Development of High Affinity Calcitonin Analog Fragments Targeting Extracellular Domains of Calcitonin Family Receptors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cell Lines Used
2.3. DNA Plasmids for Receptor ECD Expression
2.4. Expression and Purification of CTR ECD, RAMP1-CTR ECD Fusion, and RAMP2-CTR ECD Fusion Proteins
2.5. Expression and Purification of the RAMP3-CTR ECD Fusion Protein
2.6. Synthetic Peptides
2.7. Fluorescence Polarization/Anisotropy (FP) Peptide Binding Assay
2.8. Building Hypothetical Structures
2.9. Statistical Analysis
3. Results
3.1. N26D/S29P Mutations of sCT(22–32) Markedly Increased Affinity for CTR ECD Compared to Wild-Type sCT(22–32)
3.2. Mutational Effects of the sCT S29 Residue on sCT(22–32) Affinity
3.3. Effects of sCT S29 to Hydroxyproline Mutation on sCT(22–32) Affinity
3.4. Hydroxyproline Mutation of sCT C-Terminal Residue P32 and Its Effects on sCT(22–32) Affinity
3.5. Mutational Effects of sCT P32HYP on sCT(22–32) Affinity for AMY Receptor ECDs
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christopoulos, G.; Perry, K.J.; Morfis, M.; Tilakaratne, N.; Gao, Y.; Fraser, N.J.; Main, M.J.; Foord, S.M.; Sexton, P.M. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 1999, 56, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilakaratne, N.; Christopoulos, G.; Zumpe, E.T.; Foord, S.M.; Sexton, P.M. Amylin receptor phenotypes derived from human calcitonin receptor/RAMP coexpression exhibit pharmacological differences dependent on receptor isoform and host cell environment. J. Pharmacol. Exp. Ther. 2000, 294, 61–72. [Google Scholar] [PubMed]
- Udawela, M.; Christopoulos, G.; Tilakaratne, N.; Christopoulos, A.; Albiston, A.; Sexton, P.M. Distinct receptor activity-modifying protein domains differentially modulate interaction with calcitonin receptors. Mol. Pharmacol. 2006, 69, 1984–1989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, D.L.; Chen, S.; Lutz, T.A.; Parkes, D.G.; Roth, J.D. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacol. Rev. 2015, 67, 564–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathiesen, D.S.; Lund, A.; Vilsboll, T.; Knop, F.K.; Bagger, J.I. Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Front. Endocrinol. 2020, 11, 617400. [Google Scholar] [CrossRef]
- Sonne, N.; Karsdal, M.A.; Henriksen, K. Mono and dual agonists of the amylin, calcitonin, and CGRP receptors and their potential in metabolic diseases. Mol. Metab. 2021, 46, 101109. [Google Scholar] [CrossRef]
- Zakariassen, H.L.; John, L.M.; Lutz, T.A. Central control of energy balance by amylin and calcitonin receptor agonists and their potential for treatment of metabolic diseases. Basic Clin. Pharmacol. Toxicol. 2020, 127, 163–177. [Google Scholar] [CrossRef]
- McQueen, J. Pramlintide acetate. Am. J. Health Syst. Pharm. 2005, 62, 2363–2372. [Google Scholar] [CrossRef]
- Gamakharia, S.; Le Foll, C.; Rist, W.; Baader-Pagler, T.; Baljuls, A.; Lutz, T.A. The calcitonin receptor is the main mediator of LAAMA’s body weight lowering effects in male mice. Eur. J. Pharmacol. 2021, 174352. [Google Scholar] [CrossRef]
- Henriksen, K.; Broekhuizen, K.; de Boon, W.M.I.; Karsdal, M.A.; Bihlet, A.R.; Christiansen, C.; Dillingh, M.R.; de Kam, M.; Kumar, R.; Burggraaf, J.; et al. Safety, tolerability and pharmacokinetic characterisation of DACRA KBP-042 in healthy male subjects. Br. J. Clin. Pharmacol. 2021. [Google Scholar] [CrossRef]
- Kruse, T.; Hansen, J.L.; Dahl, K.; Schaffer, L.; Sensfuss, U.; Poulsen, C.; Schlein, M.; Hansen, A.M.K.; Jeppesen, C.B.; Dornonville de la Cour, C.; et al. Development of Cagrilintide, a Long-Acting Amylin Analogue. J. Med. Chem. 2021. [Google Scholar] [CrossRef]
- Larsen, A.T.; Gydesen, S.; Sonne, N.; Karsdal, M.A.; Henriksen, K. The dual amylin and calcitonin receptor agonist KBP-089 and the GLP-1 receptor agonist liraglutide act complimentarily on body weight reduction and metabolic profile. BMC Endocr. Disord. 2021, 21, 10. [Google Scholar] [CrossRef] [PubMed]
- Stein, L.M.; McGrath, L.E.; Lhamo, R.; Koch-Laskowski, K.; Fortin, S.M.; Skarbaliene, J.; Baader-Pagler, T.; Just, R.; Hayes, M.R.; Mietlicki-Baase, E.G. The long-acting amylin/calcitonin receptor agonist ZP5461 suppresses food intake and body weight in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021. [Google Scholar] [CrossRef]
- Liang, Y.L.; Khoshouei, M.; Radjainia, M.; Zhang, Y.; Glukhova, A.; Tarrasch, J.; Thal, D.M.; Furness, S.G.B.; Christopoulos, G.; Coudrat, T.; et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 2017, 546, 118–123. [Google Scholar] [CrossRef]
- Johansson, E.; Hansen, J.L.; Hansen, A.M.; Shaw, A.C.; Becker, P.; Schaffer, L.; Reedtz-Runge, S. Type II Turn of Receptor-bound Salmon Calcitonin Revealed by X-ray Crystallography. J. Biol. Chem. 2016, 291, 13689–13698. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.M.; Jeong, Y.; Simms, J.; Warner, M.L.; Poyner, D.R.; Chung, K.Y.; Pioszak, A.A. Calcitonin Receptor N-Glycosylation Enhances Peptide Hormone Affinity by Controlling Receptor Dynamics. J. Mol. Biol. 2020, 432, 1996–2014. [Google Scholar] [CrossRef]
- Gingell, J.; Simms, J.; Barwell, J.; Poyner, D.R.; Watkins, H.A.; Pioszak, A.A.; Sexton, P.M.; Hay, D.L. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell Discov. 2016, 2, 16012. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.M.; Hay, D.L.; Pioszak, A.A. Calcitonin and Amylin Receptor Peptide Interaction Mechanisms: Insights into peptide-binding modes and allosteric modulation of the calcitonin receptor by receptor activity-modifying proteins. J. Biol. Chem. 2016, 291, 8686–8700. [Google Scholar] [CrossRef] [Green Version]
- Dal Maso, E.; Glukhova, A.; Zhu, Y.; Garcia-Nafria, J.; Tate, C.G.; Atanasio, S.; Reynolds, C.A.; Ramirez-Aportela, E.; Carazo, J.M.; Hick, C.A.; et al. The Molecular Control of Calcitonin Receptor Signaling. ACS Pharmacol. Transl. Sci 2019, 2, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Aricescu, A.R.; Lu, W.; Jones, E.Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 1243–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Pioszak, A.A. Molecular interaction of an antagonistic amylin analog with the extracellular domain of receptor activity-modifying protein 2 assessed by fluorescence polarization. Biophys. Chem. 2020, 267, 106477. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Booe, J.M.; Gingell, J.J.; Sjoelund, V.; Hay, D.L.; Pioszak, A.A. N-Glycosylation of Asparagine 130 in the Extracellular Domain of the Human Calcitonin Receptor Significantly Increases Peptide Hormone Affinity. Biochemistry 2017, 56, 3380–3393. [Google Scholar] [CrossRef] [PubMed]
- Hay, D.L.; Christopoulos, G.; Christopoulos, A.; Poyner, D.R.; Sexton, P.M. Pharmacological discrimination of calcitonin receptor: Receptor activity-modifying protein complexes. Mol. Pharmacol. 2005, 67, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Roehrl, M.H.; Wang, J.Y.; Wagner, G. A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein-protein interactions by fluorescence polarization. Biochemistry 2004, 43, 16056–16066. [Google Scholar] [CrossRef]
- Warnecke, A.; Sandalova, T.; Achour, A.; Harris, R.A. PyTMs: A useful PyMOL plugin for modeling common post-translational modifications. BMC Bioinf. 2014, 15, 370. [Google Scholar] [CrossRef]
- Rist, B.; Entzeroth, M.; Beck-Sickinger, A.G. From micromolar to nanomolar affinity: A systematic approach to identify the binding site of CGRP at the human calcitonin gene-related peptide 1 receptor. J. Med. Chem. 1998, 41, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Gorres, K.L.; Raines, R.T. Prolyl 4-hydroxylase. Crit. Rev. Biochem. Mol. Biol. 2010, 45, 106–124. [Google Scholar] [CrossRef]
- Feigh, M.; Henriksen, K.; Andreassen, K.V.; Hansen, C.; Henriksen, J.E.; Beck-Nielsen, H.; Christiansen, C.; Karsdal, M.A. A novel oral form of salmon calcitonin improves glucose homeostasis and reduces body weight in diet-induced obese rats. Diabetes Obes. Metab. 2011, 13, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Feigh, M.; Hjuler, S.T.; Andreassen, K.V.; Gydesen, S.; Ottosen, I.; Henriksen, J.E.; Beck-Nielsen, H.; Christiansen, C.; Karsdal, M.A.; Henriksen, K. Oral salmon calcitonin enhances insulin action and glucose metabolism in diet-induced obese streptozotocin-diabetic rats. Eur. J. Pharmacol. 2014, 737, 91–96. [Google Scholar] [CrossRef]
- Wielinga, P.Y.; Alder, B.; Lutz, T.A. The acute effect of amylin and salmon calcitonin on energy expenditure. Physiol. Behav. 2007, 91, 212–217. [Google Scholar] [CrossRef]
- Sortino, M.A.; Aleppo, G.; Scapagnini, U.; Canonico, P.L. Comparative effects of eel calcitonin, salmon calcitonin and [Asu1,7]eel calcitonin on hypophyseal and osteoblastic function. Gynecol. Endocrinol. 1993, 7, 89–96. [Google Scholar] [CrossRef]
- Andreassen, K.V.; Feigh, M.; Hjuler, S.T.; Gydesen, S.; Henriksen, J.E.; Beck-Nielsen, H.; Christiansen, C.; Karsdal, M.A.; Henriksen, K. A novel oral dual amylin and calcitonin receptor agonist (KBP-042) exerts antiobesity and antidiabetic effects in rats. Am. J. Physiol. Endocrinol. Metab. 2014, 307, E24–E33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booe, J.M.; Walker, C.S.; Barwell, J.; Kuteyi, G.; Simms, J.; Jamaluddin, M.A.; Warner, M.L.; Bill, R.M.; Harris, P.W.; Brimble, M.A.; et al. Structural Basis for Receptor Activity-Modifying Protein-Dependent Selective Peptide Recognition by a G Protein-Coupled Receptor. Mol. Cell 2015, 58, 1040–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morfis, M.; Tilakaratne, N.; Furness, S.G.; Christopoulos, G.; Werry, T.D.; Christopoulos, A.; Sexton, P.M. Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology 2008, 149, 5423–5431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bower, R.L.; Yule, L.; Rees, T.A.; Deganutti, G.; Hendrikse, E.R.; Harris, P.W.R.; Kowalczyk, R.; Ridgway, Z.; Wong, A.G.; Swierkula, K.; et al. Molecular Signature for Receptor Engagement in the Metabolic Peptide Hormone Amylin. ACS Pharmacol. Transl. Sci. 2018, 1, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Booe, J.M.; Warner, M.L.; Roehrkasse, A.M.; Hay, D.L.; Pioszak, A.A. Probing the Mechanism of Receptor Activity-Modifying Protein Modulation of GPCR Ligand Selectivity through Rational Design of Potent Adrenomedullin and Calcitonin Gene-Related Peptide Antagonists. Mol. Pharmacol. 2018, 93, 355–367. [Google Scholar] [CrossRef]
- Booe, J.M.; Warner, M.L.; Pioszak, A.A. Picomolar Affinity Antagonist and Sustained Signaling Agonist Peptide Ligands for the Adrenomedullin and Calcitonin Gene-Related Peptide Receptors. ACS Pharmacol. Transl. Sci. 2020, 3, 759–772. [Google Scholar] [CrossRef]
- Hoare, S.R. Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors. Drug Discov. Today 2005, 10, 417–427. [Google Scholar] [CrossRef]
- Josephs, T.M.; Belousoff, M.J.; Liang, Y.L.; Piper, S.J.; Cao, J.; Garama, D.J.; Leach, K.; Gregory, K.J.; Christopoulos, A.; Hay, D.L.; et al. Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science 2021, 372. [Google Scholar] [CrossRef]
- Lutz, T.A.; Tschudy, S.; Rushing, P.A.; Scharrer, E. Amylin receptors mediate the anorectic action of salmon calcitonin (sCT). Peptides 2000, 21, 233–238. [Google Scholar] [CrossRef]
- Larsen, A.T.; Sonne, N.; Andreassen, K.V.; Karsdal, M.A.; Henriksen, K. The Calcitonin Receptor Plays a Major Role in Glucose Regulation as a Function of Dual Amylin and Calcitonin Receptor Agonist Therapy. J. Pharmacol. Exp. Ther. 2020, 374, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, A.T.; Sonne, N.; Andreassen, K.V.; Gehring, K.; Karsdal, M.A.; Henriksen, K. The Dual Amylin and Calcitonin Receptor Agonist KBP-088 Induces Weight Loss and Improves Insulin Sensitivity Superior to Chronic Amylin Therapy. J. Pharmacol. Exp. Ther. 2019, 370, 35–43. [Google Scholar] [CrossRef] [PubMed]
Peptide Name | Peptide Sequence |
---|---|
FITC-sCT(22–32) | FITC-(Ahx)-YPRTNTGSGTP-NH2 |
FITC-AC413(6–25) | FITC-(Ahx)-ANFLVRLQTYPRTNVGANTY-NH2 |
FITC-AC413(6–25) Y25P | FITC-(Ahx)-ANFLVRLQTYPRTNVGANTP-NH2 |
sCT(22–32) | YPRTNTGSGTP-NH2 |
sCT(22–32) N26D | YPRTDTGSGTP-NH2 |
sCT(22–32) S29P | YPRTNTGPGTP-NH2 |
sCT(22–32) N26D/S29P | YPRTDTGPGTP-NH2 |
sCT(22–32) N26D/S29L | YPRTDTGLGTP-NH2 |
sCT(22–32) N26D/S29F | YPRTDTGFGTP-NH2 |
sCT(22–32) N26D/S29W | YPRTDTGWGTP-NH2 |
sCT(22–32) N26D/S29D | YPRTDTGDGTP-NH2 |
sCT(22–32) N26D/S29E | YPRTDTGEGTP-NH2 |
sCT(22–32) N26D/S29H | YPRTDTGHGTP-NH2 |
sCT(22–32) N26D/S29G | YPRTDTGGGTP-NH2 |
sCT(22–32) N26D/S29A | YPRTDTGAGTP-NH2 |
sCT(22–32) N26D/S29V | YPRTDTGVGTP-NH2 |
sCT(22–32) N26D/S29T | YPRTDTGTGTP-NH2 |
sCT(22–32) N26D/S29HYP | YPRTDTG[HYP]GTP-NH2 |
sCT(22–32) P32HYP | YPRTNTGSGT[HYP]-NH2 |
sCT(22–32) N26D/S29P/P32HYP | YPRTDTGPGT[HYP]-NH2 |
Figure and Receptor ECD | Competitive sCT(22–32) Analog | N | pKI Mean ± SD | Mean KI (nM) |
---|---|---|---|---|
Figure 1d CTR ECD | sCT(22–32) | 3 | 5.75 ± 0.10 | 1760 |
sCT(22–32) N26D | 3 | 6.00 ± 0.03 1 | 1000 | |
sCT(22–32) S29P | 3 | 6.46 ± 0.06 1,2 | 343 | |
sCT(22–32) N26D/S29P | 3 | 6.50 ± 0.13 1,2 | 314 | |
Figure 2b CTR ECD | sCT(22–32) N26D | 3 | 6.01 ± 0.01 | 980 |
sCT(22–32) N26D/S29A | 3 | 6.36 ± 0.13 2 | 437 | |
sCT(22–32) N26D/S29V | 3 | 6.23 ± 0.11 | 591 | |
Figure 3b CTR ECD | sCT(22–32) N26D/S29P | 3 | 6.62 ± 0.15 | 239 |
sCT(22–32) N26D/S29HYP | 3 | 5.50 ± 0.03 3 | 3180 | |
Figure 4b CTR ECD | sCT(22–32) | 4 | 5.69 ± 0.09 | 2030 |
sCT(22–32) P32HYP | 3 | 6.05 ± 0.04 1 | 887 | |
sCT(22–32) N26D/S29P/P32HYP | 3 | 7.02 ± 0.12 1,4 | 95 | |
Figure 5e AMY receptor 1 ECD | sCT(22–32) | 3 | 5.59 ± 0.18 | 2550 |
sCT(22–32) P32HYP | 3 | 6.05 ± 0.03 1 | 887 | |
sCT(22–32) N26D/S29P | 3 | 6.42 ± 0.08 1,4 | 381 | |
sCT(22–32) N26D/S29P/P32HYP | 3 | 6.91 ± 0.15 1,3,4 | 124 | |
Figure 5f AMY receptor 2 ECD | sCT(22–32) | 3 | 5.55 ± 0.11 | 2800 |
sCT(22–32) P32HYP | 3 | 5.85 ± 0.10 1 | 1430 | |
sCT(22–32) N26D/S29P | 3 | 6.33 ± 0.06 1,4 | 470 | |
sCT(22–32) N26D/S29P/P32HYP | 3 | 6.47 ± 0.02 1,4 | 340 | |
Figure 5g AMY receptor 3 ECD | sCT(22–32) | 3 | 5.59 ± 0.03 | 2560 |
sCT(22–32) P32HYP | 3 | 6.00 ± 0.07 1 | 995 | |
sCT(22–32) N26D/S29P | 3 | 6.48 ± 0.04 1,4 | 333 | |
sCT(22–32) N26D/S29P/P32HYP | 3 | 6.93 ± 0.07 1,3,4 | 118 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S. Development of High Affinity Calcitonin Analog Fragments Targeting Extracellular Domains of Calcitonin Family Receptors. Biomolecules 2021, 11, 1364. https://doi.org/10.3390/biom11091364
Lee S. Development of High Affinity Calcitonin Analog Fragments Targeting Extracellular Domains of Calcitonin Family Receptors. Biomolecules. 2021; 11(9):1364. https://doi.org/10.3390/biom11091364
Chicago/Turabian StyleLee, Sangmin. 2021. "Development of High Affinity Calcitonin Analog Fragments Targeting Extracellular Domains of Calcitonin Family Receptors" Biomolecules 11, no. 9: 1364. https://doi.org/10.3390/biom11091364
APA StyleLee, S. (2021). Development of High Affinity Calcitonin Analog Fragments Targeting Extracellular Domains of Calcitonin Family Receptors. Biomolecules, 11(9), 1364. https://doi.org/10.3390/biom11091364