Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Fixation
2.2. Immunocytochemistry
2.3. Histochemical Staining
2.4. Confocal Laser Scanning and Fluorescent Microscopies
2.5. Bioinformatics
3. Results
3.1. Opisthorchis felineus Metacercariae: Immuoreactivity to Serotonin and 5-HT7 Serotonin Receptor
3.2. Hymenolepis diminuta Cysticercoids, Immunoreactivity to Serotonin and 5-HT7 Serotonin Receptor
3.3. A phylogenetic Analysis of 5-HT7 Receptor
4. Discussion
4.1. Serotonin and 5-HT7-IR in Metacercariae of O. felineus
4.1.1. Ventral Sucker
4.1.2. Sensory Structures (Papillae)
4.1.3. Glandular and Excretory Cells
4.1.4. The Digestive System
4.1.5. Musculature
4.2. Serotonin and 5-HT7-IR in Cysticercoid Larvae of Hymenolepis diminuta
4.2.1. Musculature and Nerve Fibres
4.2.2. The Flame Cells
5. Conclusions
- The distribution of immunoreactivity to the 5-HT7 serotonin receptor was investigated in larvae tissues of two parasitic flatworms, the trematode Opisthorchis felineus and the cestode Hymenolepis diminuta for the first time.
- The presence of the specific serotonin 5-HT7receptor’s immunoreactivity in the studied parasitic worms has been shown. It emphasises the importance of the serotonergic signalling system for realisation of vital functions in representatives of Platyhelminthes.
- The results suggest that the 5-HT7 type of serotonin receptor can mediate the serotonin action in the studied species and is an important component of worm motor system control.
- Taking into account the important roles of 5-HT in parasite biology, the present report also suggests that the flatworm serotoninergic nervous system could be considered a target for anti-parasite drugs.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Gershon, M.D. Review article: Serotonin receptors and transporters—Roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther. 2004, 20 (Suppl. S7), 3–14. [Google Scholar] [CrossRef]
- Martin, A.M.; Young, R.L.; Leong, L.; Rogers, G.B.; Spencer, N.J.; Jessup, C.F.; Keating, D.J. The Diverse Metabolic Roles of Peripheral Serotonin. Endocrinology 2017, 158, 1049–1063. [Google Scholar] [CrossRef] [PubMed]
- Sung, D.J.; Noh, H.J.; Kim, J.G.; Park, S.W.; Kim, B.; Cho, H.; Bae, Y.M. Serotonin contracts the rat mesenteric artery by inhibiting 4-aminopyridine-sensitive Kv channels via the 5-HT2A receptor and Src tyrosine kinase. Exp. Mol. Med. 2013, 45, e67. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Sun, E.W.; Martin, A.M.; Keating, D.J. The ever-changing roles of serotonin. Int. J. Biochem. Cell Biol. 2020, 125, 105776. [Google Scholar] [CrossRef] [PubMed]
- Okaty, B.W.; Commons, K.G.; Dymecki, S.M. Embracing diversity in the 5-HT neuronal system. Nat. Rev. Neurosci. 2019, 20, 397–424. [Google Scholar] [CrossRef] [PubMed]
- Plieger, T.; Melchers, M.; Vetterlein, A.; Gortz, J.; Kuhn, S.; Ruppel, M.; Reuter, M. The serotonin transporter polymorphism (5-HTTLPR) and coping strategies influence successful emotion regulation in an acute stress situation: Physiological evidence. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 2017, 114, 31–37. [Google Scholar] [CrossRef]
- Popova, N.K. From genes to aggressive behavior: The role of serotonergic system. BioEssays News Rev. Mol. Cell. Dev. Biol. 2006, 28, 495–503. [Google Scholar] [CrossRef]
- Popova, N.K.; Naumenko, V.S. Neuronal and behavioral plasticity: The role of serotonin and BDNF systems tandem. Expert Opin. Ther. Targets 2019, 23, 227–239. [Google Scholar] [CrossRef]
- Shajib, M.S.; Khan, W.I. The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol. 2015, 213, 561–574. [Google Scholar] [CrossRef]
- Wan, M.; Ding, L.; Wang, D.; Han, J.; Gao, P. Serotonin: A Potent Immune Cell Modulator in Autoimmune Diseases. Front. Immunol. 2020, 11, 186. [Google Scholar] [CrossRef] [PubMed]
- Boyle, J.P.; Zaide, J.V.; Yoshino, T.P. Schistosoma mansoni: Effects of serotonin and serotonin receptor antagonists on motility and length of primary sporocysts in vitro. Exp. Parasitol. 2000, 94, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Faixova, D.; Hrckova, G.; Macak Kubaskova, T.; Mudronova, D. Antiparasitic Effects of Selected Isoflavones on Flatworms. Helminthologia 2021, 58, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hrckova, G.; Kubaskova, T.M.; Reiterova, K.; Biedermann, D. Co-administration of silymarin elevates the therapeutic effect of praziquantel through modulation of specific antibody profiles, Th1/Th2/Tregs cytokines and down-regulation of fibrogenesis in mice with Mesocestoides vogae (Cestoda) infection. Exp. Parasitol. 2020, 213, 107888. [Google Scholar] [CrossRef]
- Haas, B.J.; Berriman, M.; Hirai, H.; Cerqueira, G.G.; Loverde, P.T.; El-Sayed, N.M. Schistosoma mansoni genome: Closing in on a final gene set. Exp. Parasitol. 2007, 117, 225–228. [Google Scholar] [CrossRef]
- Hu, W.; Yan, Q.; Shen, D.K.; Liu, F.; Zhu, Z.D.; Song, H.D.; Xu, X.R.; Wang, Z.J.; Rong, Y.P.; Zeng, L.C.; et al. Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat. Genet. 2003, 35, 139–147. [Google Scholar] [CrossRef]
- Genome, S.; Functional Analysis, C. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 2009, 460, 345–351. [Google Scholar] [CrossRef]
- Laing, R.; Kikuchi, T.; Martinelli, A.; Tsai, I.J.; Beech, R.N.; Redman, E.; Holroyd, N.; Bartley, D.J.; Beasley, H.; Britton, C.; et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013, 14, R88. [Google Scholar] [CrossRef]
- Robb, S.M.; Ross, E.; Sanchez Alvarado, A. SmedGD: The Schmidtea mediterranea genome database. Nucleic Acids Res. 2008, 36, D599–D606. [Google Scholar] [CrossRef]
- Tsai, I.J.; Zarowiecki, M.; Holroyd, N.; Garciarrubio, A.; Sanchez-Flores, A.; Brooks, K.L.; Tracey, A.; Bobes, R.J.; Fragoso, G.; Sciutto, E.; et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 2013, 496, 57–63. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Huang, Y.; Sun, J.; Men, J.; Liu, H.; Luo, F.; Guo, L.; Lv, X.; Deng, C.; et al. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol. 2011, 12, R107. [Google Scholar] [CrossRef]
- Young, N.D.; Jex, A.R.; Li, B.; Liu, S.; Yang, L.; Xiong, Z.; Li, Y.; Cantacessi, C.; Hall, R.S.; Xu, X.; et al. Whole-genome sequence of Schistosoma haematobium. Nat. Genet. 2012, 44, 221–225. [Google Scholar] [CrossRef]
- Halton, D.W.; Maule, A.G. Flatworm nerve–muscle: Structural and functional analysis. Can. J. Zool. 2004, 82, 316–333. [Google Scholar] [CrossRef]
- Ribeiro, P.; El-Shehabi, F.; Patocka, N. Classical transmitters and their receptors in flatworms. Parasitology 2005, 131 (Suppl. S1), S19–S40. [Google Scholar] [CrossRef] [PubMed]
- Terenina, N.; Gustafsson, M.K.S. Neurotransmitters in Helminths; Nauka: Moscow, Russia, 2003; p. 178. [Google Scholar]
- Kreshchenko, N.; Terenina, N.; Nefedova, D.; Mochalova, N.; Voropaeva, E.; Movsesyan, S. The neuroactive substances and associated muscle system in Rhipidocotyle campanula (Digenea, Bucephalidae) from the intestine of the pike Esox lucius. J. Morphol. 2020, 281, 1047–1058. [Google Scholar] [CrossRef]
- Mair, G.R.; Halton, D.W.; Maule, A.G. The neuromuscular system of the sheep tapeworm Moniezia expansa. Invertebr. Neurosci. 2020, 20, 17. [Google Scholar] [CrossRef] [PubMed]
- Mochalova, N.V.; Terenina, N.B.; Poddubnaya, L.G.; Yashin, V.A.; Kuchin, A.V.; Kreshchenko, N.D. First evidence of serotoninergic components in the nervous system of the monogenean Chimaericola leptogaster (Chimaericolidae, Polyopisthocotylea), a gill parasite of the relict holocephalan fish. Folia Parasitol 2019, 66. [Google Scholar] [CrossRef] [PubMed]
- Terenina, N.B.; Kreshchenko, N.D.; Mochalova, N.V.; Nefedova, D.; Voropaeva, E.L.; Movsesyan, S.O.; Demiaszkiewicz, A.; Yashin, V.A.; Kuchin, A.V. The New Data on the Serotonin and FMRFamide Localization in the Nervous System of Opisthorchis felineus Metacercaria. Acta Parasitol. 2020, 65, 361–374. [Google Scholar] [CrossRef] [PubMed]
- Tolstenkov, O.O.; Akimova, L.N.; Chrisanfova, G.G.; Terenina, N.B.; Gustafsson, M.K. The neuro-muscular system in fresh-water furcocercaria from Belarus. I Schistosomatidae. Parasitol. Res. 2012, 110, 185–193. [Google Scholar] [CrossRef]
- Tolstenkov, O.O.; Akimova, L.N.; Terenina, N.B.; Gustafsson, M.K. The neuromuscular system in freshwater furcocercaria from Belarus. II Diplostomidae, Strigeidae, and Cyathocotylidae. Parasitol. Res. 2012, 110, 583–592. [Google Scholar] [CrossRef]
- Terenina, N.B.; Gustafsson, M.K.S. The Functional Morphology of the Nrvous System of Parasitic Flatworms (Trematodes, Cestodes); KMK: Moscow, Russia, 2014; p. 296. [Google Scholar]
- Catto, B.A.; Ottesen, E.A. Serotonin uptake in schistosomules of Schistosoma mansoni. Comp. Biochem. Physiol. C Comp. Pharm. 1979, 63C, 235–242. [Google Scholar] [CrossRef]
- Chou, T.C.; Bennett, J.; Bueding, E. Occurrence and concentrations of biogenic amines in trematodes. J. Parasitol. 1972, 58, 1098–1102. [Google Scholar] [CrossRef]
- Hariri, M. Occurrence and concentration of biogenic amines in Mesocestoides corti (Cestoda). J. Parasitol. 1974, 60, 737–743. [Google Scholar] [CrossRef]
- Lee, M.B.; Bueding, E.; Schiller, E.L. The occurrence and distribution of 5-hydroxytryptamine in Hymenolepis diminuta and H. nana. J. Parasitol. 1978, 64, 257–264. [Google Scholar] [CrossRef]
- Ribeiro, P.; Webb, R.A. The occurrence, synthesis and metabolism of 5-hydroxytryptamine and 5-hydroxytryptophan in the cestode Hymenolepis diminuta: A high performance liquid chromatographic study. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1984, 79, 159–164. [Google Scholar] [CrossRef]
- Cyr, D.; Gruner, S.; Mettrick, D.F. Hymenolepis diminuta: Uptake of 5-hydroxytryptamine (serotonin), glucose, and changes in worm glycogen levels. Can. J. Zool. 1983, 61, 1469–1474. [Google Scholar] [CrossRef]
- Bennett, J.L.; Bueding, E. Uptake of 5-hydroxytryptamine by Schistosoma mansoni. Mol. Pharm. 1973, 9, 311–319. [Google Scholar]
- Boyle, J.P.; Hillyer, J.F.; Yoshino, T.P. Pharmacological and autoradiographical characterization of serotonin transporter-like activity in sporocysts of the human blood fluke, Schistosoma mansoni. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2003, 189, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Patocka, N.; Ribeiro, P. Characterization of a serotonin transporter in the parasitic flatworm, Schistosoma mansoni: Cloning, expression and functional analysis. Mol. Biochem. Parasitol. 2007, 154, 125–133. [Google Scholar] [CrossRef]
- Webb, R.A. The uptake and metabolism of 5-hydroxytryptamine by tissue slices of the cestode Hymenolepis diminuta. Comp. Biochem. Physiol. C Comp. Pharm. Toxicol. 1985, 80, 305–312. [Google Scholar] [CrossRef]
- Hamdan, F.F.; Ribeiro, P. Cloning and Characterization of a Novel Form of Tyrosine Hydroxylase from the Human Parasite, Schistosoma mansoni. J. Neurochem. 1998, 71, 1369–1380. [Google Scholar] [CrossRef]
- Patocka, N.; Ribeiro, P. The functional role of a serotonin transporter in Schistosoma mansoni elucidated through immunolocalization and RNA interference (RNAi). Mol. Biochem. Parasitol. 2013, 187, 32–42. [Google Scholar] [CrossRef]
- Fontana, A.C.; Sonders, M.S.; Pereira-Junior, O.S.; Knight, M.; Javitch, J.A.; Rodrigues, V.; Amara, S.G.; Mortensen, O.V. Two allelic isoforms of the serotonin transporter from Schistosoma mansoni display electrogenic transport and high selectivity for serotonin. Eur. J. Pharmacol. 2009, 616, 48–57. [Google Scholar] [CrossRef]
- Hamdan, F.F.; Ribeiro, P. Characterization of a stable form of tryptophan hydroxylase from the human parasite Schistosoma mansoni. J. Biol. Chem. 1999, 274, 21746–21754. [Google Scholar] [CrossRef]
- Ribeiro, P.; Webb, R.A. Characterization of a serotonin transporter and an adenylate cyclase-linked serotonin receptor in the cestode Hymenolepis diminuta. Life Sci. 1987, 40, 755–768. [Google Scholar] [CrossRef]
- Ribeiro, P.; Webb, R.A. The synthesis of 5-hydroxytryptamine from tryptophan and 5-hydroxytryptophan in the cestode Hymenolepis diminuta. Int. J. Parasitol. 1983, 13, 101–106. [Google Scholar] [CrossRef]
- Osloobi, N.; Webb, R.A. Localization of a sodium-dependent high-affinity serotonin transporter and recruitment of exogenous serotonin by the cestode Hymenolepis diminuta: An autoradiographic and immunohistochemical study. Can. J. Zool. 1999, 77, 1265–1277. [Google Scholar] [CrossRef]
- HrČKova, G.; VelenbnÝ, S.; Halton, D.W.; Maule, A.G. Mesocestoides corti (syn. M. vogae): Modulation of larval motility by neuropeptides, serotonin and acetylcholine. Parasitology 2002, 124, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Tolstenkov, O.O.; Prokofiev, V.V.; Pleskacheva, M.V.; Gustafsson, M.K.S.; Zhukovskaya, M.I. Age and serotonin effects on locomotion in marine trematode cercariae. J. Evol. Biochem. Physiol. 2017, 53, 135–142. [Google Scholar] [CrossRef]
- McKay, D.M.; Halton, D.W.; Allen, J.M.; Fairweather, I. The effects of cholinergic and serotoninergic drugs on motility in vitro of Haplometra cylindracea (Trematoda: Digenea). Parasitology 1989, 99 Pt 2, 241–252. [Google Scholar] [CrossRef]
- Thompson, C.S.; Mettrick, D.F. The effects of 5-hydroxytryptamine and glutamate on muscle contraction in Hymenolepis diminuta (Cestoda). Can. J. Zool. 1989, 67, 1257–1262. [Google Scholar] [CrossRef]
- Holmes, S.D.; Fairweather, I. Fasciola hepatica: The effects of neuropharmacological agents upon in vitro motility. Exp. Parasitol. 1984, 58, 194–208. [Google Scholar] [CrossRef]
- Tembe, E.A.; Holden-Dye, L.; Smith, S.W.; Jacques, P.A.; Walker, R.J. Pharmacological profile of the 5-hydroxytryptamine receptor of Fasciola hepatica body wall muscle. Parasitology 1993, 106 Pt 1, 67–73. [Google Scholar] [CrossRef]
- Maule, A.; Halton, D.; Allen, J.; Fairweather, I. Studies on motility in vitro of an ectoparasitic monogenean, Diclidophora merlangi. Parasitology 1989, 98, 85–93. [Google Scholar] [CrossRef]
- Day, T.A.; Bennett, J.L.; Pax, R.A. Serotonin and its requirement for maintenance of contractility in muscle fibres isolated from Schistosoma mansoni. Parasitology 1994, 108 Pt 4, 425–432. [Google Scholar] [CrossRef]
- Pax, R.A.; Siefker, C.; Bennett, J.L. Schistosoma mansoni: Differences in acetylcholine, dopamine, and serotonin control of circular and longitudinal parasite muscles. Exp. Parasitol. 1984, 58, 314–324. [Google Scholar] [CrossRef]
- Ribeiro, P.; Gupta, V.; El-Sakkary, N. Biogenic amines and the control of neuromuscular signaling in schistosomes. Invertebr. Neurosci. 2012, 12, 13–28. [Google Scholar] [CrossRef]
- Patocka, N.; Sharma, N.; Rashid, M.; Ribeiro, P. Serotonin signaling in Schistosoma mansoni: A serotonin-activated G protein-coupled receptor controls parasite movement. PLoS Pathog. 2014, 10, e1003878. [Google Scholar] [CrossRef] [PubMed]
- Sakharov, D.A.; Golubev, A.I.; Malyutina, L.V.; Kabotyanski, E.A.; Nezlin, L.P. Serotoninergic control of ciliary locomotion in a turbellarian flatworm. In Neurobiology of Invertebrates: Transmitters, Modulators and Receptors; Akadémiai Kiadó: Hungary, Budapest, 1988; pp. 479–491. [Google Scholar]
- Farrell, M.S.; Gilmore, K.; Raffa, R.B.; Walker, E.A. Behavioral characterization of serotonergic activation in the flatworm Planaria. Behav. Pharmacol. 2008, 19, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Moneypenny, C.G.; Kreshchenko, N.; Moffett, C.L.; Halton, D.W.; Day, T.A.; Maule, A.G. Physiological effects of FMRFamide-related peptides and classical transmitters on dispersed muscle fibres of the turbellarian, Procerodes littoralis. Parasitology 2001, 122, 447–455. [Google Scholar] [CrossRef]
- Herz, M.; Brehm, K. Serotonin stimulates Echinococcus multilocularis larval development. Parasites Vectors 2021, 14, 14. [Google Scholar] [CrossRef]
- Franquinet, R.; Martelly, I. Effects of serotonin and catecholamines on RNA synthesis in planarians; in vitro and in vivo studies. Cell Differ. 1981, 10, 201–209. [Google Scholar] [CrossRef]
- Sarkar, A.; Mukundan, N.; Sowndarya, S.; Dubey, V.K.; Babu, R.; Lakshmanan, V.; Rangiah, K.; Panicker, M.M.; Palakodeti, D.; Subramanian, S.P.; et al. Serotonin is essential for eye regeneration in planaria Schmidtea mediterranea. FEBS Lett. 2019, 593, 3198–3209. [Google Scholar] [CrossRef] [PubMed]
- Kreshchenko, N.D.; Grebenshchikova, E.V.; Karpov, A.N. Influence of serotonin on planarian photoreceptor’s regeneration. In Proceedings of the Theory and Practice of Parasitic Disease Control: Collection of Scientific Articles Adapted from the International Scientific Conference, Moscow, Russia, 15–17 May 2019. [Google Scholar]
- Kreshchenko, N. Institute of Cell Biophysics, Pushchino, Russia. Unpublished work. 2021. [Google Scholar]
- Maricq, A.V.; Peterson, A.S.; Brake, A.J.; Myers, R.M.; Julius, D. Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 1991, 254, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.E.; Nichols, C.D. Serotonin receptors. Chem. Rev. 2008, 108, 1614–1641. [Google Scholar] [CrossRef]
- Hannon, J.; Hoyer, D. Molecular biology of 5-HT receptors. Behav. Brain Res. 2008, 195, 198–213. [Google Scholar] [CrossRef]
- Gothert, M. Serotonin discovery and stepwise disclosure of 5-HT receptor complexity over four decades. Part, I. General background and discovery of serotonin as a basis for 5-HT receptor identification. Pharm. Rep. 2013, 65, 771–786. [Google Scholar] [CrossRef]
- McCorvy, J.D.; Roth, B.L. Structure and function of serotonin G protein-coupled receptors. Pharmacol. Ther. 2015, 150, 129–142. [Google Scholar] [CrossRef]
- Hamdan, F.F.; Ungrin, M.D.; Abramovitz, M.; Ribeiro, P. Characterization of a novel serotonin receptor from Caenorhabditis elegans: Cloning and expression of two splice variants. J. Neurochem. 1999, 72, 1372–1383. [Google Scholar] [CrossRef]
- Huang, X.; Duran, E.; Diaz, F.; Xiao, H.; Messer, W.S., Jr.; Komuniecki, R. Alternative-splicing of serotonin receptor isoforms in the pharynx and muscle of the parasitic nematode, Ascaris suum. Mol. Biochem. Parasitol. 1999, 101, 95–106. [Google Scholar] [CrossRef]
- Olde, B.; McCombie, W.R. Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J. Mol. Neurosci. MN 1997, 8, 53–62. [Google Scholar] [CrossRef]
- Henne, S.; Sombke, A.; Schmidt-Rhaesa, A. Immunohistochemical analysis of the anterior nervous system of the free-living nematode Plectus spp. (Nematoda, Plectidae). Zoomorphology 2017, 136, 175–190. [Google Scholar] [CrossRef]
- Vleugels, R.; Verlinden, H.; Vanden Broeck, J. Serotonin, serotonin receptors and their actions in insects. Neurotransmitter 2015, 2. [Google Scholar] [CrossRef]
- Kamhi, J.F.; Arganda, S.; Moreau, C.S.; Traniello, J.F.A. Origins of Aminergic Regulation of Behavior in Complex Insect Social Systems. Front. Syst. Neurosci. 2017, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Ivashkin, E.; Khabarova, M.; Melnikova, V.; Kharchenko, O.; Voronezhskaya, E. Local serotonin-immunoreactive plexus in the female reproductive system of hermaphroditic gastropod mollusc Lymnaea stagnalis. Invertebr. Zool. 2017, 14, 134–139. [Google Scholar] [CrossRef]
- Franquinet, R.; Le Moigne, A.; Hanoune, J. The adenylate cyclase system of planaria Polycelis tenuis: Activation by serotonin and guanine nucleotides. Biochim. Biophys. Acta 1978, 539, 88–97. [Google Scholar] [CrossRef]
- Camicia, F.; Celentano, A.M.; Johns, M.E.; Chan, J.D.; Maldonado, L.; Vaca, H.; Di Siervi, N.; Kamentezky, L.; Gamo, A.M.; Ortega-Gutierrez, S.; et al. Unique pharmacological properties of serotoninergic G-protein coupled receptors from cestodes. PLoS Negl. Trop. Dis. 2018, 12, e0006267. [Google Scholar] [CrossRef] [PubMed]
- Tierney, A.J. Structure and function of invertebrate 5-HT receptors: A review. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2001, 128, 791–804. [Google Scholar] [CrossRef]
- Tierney, A.J. Invertebrate serotonin receptors: A molecular perspective on classification and pharmacology. J. Exp. Biol. 2018, 221. [Google Scholar] [CrossRef]
- Tierney, A.J. Feeding, hunger, satiety and serotonin in invertebrates. Proc. Biol. Sci./R. Soc. 2020, 287, 20201386. [Google Scholar] [CrossRef]
- Coons, A.H.; Leduc, E.H.; Connolly, J.M. Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J. Exp. Med. 1955, 102, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Glaskov, G.A. Isolation of some trematode metacercariaefrom diseased fish tissue by digestion in artificial gastric juice. In Diseases and Parasites of Fish in the Litovitomsk Province (Within the USSR); Tomsk State University: Tomsk, Russia, 1979; pp. 72–82. [Google Scholar]
- Rothman, A.H. Studies on the excystment of tapeworms. Exp. Parasitol. 1959, 8, 336–364. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/protein (accessed on 12 March 2021).
- WormBase ParaSite. Available online: https://parasite.wormbase.org/index.html (accessed on 12 May 2021).
- National Center for Biotechnology Information Genome Database. Available online: https://www.ncbi.nlm.nih.gov/genome (accessed on 5 May 2021).
- Fairweather, I.; Maule, A.G.; Mitchell, S.H.; Johnston, C.F.; Halton, D.W. Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitol. Res. 1987, 73, 255–258. [Google Scholar] [CrossRef]
- Fairweather, I.; McMullan, M.T.; Johnston, C.F.; Rogan, M.T.; Hanna, R.E. Serotoninergic and peptidergic nerve elements in the protoscolex of Echinococcus granulosus (Cestoda, Cyclophyllidea). Parasitol. Res. 1994, 80, 649–656. [Google Scholar] [CrossRef]
- Gustafsson, M.K. Immunocytochemical demonstration of neuropeptides and serotonin in the nervous systems of adult Schistosoma mansoni. Parasitol. Res. 1987, 74, 168–174. [Google Scholar] [CrossRef]
- Koziol, U.; Krohne, G.; Brehm, K. Anatomy and development of the larval nervous system in Echinococcus multilocularis. Front. Zool. 2013, 10, 24. [Google Scholar] [CrossRef]
- Maule, A.G.; Halton, D.W.; Shaw, C.; Johnston, C.F. The cholinergic, serotoninergic and peptidergic components of the nervous system of Moniezia expansa (Cestoda, Cyclophyllidea). Parasitology 1993, 106 Pt 4, 429–440. [Google Scholar] [CrossRef]
- McKay, D.M.; Halton, D.W.; Johnston, C.F.; Fairweather, I.; Shaw, C. Cytochemical demonstration of cholinergic, serotoninergic and peptidergic nerve elements in Gorgoderina vitelliloba (Trematoda: Digenea). Int. J. Parasitol. 1991, 21, 71–80. [Google Scholar] [CrossRef]
- Hrckova, G.; Halton, D.W.; Maule, A.G.; Shaw, C.; Johnston, C.F. 5-Hydroxytryptamine (serotonin)-immunoreactivity in the nervous system of Mesocestoides corti tetrathyridia (Cestoda: Cyclophyllidea). J. Parasitol. 1994, 80, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, W.K.; Roth, B.L. Molecular Biology and Genomic Organization of G Protein-Coupled Serotonin Receptors. In The Serotonin Receptors: From Molecular Pharmacology to Human Therapeutics; Roth, B.L., Ed.; Humana Press: Totowa, NJ, USA, 2006; pp. 1–38. [Google Scholar] [CrossRef]
- Mansour, T.E. Serotonin receptors in parasitic worms. Adv. Parasitol. 1984, 23, 1–36. [Google Scholar] [CrossRef]
- Cretì, P.; Capasso, A.; Grasso, M.; Parisi, E. Identification of a 5-HT1A receptor positively coupled to planarian adenylate cyclase. Cell Biol. Int. Rep. 1992, 16, 427–432. [Google Scholar] [CrossRef]
- Saitoh, O.; Yuruzume, E.; Nakata, H. Identification of planarian serotonin receptor by ligand binding and PCR studies. Neuroreport 1996, 8, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, O.; Yuruzume, E.; Watanabe, K.; Nakata, H. Molecular identification of a G protein-coupled receptor family which is expressed in planarians. Gene 1997, 195, 55–61. [Google Scholar] [CrossRef]
- Rawls, S.M.; Shah, H.; Ayoub, G.; Raffa, R.B. 5-HT(1A)-like receptor activation inhibits abstinence-induced methamphetamine withdrawal in planarians. Neurosci. Lett. 2010, 484, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Unemura, K.; Tsushima, J.; Yamauchi, Y.; Otomo, J.; Taniguchi, T.; Kaneko, S.; Agata, K.; Kitamura, Y. Identification of a novel planarian G-protein-coupled receptor that responds to serotonin in Xenopus laevis oocytes. Biol. Amp Pharm. Bull. 2009, 32, 1672–1677. [Google Scholar] [CrossRef] [PubMed]
- Mansour, T.E.; Mansour, J.M. Effect of some phosphodiesterase inhibitors on adenylate cyclase from the liver fluke, Fasciola hepatica. Biochem. Pharmacol. 1979, 28, 1943–1946. [Google Scholar] [CrossRef]
- Northup, J.K.; Mansour, T.E. Adenylate cyclase from Fasciola hepatica. 1. Ligand specificity of adenylate cyclase-coupled serotonin receptors. Mol. Pharm. 1978, 14, 804–819. [Google Scholar]
- McNall, S.J.; Mansour, T.E. Novel serotonin receptors in Fasciola. Characterization by studies on adenylate cyclase activation and [3H]LSD binding. Biochem. Pharmacol. 1984, 33, 2789–2797. [Google Scholar] [CrossRef]
- Campos, T.D.; Young, N.D.; Korhonen, P.K.; Hall, R.S.; Mangiola, S.; Lonie, A.; Gasser, R.B. Identification of G protein-coupled receptors in Schistosoma haematobium and Schistosoma mansoni by comparative genomics. Parasites Vectors 2014, 7, 242. [Google Scholar] [CrossRef]
- Chan, J.D.; McCorvy, J.D.; Acharya, S.; Johns, M.E.; Day, T.A.; Roth, B.L.; Marchant, J.S. A Miniaturized Screen of a Schistosoma mansoni Serotonergic G Protein-Coupled Receptor Identifies Novel Classes of Parasite-Selective Inhibitors. PLoS Pathog. 2016, 12, e1005651. [Google Scholar] [CrossRef]
- Zamanian, M.; Kimber, M.J.; McVeigh, P.; Carlson, S.A.; Maule, A.G.; Day, T.A. The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea. BMC Genom. 2011, 12, 596. [Google Scholar] [CrossRef] [PubMed]
- Zamanian, M.; Agbedanu, P.N.; Wheeler, N.J.; McVeigh, P.; Kimber, M.J.; Day, T.A. Novel RNAi-mediated approach to G protein-coupled receptor deorphanization: Proof of principle and characterization of a planarian 5-HT receptor. PLoS ONE 2012, 7, e40787. [Google Scholar] [CrossRef]
- McVeigh, P.; McCammick, E.; McCusker, P.; Wells, D.; Hodgkinson, J.; Paterson, S.; Mousley, A.; Marks, N.J.; Maule, A.G. Profiling G protein-coupled receptors of Fasciola hepatica identifies orphan rhodopsins unique to phylum Platyhelminthes. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 87–103. [Google Scholar] [CrossRef]
- Marchant, J.S.; Harding, W.W.; Chan, J.D. Structure-activity profiling of alkaloid natural product pharmacophores against a Schistosoma serotonin receptor. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Tolstenkov, O.O.; Terenina, N.B.; Serbina, E.A.; Gustafsson, M.K.S. The spatial relationship between the musculature and the 5-HT and FMRFamide immunoreactivities in cercaria, metacercaria and adult Opisthorchis felineus (Digenea). Acta Parasitol. 2010, 55, 123–132. [Google Scholar] [CrossRef]
- Terenina, N.B.; Kreshchenko, N.D.; Mochalova, N.B.; Movsesyan, S.O. Serotonin and Neuropeptide FMRFamide in the Attachment Organs of Trematodes. Helminthologia 2018, 55, 185–194. [Google Scholar] [CrossRef]
- Hoole, D.; Mitchell, J.B. Ultrastructural observations on the sensory papillae of juvenile and adult Gorgoderina vitelliloba (Trematoda: Gorgoderidae). Int. J. Parasitol. 1981, 11, 411–417. [Google Scholar] [CrossRef]
- Bakke, T.A.; Lien, L. The tegumental surface of Phyllodistomum conostomum (Olsson, 1876) (Digenea), revealed by scanning electron microscopy. Int. J. Parasitol. 1978, 8, 155–161. [Google Scholar] [CrossRef]
- Ibraheem, M.H. Surface ultrastructure of the plagiorchid trematode Glossidium pedatum Looss, 1899 from bagrid fish in Egypt. Acta Zool. 2007, 88, 173–178. [Google Scholar] [CrossRef]
- Bennett, C.E. Scanning electron microscopy of Fasciola hepatica L. during growth and maturation in the mouse. J. Parasitol. 1975, 61, 892–898. [Google Scholar] [CrossRef]
- Bakke, T.A. Functional morphology and surface topography of Leucochloridium sp. (Digenea), revealed by scanning electron microscopy. Z. Für Parasitenkd. 1976, 51, 115–128. [Google Scholar] [CrossRef]
- Jongsomchai, K.; Chaijaroonkhanarak, W.; Tesana, S.; Arunyanart, C.; Kanla, P.; Umka, J. Ultrastructure of tegumentary papillae of the excysted Opisthorchis viverrini metacercaria. Srinagarind Med. J. 2007, 22, 434–442. [Google Scholar]
- Bogéa, T.; Caira, J. Ultrastructure and chaetotaxy of sensory eeceptors in the cercaria of a species of Allopodocotyle Pritchard, 1966 (Digenea: Opecoelidae). Mem. Do Inst. Oswaldo Cruz 2001, 96, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Krasnodembsky, E.G. Histochemical study of glandular apparatus in marita of some trematode species. Arch. Anat. Histol. Embiology 1976, 8, 81–87. (In Russian) [Google Scholar]
- Harada, M.; Suguri, S. A histochemical study of the secretory gland cells of Cercaria shikokuensis and their role during development from cercaria to metacercaria. Parasitol. Int. 2001, 50, 149–156. [Google Scholar] [CrossRef]
- Galaktionov, K.V.; Dobrovolskij, A.A. Organization of Parthenogenetic and Hermaphroditic Generations of Trematodes. In The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmissions, and Evolution of Digenetic Trematodes; Galaktionov, K.V., Dobrovolskij, A.A., Fried, B., Graczyk, T.K., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 1–213. [Google Scholar] [CrossRef]
- Roser, C.; Jordan, N.; Balfanz, S.; Baumann, A.; Walz, B.; Baumann, O.; Blenau, W. Molecular and pharmacological characterization of serotonin 5-HT2alpha and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina. PLoS ONE 2012, 7, e49459. [Google Scholar] [CrossRef]
- Watanabe, T.; Sadamoto, H.; Aonuma, H. Identification and expression analysis of the genes involved in serotonin biosynthesis and transduction in the field cricket Gryllus bimaculatus. Insect Mol. Biol. 2011, 20, 619–635. [Google Scholar] [CrossRef]
- Pietrantonio, P.V.; Jagge, C.; McDowell, C. Cloning and expression analysis of a 5HT7-like serotonin receptor cDNA from mosquito Aedes aegypti female excretory and respiratory systems. Insect Mol. Biol. 2001, 10, 357–369. [Google Scholar] [CrossRef]
- Vanhoenacker, P.; Haegeman, G.; Leysen, J.E. 5-HT7 receptors: Current knowledge and future prospects. Trends Pharm. Sci. 2000, 21, 70–77. [Google Scholar] [CrossRef]
- Webb, R.A.; Mizukawa, K. Serotoninlike immunoreactivity in the cestode Hymenolepis diminuta. J. Comp. Neurol. 1985, 234, 431–440. [Google Scholar] [CrossRef]
- Fairweather, I.; Macartney, G.A.; Johnston, C.F.; Halton, D.W.; Buchnan, K.D. Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) and vertebrate neuropeptides in the nervous system of excysted cysticercoid larvae of the rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitol. Res. 1988, 74, 371–379. [Google Scholar] [CrossRef]
- Rahman, M.S.; Mettrick, D.F.; Podesta, R.B. Effects of 5-hydroxytryptamine on carbohydrate metabolism in Hymenolepis diminuta (Cestoda). Can. J. Physiol. Pharmacol. 1983, 61, 137–143. [Google Scholar] [CrossRef]
- Mettrick, D.F.; Cho, C.H. Migration of Hymenolepis diminuta (Cestoda) and changes in 5-HT (serotonin) levels in the rat host following parenteral and oral 5-HT administration. Can. J. Physiol. Pharm. 1981, 59, 281–286. [Google Scholar] [CrossRef]
- Mettrick, D.F.; Podesta, R.B. Effect of gastrointestinal hormones and amines on intestinal motility and the migration of Hymenolepis diminuta in the rat small intestine. Int. J. Parasitol. 1982, 12, 151–154. [Google Scholar] [CrossRef]
- Cho, C.H.; Mettrick, D.F. Effects of 5-hydroxytryptamine and histamine on establishment, production, and reproduction by Hymenolepis diminuta in the final and intermediate hosts. Can. J. Zool. 1982, 60, 725–728. [Google Scholar] [CrossRef]
- Valverde-Islas, L.E.; Arrangoiz, E.; Vega, E.; Robert, L.; Villanueva, R.; Reynoso-Ducoing, O.; Willms, K.; Zepeda-Rodriguez, A.; Fortoul, T.I.; Ambrosio, J.R. Visualization and 3D reconstruction of flame cells of Taenia solium (cestoda). PLoS ONE 2011, 6, e14754. [Google Scholar] [CrossRef]
- Rohde, K.; Watson, N.A.; Roubal, F.R. Ultrastructure of the protonephridial system, of Anoplodiscus cirrusspiralis (Monogenea Monopisthocotylea). Int. J. Parasitol. 1992, 22, 443–457. [Google Scholar] [CrossRef]
- Smyth, J.D.; McManus, D.P. The Adult Cestode: Special Structural Features Relevant to Is Physiology; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Wahlberg, M.H. The distribution of F-actin during the development of Diphyllobothrium dendriticum (Cestoda). Cell Tissue Res. 1998, 291, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Rozario, T.; Newmark, P.A. A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta. Exp. Parasitol. 2015, 158, 31–41. [Google Scholar] [CrossRef]
- Arafa, S.Z.; El-Naggar, M.M.; El-Abbassy, S.A.; Stewart, M.T.; Halton, D.W. Neuromusculature of Gyrodactylus rysavyi, a monogenean gill and skin parasite of the catfish Clarias gariepinus. Parasitol. Int. 2007, 56, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Bahia, D.; Avelar, L.G.; Vigorosi, F.; Cioli, D.; Oliveira, G.C.; Mortara, R.A. The distribution of motor proteins in the muscles and flame cells of the Schistosoma mansoni miracidium and primary sporocyst. Parasitology 2006, 133, 321–329. [Google Scholar] [CrossRef] [PubMed][Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kreshchenko, N.; Terenina, N.; Ermakov, A. Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta. Biomolecules 2021, 11, 1212. https://doi.org/10.3390/biom11081212
Kreshchenko N, Terenina N, Ermakov A. Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta. Biomolecules. 2021; 11(8):1212. https://doi.org/10.3390/biom11081212
Chicago/Turabian StyleKreshchenko, Natalia, Nadezhda Terenina, and Artem Ermakov. 2021. "Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta" Biomolecules 11, no. 8: 1212. https://doi.org/10.3390/biom11081212
APA StyleKreshchenko, N., Terenina, N., & Ermakov, A. (2021). Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta. Biomolecules, 11(8), 1212. https://doi.org/10.3390/biom11081212