Hereditary Transthyretin Amyloidosis (hATTR) with Polyneuropathy Clusters Are Located in Ancient Mining Districts: A Possible Geochemical Origin of the Disease
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Japan
3.2. Portugal
3.3. Sweden
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Plante-Bordeneuve, V.; Said, G. Familial amyloid polyneuropathy. Lancet Neurol. 2011, 10, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.A.; Coelho, T.; Barros, A.; Sousa, M. Corino de Andrade disease: Mechanisms and impact on reproduction. JBRA Assist. Reprod. 2017, 21, 105–114. [Google Scholar] [CrossRef]
- Benson, M.D. Liver transplantation and transthyretin amyloidosis. Muscle Nerve 2013, 47, 157–162. [Google Scholar] [CrossRef]
- Yokoyama, T.; Mizuguchi, M. Transthyretin Amyloidogenesis Inhibitors: From Discovery to Current Developments. J. Med. Chem. 2020, 63, 14228–14242. [Google Scholar] [CrossRef]
- Bulawa, C.E.; Connelly, S.; DeVit, M.; Wang, L.; Weigel, C.; Fleming, J.A.; Packman, J.; Powers, E.T.; Wiseman, R.L.; Foss, T.R.; et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA 2012, 109, 9629–9634. [Google Scholar] [CrossRef]
- Adams, D.; Polydefkis, M.; González-Duarte, A.; Wixner, J.; Kristen, A.V.; Schmidt, H.H.; Berk, J.L.; López, I.A.L.; Dispenzieri, A.; Quan, D.; et al. Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study. Lancet Neurol. 2021, 20, 49–59. [Google Scholar] [CrossRef]
- Brannagan, T.H.; Coelho, T.; Wang, A.K.; Polydefkis, M.J.; Dyck, P.J.; Berk, J.L.; Drachman, B.; Gorevic, P.; Whelan, C.; Conceição, I.; et al. Long-term efficacy and safety of inotersen for hereditary transthyretin amyloidosis: NEURO-TTR open-label extension 3-year update. J. Neurol. 2022, 269, 6416–6427. [Google Scholar] [CrossRef] [PubMed]
- Araki, S.; Ando, Y. Transthyretin-related familial amyloidotic polyneuropathy-Progress in Kumamoto, Japan (1967–2010). Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 694–706. [Google Scholar] [CrossRef] [PubMed]
- Sekijima, Y. Hereditary Transthyretin Amyloidosis, in GeneReviews® [Internet]; Adam, M.E.A., Ed.; University of Washington: Seattle, WA, USA, 2001. [Google Scholar]
- González-Duarte, A.; Soto, K.C.; Martínez-Baños, D.; Arteaga-Vazquez, J.; Barrera, F.; Berenguer-Sanchez, M.; Cantu-Brito, C.; García-Ramos, G.; Vidal, B.E. Familial amyloidosis with polyneuropathy associated with TTR Ser50Arg mutation. Amyloid 2012, 19, 171–176. [Google Scholar] [CrossRef]
- Iorio, A.; De Lillo, A.; De Angelis, F.; Di Girolamo, M.; Luigetti, M.; Sabatelli, M.; Pradotto, L.; Mauro, A.; Mazzeo, A.; Stancanelli, C.; et al. Non-coding variants contribute to the clinical heterogeneity of TTR amyloidosis. European journal of human genetics. Eur. J. Hum. Genet. 2017, 25, 1055–1060. [Google Scholar] [CrossRef]
- Benson, M.D.; Kincaid, J.C. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve 2007, 36, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.; Huang, H.; Li, C.; Chang, C.; Chan, W.P.; Lin, K.; Wu, C. Natural history and survival rate of familial amyloidosis with polyneuropathy: A nationwide databank. Ann. Clin. Transl. Neurol. 2023, 10, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Koski, L.; Ronnevi, C.; Berntsson, E.; Wärmländer, S.K.T.S.; Roos, P.M. Metals in ALS TDP-43 Pathology. Int. J. Mol. Sci. 2021, 22, 12193. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, A.; Mei, Y.; Zhao, J.; Zhou, Q.; Li, Y.; Yang, M.; Xu, Q. Trace elements and Alzheimer dementia in population-based studies: A bibliometric and meta-analysis. Environ. Pollut. 2023, 318, 120782. [Google Scholar] [CrossRef] [PubMed]
- Koski, L.; Tshoni, U.A.; Olowoyo, J.O.; Kobyana, A.S.; Lion, N.G.; Mugivhisa, L.L.; Warmlander, S.K.; Roos, P.M. Occupational lead exposure in gasoline station forecourt attendants and other occupations in relation to ALS (amyotrophic lateral sclerosis) risk. medRxiv 2023. [Google Scholar] [CrossRef]
- Warmlander, S.K.T.S.; Osterlund, N.; Wallin, C.; Wu, J.; Luo, J.; Tiiman, A.; Jarvet, J.; Graslund, A. Metal binding to the amyloid-beta peptides in the presence of biomembranes: Potential mechanisms of cell toxicity. J. Biol. Inorg. Chem. 2019, 24, 1189–1196. [Google Scholar] [CrossRef]
- Vasta, R.; Callegaro, S.; Sgambetterra, S.; Cabras, S.; Di Pede, F.; De Mattei, F.; Matteoni, E.; Grassano, M.; Bombaci, A.; De Marco, G.; et al. Presymptomatic geographical distribution of ALS patients suggests the involvement of environmental factors in the disease pathogenesis. J. Neurol. 2023, 270, 5475–5482. [Google Scholar] [CrossRef]
- Åström, M.E.; Roos, P.M. Geochemistry of multiple sclerosis in Finland. Sci. Total Environ. 2022, 841, 156672. [Google Scholar] [CrossRef]
- Hellman, U.; Suhr, O. Regional differences and similarities of FAP in Sweden. Amyloid 2012, 19, 53–54. [Google Scholar] [CrossRef]
- Andrade, C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain 1952, 75, 408–427. [Google Scholar] [CrossRef]
- Hamada, M.; Kobayashi, W.; Hiramatsu, Y.; Hasebe, N. Mineralogy, chronology and formation process of the epithermal gold–silver vein deposits in the historical Togi mine, Noto Peninsula, Japan. Resour. Geol. 2022, 72, e12294. [Google Scholar] [CrossRef]
- Kopp, B.; Zalko, D.; Audebert, M. Genotoxicity of 11 heavy metals detected as food contaminants in two human cell lines. Environ. Mol. Mutagen. 2018, 59, 202–210. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.; Dai, M.; Wang, Z.; Dong, X.; Fang, T. Assessing heavy metal pollution in paddy soil from coal mining area, Anhui, China. Environ. Monit. Assess. 2019, 191, 518. [Google Scholar] [CrossRef] [PubMed]
- Lauer, N.; Vengosh, A.; Dai, S. Naturally Occurring Radioactive Materials in Uranium-Rich Coals and Associated Coal Combustion Residues from China. Environ. Sci. Technol. 2017, 51, 13487–13493. [Google Scholar] [CrossRef] [PubMed]
- Berntsson, E.; Vosough, F.; Noormagi, A.; Padari, K.; Asplund, F.; Gielnik, M.; Paul, S.; Jarvet, J.; Tõugu, V.; Roos, P.M.; et al. Characterization of uranyl (UO22+) ion binding to amyloid beta (Aβ) peptides: Effects on Aβ structure and aggregation. ACS Chem. Neurosci. 2023, 14, 2618–2633. [Google Scholar] [PubMed]
- Duarte, J.C.; Rosas, F.M.; Terrinha, P.; Schellart, W.P.; Boutelier, D.; Gutscher, M.A.; Ribeiro, A. Are subduction zones invading the Atlantic? Evidence from the southwest Iberia margin. Geology 2013, 41, 839–842. [Google Scholar] [CrossRef]
- Meunier, E.; Dias, F.; Fonte, J.; Lima, A.; Rodrigues, A.; Bottaini, C.; Silva, R.J.C.; Veiga, J.P.; Pereira, M.F.C.; Figueiredo, E. Later prehistoric tin mining in the Ervedosa mine (Vinhais, Portugal): Evidence and context. Archaeol. Anthropol. Sci. 2023, 15, 43. [Google Scholar] [CrossRef]
- Comendador Rey, B.; Meunier, E.; Figueiredo, E.; Lackinger, A.; Fonte, J.; Fernández, C.F.; Lima, A.; Mirão, J.; Silva, R.J. Northwestern Iberian Tin Mining from Bronze Age to Modern Times: An overview. In The Tinworking Landscape of Dartmoor in a European Context; Newman, P., Ed.; Dartmoor Tinworking Research Group: Exeton, UK, 2017; pp. 133–153. [Google Scholar]
- Emslie, S.D.; Silva, A.M.; Valera, A.; Vila, E.V.; Melo, L.; Curate, F.; Fidalgo, D.; Inácio, N.; Moreno, M.M.; Cambra-Moo, O.; et al. The use and abuse of cinnabar in Late Neolithic and Copper Age Iberia. Int. J. Osteoarchaeol. 2022, 32, 202–214. [Google Scholar]
- Nolan, J.; Weber, K.A. Natural uranium contamination in major US aquifers linked to nitrate. Environ. Sci. Technol. Lett. 2015, 2, 215–220. [Google Scholar] [CrossRef]
- Carvalho, F.P.; Oliveira, J.M.; Lopes, I.; Batista, A. Radionuclides from past uranium mining in rivers of Portugal. J. Environ. Radioact. 2007, 98, 298–314. [Google Scholar] [CrossRef]
- Soares, H.; Boaventura, R.; Machado, A.; da Silva, J.E. Sediments as monitors of heavy metal contamination in the Ave river basin (Portugal): Multivariate analysis of data. Environ. Pollut. 1999, 105, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.W. Regional differences and similarities of familial amyloidotic polyneuropathy (FAP) presentation in Brazil. Amyloid 2012, 19 (Suppl. S1), 65–67. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, P.L.; Couto, C.A.; Clemente, C.; Farias, A.Q.; Palacios, S.A.; Mies, S.; Goldberg, A.C. Phenotypic expression of familial amyloid polyneuropathy in Brazil. Eur. J. Neurol. 2005, 12, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Buades-Reinés, J.; Raya-Cruz, M.; Gallego-Lezaún, C.; Ripoll-Vera, T.; Usón-Martín, M.; Andreu-Serra, H.; Cisneros-Barroso, E. Transthyretin familial amyloid polyneuropathy (TTR-FAP) in Mallorca: A comparison between late- and early-onset disease. J. Peripher. Nerv. Syst. 2016, 21, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Munar-Qués, M.; Saraiva, M.J.; Viader-Farré, C.; Zabay-Becerril, J.M.; Mulet-Ferrer, J. Genetic epidemiology of familial amyloid polyneuropathy in the Balearic Islands (Spain). Amyloid 2005, 12, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.A.H.; Estarellas, B.L.; Mateo, L.P.; Simonet, B.S. Aprovechamiento de recursos cupríferos en la edad del bronce de menorca: La mina de sa mitja lluna (Illa den Colom). Cuad. Prehist. Arqueol. Univ. Granada 2014, 24, 85–109. [Google Scholar]
- Hermanns, M.H. Avances en el estudio histórico de la mina de galena de Bunyola (isla de Mallorca). Sagvntvm 2014, 46, 189–200. [Google Scholar]
- Vicens, D.; Ginard, A.; Crespí, D.; Bover, P.; Gràcia, F. The endocarst and mines of the serra de na Burguesa (Mallorca, Balearic Islands). 1. Current knowledge speleogenetic, topographic, mining and speleothems forms. Bolleti Soc. d’Hist. Nat. Balear. 2011, 54, 117–132. [Google Scholar]
- Yoshioka, K.; Furuya, H.; Sasaki, H.; Saraiva, M.J.M.; Costa, P.P.; Sakaki, Y. Haplotype analysis of familial amyloidotic polyneuropathy. Evidence for multiple origins of the Val----Met mutation most common to the disease. Hum. Genet. 1989, 82, 9–13. [Google Scholar] [CrossRef]
- Holmgren, G.; Wikström, L.; Lundgren, H.; Suhr, O.B. Discordant penetrance of the trait for familial amyloidotic polyneuropathy in two pairs of monozygotic twins. J. Intern. Med. 2004, 256, 453–456. [Google Scholar] [CrossRef]
- Weihed, P.; Bergman, J.; Bergström, U. Métallogeny and tectonic evolution of the early proterozoic skellefte district, Northern Sweden. Precambrian Res. 1992, 58, 143–167. [Google Scholar] [CrossRef]
- Hellman, U.; Alarcon, F.; Lundgren, H.-E.; Suhr, O.B.; Bonaiti-Pellié, C.; Planté-Bordeneuve, V. Heterogeneity of penetrance in familial amyloid polyneuropathy, ATTR Val30Met, in the Swedish population. Amyloid 2008, 15, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Olsson, M.; Jonasson, J.; Cederquist, K.; Suhr, O.B. Frequency of the transthyretin Val30Met mutation in the northern Swedish population. Amyloid 2014, 21, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.; Costa, M. Handbook on the Toxicology of Metals, 5th ed.; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Saporta, M.A.d.C.; Plante-Bordeneuve, V.; Misrahi, M.; Cruz, M.W. Discordant expression of familial amyloid polyneuropathy in monozygotic Brazilian twins. Amyloid 2009, 16, 38–41. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roos, P.M.; Wärmländer, S.K.T.S. Hereditary Transthyretin Amyloidosis (hATTR) with Polyneuropathy Clusters Are Located in Ancient Mining Districts: A Possible Geochemical Origin of the Disease. Biomolecules 2024, 14, 652. https://doi.org/10.3390/biom14060652
Roos PM, Wärmländer SKTS. Hereditary Transthyretin Amyloidosis (hATTR) with Polyneuropathy Clusters Are Located in Ancient Mining Districts: A Possible Geochemical Origin of the Disease. Biomolecules. 2024; 14(6):652. https://doi.org/10.3390/biom14060652
Chicago/Turabian StyleRoos, Per M., and Sebastian K. T. S. Wärmländer. 2024. "Hereditary Transthyretin Amyloidosis (hATTR) with Polyneuropathy Clusters Are Located in Ancient Mining Districts: A Possible Geochemical Origin of the Disease" Biomolecules 14, no. 6: 652. https://doi.org/10.3390/biom14060652
APA StyleRoos, P. M., & Wärmländer, S. K. T. S. (2024). Hereditary Transthyretin Amyloidosis (hATTR) with Polyneuropathy Clusters Are Located in Ancient Mining Districts: A Possible Geochemical Origin of the Disease. Biomolecules, 14(6), 652. https://doi.org/10.3390/biom14060652