South Asian Ancestries. Forensic. Sci. Int. Genet. 2013, 7, 359–366. [Google Scholar] [CrossRef]
- Phillips, C.; de la Puente, M.; Ruiz-Ramirez, J.; Staniewska, A.; Ambroa-Conde, A.; Freire-Aradas, A.; Mosquera-Miguel, A.; Rodriguez, A.; Lareu, M.V. Eurasiaplex-2: Shifting the Focus to SNPs with High Population Specificity Increases the Power of Forensic Ancestry Marker Sets. Forensic. Sci. Int. Genet. 2022, 61, 1–12. [Google Scholar] [CrossRef]
- Yuasa, I.; Akane, A.; Yamamoto, T.; Matsusue, A.; Endoh, M.; Nakagawa, M.; Umetsu, K.; Ishikawa, T.; Iino, M. Japaneseplex: A Forensic SNP Assay for Identification of Japanese People Using Japanese-Specific Alleles. Leg Med. 2018, 33, 17–22. [Google Scholar] [CrossRef]
- Chen, J.; Schedl, T. A Simple One-Step PCR Assay for SNP Detection. MicroPubl Biol. 2021, 1–4. [Google Scholar] [CrossRef]
- Sone, R.; Fujimaki, S.; Kawahara, A. Efficient Detection of Single Nucleotide Variants in Targeted Genomic Loci. Dev. Growth Differ. 2024, 66, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.G.; Connell, C.R.; Bloch, W. Allelic Discrimination by Nick-Translation PCR with Fluorgenic Probes. Nucleic Acids Res. 1993, 21, 3761–3766. [Google Scholar] [CrossRef]
- Balagu-Dobón, L.; Cáceres, A.; González, J.R. Fully Exploiting SNP Arrays: A Systematic Review on the Tools to Extract Underlying Genomic Structure. Brief. Bioinform. 2022, 23, 1–22. [Google Scholar] [CrossRef]
- Konjhodžić, R.; Salihefendić, L.; Čeko, I.; Kandić, E.; Ašić, A.; Kubat, M. Detection of 13 Hypervariable Region 1 (Hv1) SNPs Using Single-Base Extension (Sbe) Primers in Parallel with Sanger Sequencing. Gene 2023, 872, 1–10. [Google Scholar] [CrossRef]
- Podini, D.; Vallone, P.M. SNP Genotyping Using Multiplex Single Base Primer Extension Assays. Methods Mol. Biol. 2009, 578, 379–391. [Google Scholar] [CrossRef]
- Browne, T.N.; Freeman, M. Next Generation Sequencing: Forensic Applications and Policy Considerations. WIREs Forensic. Sci. 2024, 6, 1–22. [Google Scholar] [CrossRef]
- Pedroza Matute, S.; Iyavoo, S. Applications and Performance of Precision ID GlobalFiler NGS STR, Identity, and Ancestry Panels in Forensic Genetics. Genes 2024, 15, 1133. [Google Scholar] [CrossRef] [PubMed]
- Gettings, K.B.; Kiesler, K.M.; Vallone, P.M. Performance of a next Generation Sequencing SNP Assay on Degraded DNA. Forensic. Sci. Int. Genet. 2015, 19, 1–9. [Google Scholar] [CrossRef]
- Bruner, W.S.; Grant, S.F.A. Translation of Genome-Wide Association Study: From Genomic Signals to Biological Insights. Front. Genet. 2024, 15, 1–17. [Google Scholar] [CrossRef]
- Sulem, P.; Gudbjartsson, D.F.; Stacey, S.N.; Helgason, A.; Rafnar, T.; Magnusson, K.P.; Manolescu, A.; Karason, A.; Palsson, A.; Thorleifsson, G.; et al. Genetic Determinants of Hair, Eye and Skin Pigmentation in Europeans. Nat. Genet. 2007, 39, 1443–1452. [Google Scholar] [CrossRef]
- Sturm, R.A.; Duffy, D.L.; Box, N.F.; Newton, R.A.; Shepherd, A.G.; Chen, W.; Marks, L.H.; Leonard, J.H.; Martin, N.G. Genetic Association and Cellular Function of MC1R Variant Alleles in Human Pigmentation. Ann. N. Y. Acad. Sci. 2003, 994, 348–358. [Google Scholar] [CrossRef] [PubMed]
- García-Borrón, J.C.; Abdel-Malek, Z.; Jiménez-Cervantes, C. MC1R, the CAMP Pathway, and the Response to Solar UV: Extending the Horizon beyond Pigmentation. Pigment. Cell Melanoma Res. 2014, 27, 699–720. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.A.; Smit, S.E.; Barnes, C.C.; Pedley, J.; Parsons, P.G.; Sturm, R.A. Activation of the CAMP Pathway by Variant Human MC1R Alleles Expressed in HEK and in Melanoma Cells. Peptides 2005, 26, 1818–1824. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Soemantri, A.; Jin, F.; Dashnyam, B.; Ohtsuka, R.; Duanchang, P.; Isa, M.N.; Settheetham-Ishida, W.; Harihara, S.; Ishida, T. Identification of Novel Functional Variants of the Melanocortin 1 Receptor Gene Originated from Asians. Hum. Genet. 2006, 119, 322–330. [Google Scholar] [CrossRef]
- Quillen, E.E.; Norton, H.L.; Parra, E.J.; Lona-Durazo, F.; Ang, K.C.; Illiescu, F.M.; Pearson, L.N.; Shriver, M.D.; Lasisi, T.; Gokcumen, O.; et al. Shades of Complexity: New Perspectives on the Evolution and Genetic Architecture of Human Skin. Am. J. Phys. Anthropol. 2019, 168, 4–26. [Google Scholar] [CrossRef]
- Liu, F.; Visser, M.; Duffy, D.L.; Hysi, P.G.; Jacobs, L.C.; Lao, O.; Zhong, K.; Walsh, S.; Chaitanya, L.; Wollstein, A.; et al. Genetics of Skin Color Variation in Europeans: Genome-Wide Association Studies with Functional Follow-Up. Hum. Genet. 2015, 134, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Coelho, S.G.; Valencia, J.C.; Ebsen, D.; Mahns, A.; Smuda, C.; Miller, S.A.; Beer, J.Z.; Kolbe, L.; Hearing, V.J. Identification of Genes Expressed in Hyperpigmented Skin Using Meta-Analysis of Microarray Datasets. J. Investig. Dermatol. 2015, 135, 2455–2463. [Google Scholar] [CrossRef]
- Gardner, J.M.; Nakatsu, Y.; Gondo, Y.; Lee, S.; Lyon, M.F.; King, R.A.; Brilliant, M.H. The Mouse Pink-Eyed Dilution Gene: Association with Human Prader-Willi and Angelman Syndromes. Science 1992, 257, 1121–1124. [Google Scholar] [CrossRef]
- Sitaram, A.; Piccirillo, R.; Palmisano, I.; Harper, D.C.; Dell’Angelica, E.C.; Schiaffino, M.V.; Marks, M.S. Localization to Mature Melanosomes by Virtue of Cytoplasmic Dileucine Motifs Is Required for Human OCA2 Function. Mol. Biol. Cell 2009, 20, 1464–1477. [Google Scholar] [CrossRef]
- Oetting, W.S.; Garrett, S.S.; Brott, M.; King, R.A. P Gene Mutations Associated with Oculocutaneous Albinism Type II (OCA2). Hum. Mutat. 2005, 25, 323. [Google Scholar] [CrossRef]
- Park, S.; Morya, V.K.; Nguyen, D.H.; Singh, B.K.; Lee, H.B.; Kim, E.K. Unrevealing the Role of P-Protein on Melanosome Biology and Structure, Using SiRNA-Mediated down Regulation of OCA2. Mol. Cell Biochem. 2015, 403, 61–71. [Google Scholar] [CrossRef]
- Bellono, N.W.; Escobar, I.E.; Oancea, E. A Melanosomal Two-Pore Sodium Channel Regulates Pigmentation. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bellono, N.W.; Escobar, I.E.; Lefkovith, A.J.; Marks, M.S.; Oancea, E. An Intracellular Anion Channel Critical for Pigmentation. Elife 2014, 3, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Manga, P.; Pifko-Hirst, S.; Zhou, B.K.; Orlow, S.J.; Boissy, R.E. Mislocalization of Melanosomal Proteins in Melanocytes from Mice with Oculocutaneous Albinism Type 2. Exp. Eye Res. 2001, 72, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Koirala, M.; Mihiri Shashikala, H.B.; Jeffries, J.; Wu, B.; Loftus, S.K.; Zippin, J.H.; Alexov, E. Computational Investigation of the Ph Dependence of Stability of Melanosome Proteins: Implication for Melanosome Formation and Disease. Int. J. Mol. Sci. 2021, 22, 8273. [Google Scholar] [CrossRef]
- Talley, K.; Alexov, E. On the PH-Optimum of Activity and Stability of Proteins. Proteins 2010, 78, 2699–2706. [Google Scholar] [CrossRef]
- Puri, N.; Gardner, J.M.; Brilliant, M.H. Aberrant PH of Melanosomes in Pink-Eyed Dilution (p) Mutant Melanocytes. J. Investig. Dermatol. 2000, 115, 607–613. [Google Scholar] [CrossRef]
- Rosemblat, S.; Durham-Pierre, D.; Gardner, J.M.; Nakatsu, Y.; Brilliant, M.H.; Orlow, S.J. Identification of a Melanosomal Membrane Protein Encoded by the Pink-Eyed Dilution (Type II Oculocutaneous Albinism) Gene. Proc. Natl. Acad. Sci. USA 1994, 91, 12071–12075. [Google Scholar] [CrossRef]
- Ito, S.; Suzuki, N.; Takebayashi, S.; Commo, S.; Wakamatsu, K. Neutral PH and Copper Ions Promote Eumelanogenesis after the Dopachrome Stage. Pigment. Cell Melanoma Res. 2013, 26, 817–825. [Google Scholar] [CrossRef]
- Vongpaisarnsin, K.; Vongpaisarnsin, K. Eye Colour Single Nucleotide Polymorphisms (SNPs) Variants in Thai Population. Forensic. Sci. Int. Genet. Suppl. Ser. 2013, 4, e198–e199. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Jackson1, I.J.; Urabe, K.; Montague, P.M.; Hearing, V.J. A Second Tyrosinase-related Protein, TRP-2, Is a Melanogenic Enzyme Termed DOPAchrome Tautomerase. EMBO J. 1992, 11, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Urabe, K.; Winder, A.; Jiménez-Cervantes, C.; Imokawa, G.; Brewington, T.; Solano, F.; García-Borrön, J.C.; Hearing, V.J. Tyrosinase Related Protein 1 (TRP1) Functions as a DHICA Oxidase in Melanin Biosynthesis. EMBO J. 1994, 13, 5818–5825. [Google Scholar] [CrossRef]
- Tingaud-sequeira, A.; Mercier, E.; Michaud, V.; Pinson, B.; Gazova, I.; Gontier, E.; Decoeur, F.; McKie, L.; Jackson, I.J.; Arveiler, B.; et al. The Dct−/− Mouse Model to Unravel Retinogenesis Misregulation in Patients with Albinism. Genes 2022, 13, 1164. [Google Scholar] [CrossRef]
- Yingchutrakul, Y.; Krobthong, S.; Choowongkomon, K.; Papan, P.; Samutrtai, P.; Mahatnirunkul, T.; Chomtong, T.; Srimongkolpithak, N.; Jaroenchuensiri, T.; Aonbangkhen, C. Discovery of a Multifunctional Octapeptide from Lingzhi with Antioxidant and Tyrosinase Inhibitory Activity. Pharmaceuticals 2022, 15, 684. [Google Scholar] [CrossRef]
- Wehrle-Haller, B. The Role of Kit-Ligand in Melanocyte Development and Epidermal Homeostasis. Pigment. Cell Res. 2003, 16, 287–296. [Google Scholar] [CrossRef] [PubMed]
- West, F.D.; Roche-Rios, M.I.; Abraham, S.; Rao, R.R.; Natrajan, M.S.; Bacanamwo, M.; Stice, S.L. KIT Ligand and Bone Morphogenetic Protein Signaling Enhances Human Embryonic Stem Cell to Germ-like Cell Differentiation. Human Reprod. 2010, 25, 168–178. [Google Scholar] [CrossRef]
- Morita, E.; Lee, D.G.; Sugiyama, M.; Yamamoto, S. Expression of C-Kit Ligand in Human Keratinocytes. Arch. Dermatol. Res. 1994, 286, 273–277. [Google Scholar] [CrossRef]
- Hayashi, Y.; Asuzu, D.T.; Gibbons, S.J.; Aarsvold, K.H.; Bardsley, M.R.; Lomberk, G.A.; Mathison, A.J.; Kendrick, M.L.; Shen, K.R.; Taguchi, T.; et al. Membrane-To-Nucleus Signaling Links Insulin-Like Growth Factor-1- and Stem Cell Factor-Activated Pathways. PLoS ONE 2013, 8, e76822. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, S.; Wang, Y.; Chen, Y.; Zhang, P.; Liu, Y.; Zhang, H.; Zhang, P.; Tao, Z.; Xiong, K. High Expression of KITLG Is a New Hallmark Activating the MAPK Pathway in Type A and AB Thymoma. Thorac. Cancer 2020, 11, 1944–1954. [Google Scholar] [CrossRef]
- Qin, L.; Li, Y.; Huang, Y.; Tang, C.; Yang, W.; Tang, Y.; Qiu, C.; Mao, M.; Li, J. Exploring the Biological Behavior and Underlying Mechanism of KITLG in Triple-Negative Breast Cancer. J. Cancer 2024, 15, 764. [Google Scholar] [CrossRef]
- Blume-Jensen, P.; Hunter, T. Oncogenic Kinase Signalling. Nature 2001, 411, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Edling, C.E.; Hallberg, B. C-Kit—A Hematopoietic Cell Essential Receptor Tyrosine Kinase. Int. J. Biochem. Cell Biol. 2007, 39, 1995–1998. [Google Scholar] [CrossRef] [PubMed]
- Amyere, M.; Vogt, T.; Hoo, J.; Brandrup, F.; Bygum, A.; Boon, L.; Vikkula, M. KITLG Mutations Cause Familial Progressive Hyper- and Hypopigmentation. J. Investig. Dermatol. 2011, 131, 1234–1239. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Si, L.; Tang, Q.; Lin, D.; Fu, Z.; Zhang, J.; Cui, B.; Zhu, Y.; Kong, X.; Deng, M.; et al. Gain-of-Function Mutation of KIT Ligand on Melanin Synthesis Causes Familial Progressive Hyperpigmentation. Am. J. Hum. Genet. 2009, 84, 672–677. [Google Scholar] [CrossRef]
- Jalloul, A.H.; Szerencsei, R.T.; Schnetkamp, P.P.M. Cation Dependencies and Turnover Rates of the Human K+-Dependent Na+-Ca2+ Exchangers NCKX1, NCKX2, NCKX3 and NCKX4. Cell Calcium 2016, 59, 1–11. [Google Scholar] [CrossRef]
- Li, X.F.; Kiedrowski, L.; Tremblay, F.; Fernandez, F.R.; Perizzolo, M.; Winkfein, R.J.; Turner, R.W.; Bains, J.S.; Rancourt, D.E.; Lytton, J. Importance of K+-Dependent Na+/Ca2+-Exchanger 2, NCKX2, in Motor Learning and Memory. J. Biol. Chem. 2006, 281, 6273–6282. [Google Scholar] [CrossRef]
- Zhou, X.G.; He, H.; Wang, P.J. A Critical Role for MiR-135a-5p-Mediated Regulation of SLC24A2 in Neuropathic Pain. Mol. Med. Rep. 2020, 22, 2115–2122. [Google Scholar] [CrossRef]
- Jia, Q.; Hu, S.; Jiao, D.; Li, X.; Qi, S.; Fan, R. Synaptotagmin-4 Promotes Dendrite Extension and Melanogenesis in Alpaca Melanocytes by Regulating Ca2+ Influx via TRPM1 Channels. Cell Biochem. Funct. 2020, 38, 275–282. [Google Scholar] [CrossRef]
- Wang, J.; Gong, J.; Wang, Q.; Tang, T.; Li, W. VDAC1 Negatively Regulates Melanogenesis through the Ca2+-Calcineurin-CRTC1-MITF Pathway. Life Sci. Alliance 2022, 5. [Google Scholar] [CrossRef]
- Lertpusit, S. The Patterns Of New Chinese Immigration In Thailand: The Terms Of Diaspora, Overseas Chinese And New Migrants Comparing In A Global Context. ABAC J. 2018, 38, 74–87. [Google Scholar]
- Yang, J.; Chen, J.; Ji, Q.; Li, K.; Deng, C.; Kong, X.; Xie, S.; Zhan, W.; Mao, Z.; Zhang, B.; et al. Could Routine Forensic STR Genotyping Data Leak Personal Phenotypic Information? Forensic. Sci. Int. 2022, 335, 1–7. [Google Scholar] [CrossRef]
- Gamero, J.J.; Romero, J.L.; Peralta, J.L.; Carvalho, M.; Corte-Real, F. Spanish Public Awareness Regarding DNA Profile Databases in Forensic Genetics: What Type of DNA Profiles Should Be Included? J. Med. Ethics 2007, 33, 598–604. [Google Scholar] [CrossRef] [PubMed]
- David Tan, W.C.; Stasi, A.; Kumar Dhar, B. Forensic DNA Profiling in the Southern Border Provinces of Thailand: Ethical and Regulatory Issues. Forensic Sci. Int. 2022, 336, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Boonderm, N.; Suriyanratakorn, D.; Sangpueng, S.; Wongvoravivat, C.; Waiyawuth, W. Utilization of the CIFS DNA Database to Monitor Recidivism. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 685–687. [Google Scholar] [CrossRef]
- Bernig, T.; Chanock, S.J. Challenges of SNP Genotyping and Genetic Variation: Its Future Role in Diagnosis and Treatment of Cancer. Expert. Rev. Mol. Diagn. 2006, 6, 319–331. [Google Scholar] [CrossRef]
- Mahdi, K.M.; Nassiri, M.R.; Nasiri, K. Hereditary Genes and SNPs Associated with Breast Cancer. Asian Pac. J. Cancer Prev. 2013, 14, 3403–3409. [Google Scholar] [CrossRef]
- Hong, Y.; Wu, G.; Li, W.; Liu, D.; He, K. A Comprehensive Meta-Analysis of Genetic Associations between Five Key SNPs and Colorectal Cancer Risk. Oncotarget 2016, 7, 73945–73959. [Google Scholar] [CrossRef]
- Rath, M.; Li, Q.; Li, H.; Lindström, S.; Miron, A.; Miron, P.; Dowton, A.E.; Meyer, M.E.; Larson, B.G.; Pomerantz, M.; et al. Evaluation of Significant Genome-Wide Association Studies Risk - SNPs in Young Breast Cancer Patients. PLoS ONE 2019, 14, 1–14. [Google Scholar] [CrossRef]
- Wankaew, N.; Chariyavilaskul, P.; Chamnanphon, M.; Assawapitaksakul, A.; Chetruengchai, W.; Pongpanich, M.; Shotelersuk, V. Genotypic and Phenotypic Landscapes of 51 Pharmacogenes Derived from Whole-Genome Sequencing in a Thai Population. PLoS ONE 2022, 17, 1–18. [Google Scholar] [CrossRef]
- Chen, J.M.; Francis-Tan, A. Setting the Tone: An Investigation of Skin Color Bias in Asia. Race Soc. Probl. 2022, 14, 150–169. [Google Scholar] [CrossRef]
- Samuel, G.; Prainsack, B. Civil Society Stakeholder Views on Forensic DNA Phenotyping: Balancing Risks and Benefits. Forensic Sci. Int. Genet. 2019, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Samuel, G.; Prainsack, B. Forensic DNA Phenotyping in Europe: Views “on the Ground” from Those Who Have a Professional Stake in the Technology. New Genet. Soc. 2019, 38, 119–141. [Google Scholar] [CrossRef]
- Dixon, T.L.; Maddox, K.B. Skin Tone, Crime News, and Social Reality Judgments: Priming the Stereotype of the Dark and Dangerous Black Criminal1. J. Appl. Soc. Psychol. 2005, 35, 1555–1570. [Google Scholar] [CrossRef]
- Slabbert, N.; Heathfield, L.J. Ethical, Legal and Social Implications of Forensic Molecular Phenotyping in South Africa. Dev. World Bioeth. 2018, 18, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Mayne, C.; Coutts, L.; Kinnane, A.; Avent, I.; Cho, K.; Tahtouh, M.; Roffey, P. Kafka’s Beautiful Eyes: Forensic Intelligence Utilisation of Phenotypic Information. Forensic Sci. Int. 2024, 361, 1–11. [Google Scholar] [CrossRef]
- Fabbri, M.; Alfieri, L.; Mazdai, L.; Frisoni, P.; Gaudio, R.M.; Neri, M. Application of Forensic DNA Phenotyping for Prediction of Eye, Hair and Skin Colour in Highly Decomposed Bodies. Healthcare 2023, 11, 647. [Google Scholar] [CrossRef]
- Cattaneo, C.; Sari, I.; Simsek, S.Z.; Filoglu, G.; Bulbul, O. Predicting Eye and Hair Color in a Turkish Population Using the HIrisPlex System. Genes 2022, 13, 2094. [Google Scholar] [CrossRef]
- Granja, R.; Machado, H.; Queirós, F. The (De)Materialization of Criminal Bodies in Forensic DNA Phenotyping. Body Soc. 2021, 27, 60–84. [Google Scholar] [CrossRef]
- Watanabe, K.; Stringer, S.; Frei, O.; Umićević Mirkov, M.; de Leeuw, C.; Polderman, T.J.C.; van der Sluis, S.; Andreassen, O.A.; Neale, B.M.; Posthuma, D. A Global Overview of Pleiotropy and Genetic Architecture in Complex Traits. Nat. Genet. 2019, 51, 1339–1348. [Google Scholar] [CrossRef]
- Marsico, F.; Egeland, T. Likelihood Ratios for Physical Traits in Forensic Investigations. bioRxiv 2024, 1–22. [Google Scholar] [CrossRef]
Gene | SNP | Studied Population | Reported Effect | References |
---|---|---|---|---|
OCA2 | rs74653330 | Asians | A allele → Lighter skin | [25,26] |
rs1800414 | Asians | A allele → Lighter skin | [17,18,25,26] | |
KITLG | rs642742 | East/Southeast Asians | G allele → Lighter skin | [21,22] |
rs1881227 | East Asians | T allele → Lighter skin | [28] | |
rs428316 | Chinese and Thai | T allele → Lighter skin | [22] | |
rs11104947 | Japanese | A allele → Tanning ability | [29] | |
SLC24A2 | rs10122939 | Chinese | G allele → Darker skin | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez Palomeque, G.; Khacha-ananda, S.; Monum, T.; Wunnapuk, K. Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand. Biomolecules 2025, 15, 548. https://doi.org/10.3390/biom15040548
Perez Palomeque G, Khacha-ananda S, Monum T, Wunnapuk K. Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand. Biomolecules. 2025; 15(4):548. https://doi.org/10.3390/biom15040548
Chicago/Turabian StylePerez Palomeque, Gabriel, Supakit Khacha-ananda, Tawachai Monum, and Klintean Wunnapuk. 2025. "Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand" Biomolecules 15, no. 4: 548. https://doi.org/10.3390/biom15040548
APA StylePerez Palomeque, G., Khacha-ananda, S., Monum, T., & Wunnapuk, K. (2025). Prediction of Skin Color Using Forensic DNA Phenotyping in Asian Populations: A Focus on Thailand. Biomolecules, 15(4), 548. https://doi.org/10.3390/biom15040548