Abstract
In this work, the He and Ar triplet autoionizing states have been studied using a non-monochromatic electron beam and a high-resolution electrostatic analyzer at low incident electron energies and three ejection angles: 40°, 90°, and 130°. Low-energy electrons have been used because they have a high probability of exciting triplet states regardless of whether they are discrete isolate states or are embedded in the ionization continuum. Additionally, the He ejected electron spectra have been measured at several ejection angles between 20° and 130° and two incident energies, namely 60.5 eV and 101 eV. The anisotropic angular distributions indicate that orbital angular momentum exchange between the ejected and scattered electrons occurred. The energies of the first triplets 3s3p64s(3S) and 3s3p64p(3P) states of argon are found to be (24.985 ± 0.020) eV and (26.52 ± 0.02) eV, respectively.