Levansucrase from Bacillus amyloliquefaciens KK9 and Its Y237S Variant Producing the High Bioactive Levan-Type Fructooligosaccharides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning of Levansucrase from Bacillus Amyloliquefaciens KK9
2.2. Expression and Purification of Recombinant Levansucrase
2.3. Enzyme Activity Assay
2.4. Amino Acid Sequence Alignment and Homology Modelling Study
2.5. Product Characterization
2.5.1. NMR Spectroscopy
2.5.2. Thin-layer Chromatography (TLC)
2.5.3. High-performance Liquid Chromatography (HPLC)
2.5.4. High-performance Anion-Exchange Chromatography Coupled With Pulsed Amperometric Detection (HPAEC-PAD)
2.6. Site-directed Mutagenesis
2.7. Biochemical Characterization
2.8. Synthesis of LFOS Using Wild-Type and Variant LsKK9
2.9. Prebiotic Activity Study
3. Results and Discussion
3.1. Cloning, Expression and Product Characterization of Levansucrase from Bacillus Amyloliquefaciens KK9
3.2. Molecular Docking Study
3.3. Site-Directed Mutagenesis and Biochemical Characterization
3.4. Production of LFOS by Wild-Type and Y237S Variant LsKK9
3.5. Prebiotic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Macfarlane, G.T.; Macfarlane, G.T.; Cummings, J.H. Review article: Prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther. 2006, 24, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Molina, M.; Larque, E.; Torrella, F.; Zamora, S. Dietary fructooligosaccharides and potential benefits on health. J. Physiol. Biochem. 2009, 65, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Dahech, I.; Ben Ayed, H.; Belghith, K.S.; Belghith, H.; Mejdoub, H. Microbial production of levanase for specific hydrolysis of levan. Int. J. Boil. Macromol. 2013, 60, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Han, Y.; Wang, X.; Zhao, X.; Chi, Z.; Chi, Z.; Liu, G. A new engineered endo-inulinase with improved activity and thermostability: Application in the production of prebiotic fructo-oligosaccharides from inulin. Food Chem. 2019, 294, 293–301. [Google Scholar] [CrossRef]
- Charoenwongpaiboon, T.; Sitthiyotha, T.; Na Ayutthaya, P.P.; Wangpaiboon, K.; Chunsrivirot, S.; Prousoontorn, M.; Pichayangkura, R. Modulation of fructooligosaccharide chain length and insight into the product binding motif of Lactobacillus reuteri 121 inulosucrase. Carbohydr. Polym. 2019, 209, 111–121. [Google Scholar] [CrossRef]
- Ozimek, L.K. The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 2006, 152, 1187–1196. [Google Scholar] [CrossRef] [Green Version]
- Possiel, C.; Ortiz-Soto, M.E.; Ertl, J.; Münch, A.; Vogel, A.; Schmiedel, R.; Seibel, J. Exploring the sequence variability of polymerization-involved residues in the production of levan- and inulin-type fructooligosaccharides with a levansucrase. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Seibel, J.; Moraru, R.; Götze, S.; Buchholz, K.; Na’Amnieh, S.; Pawlowski, A.; Hecht, H.-J.; Seibel, J. Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase). Carbohydr. Res. 2006, 341, 2335–2349. [Google Scholar] [CrossRef] [Green Version]
- Strube, C.P.; Homann, A.; Gamer, M.; Jahn, D.; Seibel, J.; Heinz, D.W. Polysaccharide Synthesis of the Levansucrase SacB from Bacillus megaterium Is Controlled by Distinct Surface Motifs. J. Boil. Chem. 2011, 286, 17593–17600. [Google Scholar] [CrossRef] [Green Version]
- Kanjanatanin, P.; Pichyangkura, R.; Sitthiyotha, T.; Charoenwongpaiboon, T.; Wangpaiboon, K.; Chunsrivirot, S. Computational design of Bacillus licheniformis RN-01 levansucrase for control of the chain length of levan-type fructooligosaccharides. Int. J. Boil. Macromol. 2019, 140, 1239–1248. [Google Scholar] [CrossRef]
- Van Hijum, S.A.F.T.; Szalowska, E.; Van Der Maarel, M.J.E.C.; Dijkhuizen, L. Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiology. 2004, 150, 621–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangmanee, S.; Nakapong, S.; Pichyangkura, R.; Kuttiyawong, K. Levan-type fructooligosaccharide production using Bacillus licheniformis RN-01 levansucrase Y246S immobilized on chitosan beads. SJST 2016, 38, 295–303. [Google Scholar]
- Gimeno-Pérez, M.; Linde, D.; Fernandez-Arrojo, L.; Plou, F.J.; Lobato, M.F. Heterologous overproduction of β-fructofuranosidase from yeast Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars. Appl. Microbiol. Biotechnol. 2014, 99, 3459–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilian, S.; Kritzinger, S.; Rycroft, C.; Gibson, G.; Du Preez, J.C. The effects of the novel bifidogenic trisaccharide, neokestose, on the human colonic microbiota. World J. Microbiol. Biotechnol. 2002, 18, 637–644. [Google Scholar] [CrossRef]
- Marx, S.P.; Winkler, S.; Hartmeier, W. Metabolization of β-(2, 6)-linked fructose-oligosaccharides by different bifidobacteria. FEMS Microbiol. Lett. 2000, 182, 163–169. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, 636–641. [Google Scholar] [CrossRef] [Green Version]
- Böhm, M.; Bohne-Lang, A.; Frank, M.; Loss, A.; Rojas-Macias, M.A.; Lütteke, T. Glycosciences.DB: An annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Res. 2018, 47, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Raga-Carbajal, E.; López-Munguía, A.; Alvarez, L.; Olvera, C. Understanding the transfer reaction network behind the non-processive synthesis of low molecular weight levan catalyzed by Bacillus subtilis levansucrase. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; Beer, T.A.P.D.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Meng, G.; Fütterer, K. Donor substrate recognition in the raffinose-bound E342A mutant of fructosyltransferase Bacillus subtilis levansucrase. BMC Struct. Boil. 2008, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charoenwongpaiboon, T.; Klaewkla, M.; Chunsrivirot, S.; Wangpaiboon, K.; Pichyangkura, R.; Field, R.A.; Prousoontorn, M. Rational re-design of Lactobacillus reuteri 121 inulosucrase for product chain length control. RSC Adv. 2019, 9, 14957–14965. [Google Scholar] [CrossRef] [Green Version]
- Heckman, K.L.; Pease, L.R. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat. Protoc. 2007, 2, 924–932. [Google Scholar] [CrossRef]
- Moongngarm, A.; Trachoo, N.; Sirigungwan, N. Low molecular weight carbohydrates, prebiotic content, and prebiotic activity of selected food plants in Thailand. Adv. J. Food Sci. Technol. 2011, 3, 269–274. [Google Scholar]
- Huebner, J.; Wehling, R.; Hutkins, R. Functional activity of commercial prebiotics. Int. Dairy. J. 2007, 17, 770–775. [Google Scholar] [CrossRef]
- Rairakhwada, D.; Seo, J.-W.; Seo, M.-Y.; Kwon, O.; Rhee, S.-K.; Kim, C.H. Gene cloning, characterization, and heterologous expression of levansucrase from Bacillus amyloliquefaciens. J. Ind. Microbiol. Biotechnol. 2009, 37, 195–204. [Google Scholar] [CrossRef]
- Tian, F.; Karboune, S. Enzymatic synthesis of fructooligosaccharides by levansucrase from Bacillus amyloliquefaciens: Specificity, kinetics, and product characterization. J. Mol. Catal. B: Enzym. 2012, 82, 71–79. [Google Scholar] [CrossRef]
- Han, Y.W.; Clarke, M.A. Production and characterization of microbial levan. J. Agric. Food Chem. 1990, 38, 393–396. [Google Scholar] [CrossRef]
- Shih, I.-L.; Yu, Y.-T.; Shieh, C.-J.; Hsieh, C.-Y. Selective Production and Characterization of Levan byBacillus subtilis(Natto) Takahashi. J. Agric. Food Chem. 2005, 53, 8211–8215. [Google Scholar] [CrossRef] [PubMed]
- Nakapong, S.; Pichyangkura, R.; Ito, K.; Iizuka, M.; Pongsawasdi, P. High expression level of levansucrase from Bacillus licheniformis RN-01 and synthesis of levan nanoparticles. Int. J. Boil. Macromol. 2013, 54, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.; Sattar, F.; Ashfaq, I.; Lindemann, S.R.; Chen, M.-H.; Ende, W.V.D.; Öner, E.T.; Kirtel, O.; Khaliq, S.; Ghauri, M.A.; et al. Production and characterization of a high molecular weight levan and fructooligosaccharides from a rhizospheric isolate of Bacillus aryabhattai. LWT 2020, 123, 1–8. [Google Scholar] [CrossRef]
- Nakapong, S. Biochemical and structural characterization of levansucrase from Bacillus licheniformis RN-01.; Chulalongkorn University: Pathum Wan, Bangkok, Thailand, 2011. [Google Scholar]
- Ito, H.; Takemura, N.; Sonoyama, K.; Kawagishi, H.; Topping, D.L.; Conlon, M.A.; Morita, T. Degree of Polymerization of Inulin-Type Fructans Differentially Affects Number of Lactic Acid Bacteria, Intestinal Immune Functions, and Immunoglobulin A Secretion in the Rat Cecum. J. Agric. Food Chem. 2011, 59, 5771–5778. [Google Scholar] [CrossRef]
- Zhu, L.; Qin, S.; Zhai, S.; Gao, Y.; Li, L. Inulin with different degrees of polymerization modulates composition of intestinal microbiota in mice. FEMS Microbiol. Lett. 2017, 364, 1–7. [Google Scholar] [CrossRef]
- He, C.; Yang, Y.; Zhao, R.; Qu, J.; Jin, L.; Lu, L.; Xu, L.; Xiao, M. Rational designed mutagenesis of levansucrase from Bacillus licheniformis 8-37-0-1 for product specificity study. Appl. Microbiol. Biotechnol. 2018, 102, 3217–3228. [Google Scholar] [CrossRef]
Sources | Chemical Shifts (ppm) | References | |||||
---|---|---|---|---|---|---|---|
C-1 | C-2 | C-3 | C-4 | C-5 | C-6 | ||
B. polymyxa | 60.7 | 104.2 | 77 | 75.7 | 80.5 | 63.6 | [30] |
B. subtilis | 60.1 | 104.4 | 76.5 | 75.4 | 80.5 | 63.6 | [31] |
B. licheniformis | 62.9 | 106.9 | 79.3 | 78.1 | 83 | 66.1 | [32] |
B. aryabhattai | 62.7 | 106.9 | 79 | 77.9 | 83 | 66.1 | [33] |
B. amyloliquefaciens KK9 | 59.9 | 104.2 | 76.2 | 75.1 | 80.3 | 62.1 | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phengnoi, P.; Charoenwongpaiboon, T.; Wangpaiboon, K.; Klaewkla, M.; Nakapong, S.; Visessanguan, W.; Ito, K.; Pichyangkura, R.; Kuttiyawong, K. Levansucrase from Bacillus amyloliquefaciens KK9 and Its Y237S Variant Producing the High Bioactive Levan-Type Fructooligosaccharides. Biomolecules 2020, 10, 692. https://doi.org/10.3390/biom10050692
Phengnoi P, Charoenwongpaiboon T, Wangpaiboon K, Klaewkla M, Nakapong S, Visessanguan W, Ito K, Pichyangkura R, Kuttiyawong K. Levansucrase from Bacillus amyloliquefaciens KK9 and Its Y237S Variant Producing the High Bioactive Levan-Type Fructooligosaccharides. Biomolecules. 2020; 10(5):692. https://doi.org/10.3390/biom10050692
Chicago/Turabian StylePhengnoi, Pongsakorn, Thanapon Charoenwongpaiboon, Karan Wangpaiboon, Methus Klaewkla, Santhana Nakapong, Wonnop Visessanguan, Kazuo Ito, Rath Pichyangkura, and Kamontip Kuttiyawong. 2020. "Levansucrase from Bacillus amyloliquefaciens KK9 and Its Y237S Variant Producing the High Bioactive Levan-Type Fructooligosaccharides" Biomolecules 10, no. 5: 692. https://doi.org/10.3390/biom10050692
APA StylePhengnoi, P., Charoenwongpaiboon, T., Wangpaiboon, K., Klaewkla, M., Nakapong, S., Visessanguan, W., Ito, K., Pichyangkura, R., & Kuttiyawong, K. (2020). Levansucrase from Bacillus amyloliquefaciens KK9 and Its Y237S Variant Producing the High Bioactive Levan-Type Fructooligosaccharides. Biomolecules, 10(5), 692. https://doi.org/10.3390/biom10050692