GRASP: The Future?
Abstract
1. Introduction
2. Building Atomic Structure Programs
3. QED of Atoms and Molecules
3.1. Relativistic Wave Equations
3.2. Quantized Electron and Positron Fields
3.3. Basis Set Spinor Expansions
3.3.1. KG-Spinors
3.3.2. Charge Conjugation
3.3.3. CKG-Spinors
4. QED Corrections
Vacuum Polarization
5. Electron Self-Energy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartree, D.R. The Calculation of Atomic Structures; John Wiley & Sons, Inc.: New York, NY, USA, 1957. [Google Scholar]
- Grant, I.P. Relativistic self-consistent fields. Proc. R. Soc. A 1961, 262, 555–576. [Google Scholar] [CrossRef]
- Grant, I.P. Relativistic calculation of atomic structures. Adv. Phys. 1970, 19, 747. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Gaigalas, G.; Jönsson, P.; Bieroń, J. GRASP2018-A Fortran 95 version of the General Purpose Relativistic Atomic Structure Package. Computer Phys. Commun. 2018, 237, 183–187. [Google Scholar]
- Available online: https://github.com/compas (accessed on 1 June 2022).
- Quiney, H.M.; Skaane, H.; Grant, I.P. Relativistic calculation of electromagnetic interactions in molecules. J. Phys. B At. Mol. Opt. Phys. 1997, 30, L829. [Google Scholar] [CrossRef]
- Belpassi, L.; de Santis, M.; Quiney, H.M.; Tarantelli, F.; Storchi, L. BERTHA: Implementation of a four-component Dirac-Kohn-Sham relativistic framework. J. Chem. Phys. 2020, 152, 164118. [Google Scholar] [CrossRef]
- Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation; Springer Science and Business Media, LLC: New York, NY, USA, 2007. [Google Scholar]
- Furry, W.H. On bound states and scattering in positron theory. Phys. Rev. 1951, 81, 115. [Google Scholar] [CrossRef]
- Desclaux, J.-P. Relativistic Dirac-Fock expectation values for atoms Z = 1 to Z = 120. At. Data Nucl. Data Tables 1973, 12, 311–406. [Google Scholar] [CrossRef]
- Johnson, W.R.; Sapirstein, J. Computation of second-order many-body corrections in relativistic atomic systems. Phys. Rev. Lett. 1986, 57, 1126. [Google Scholar] [CrossRef]
- Shabaev, V.M.; Tupitsyn, I.I.; Yerokhin, V.A.; Plunien, G.; Soff, G. Dual kinetic balance approach to basis set expansions for the Dirac equation. Phys. Rev. Lett. 2004, 93, 130405. [Google Scholar] [CrossRef]
- Dyall, K.G.; Faegri, K. Introduction to Relativistic Quantum Chemistry; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Zatsarinny, O.; Froese-Fischer, C. DBSR_HF: A B-spline Dirac-Hartree-Fock program. Comput. Phys. Commun. 2016, 202, 287–303. [Google Scholar] [CrossRef]
- Liu, W. Essentials of relativistic quantum chemistry. J. Chem. Phys. 2020, 152, 180901. [Google Scholar] [CrossRef] [PubMed]
- Saue, T.; Bast, R.; Perero Gomes, A.S.; Jensen, H.A.; Visscher, L.; Aucar, I.A.; di Remigio, R.; Dyall, K.G.; Eliav, E.; Fasshauer, E.; et al. The DIRAC code for relativistic molecular calculations. J. Chem. Phys. 2020, 152, 204104. [Google Scholar] [CrossRef] [PubMed]
- Indelicato, P.; Mohr, P.J.; Sapirstein, J. Coordinate-space approach to vacuum polarization. Phys. Rev. A 2014, 89, 042121. [Google Scholar] [CrossRef]
- Quiney, H.M.; Grant, I.P. Atomic self-energy calculations using partial-wave mass renormalization. J. Phys. B At. Mol. Opt. Phys. 1994, 27, L299–L304. [Google Scholar] [CrossRef]
- Quiney, H.M.; Grant, I.P. Partial-wave mass renormalization in atomic QED calculations. Phys. Scr. 1993, T46, 132–138. [Google Scholar] [CrossRef]
- Grant, I.P.; Quiney, H.M. A class of Bessel function integrals with application in particle physics. J. Phys. A Math. Gen. 1993, 26, 7547–7562. [Google Scholar] [CrossRef]
- Persson, H.; Lindgren, I.; Salomonson, S.; Sunnergren, P. Accurate vacuum-polarization calculations. Phys. Rev. A 1993, 48, 2772–2778. [Google Scholar] [CrossRef]
- Lindgren, I.; Persson, H.; Salomonson, S.; Sunnergren, P. Analysis of the electron self-energy for tightly bound electrons. Phys. Rev. A 1998, 58, 1001–1015. [Google Scholar] [CrossRef]
- Available online: https://compas.github.io (accessed on 1 June 2022).
- Roothaan, C.C.J. New developments in molecular orbital theory. Rev. Mod. Phys. 1951, 23, 69. [Google Scholar] [CrossRef]
- Hall, G.G. The molecular orbital theory of chemical valency VIII: A method of calculating ionization potentials. Proc. R. Soc. A 1951, 205, 541. [Google Scholar]
- Pais, A. Inward Bound; Oxford University Press: Oxford UK, 1986. [Google Scholar]
- Schweber, S.S. QED and the Men Who Made It; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Weinberg, S. Quantum Theory of Fields, Vol 1; Cambridge University Press: Cambridge UK, 1995. [Google Scholar]
- Dirac, P.A.M. The quantum theory of the electron, I. Proc. R. Soc. A 1928, 117, 610. [Google Scholar]
- Dirac, P.A.M. The quantum theory of the electron, II. Proc. R. Soc. A 1928, 118, 351. [Google Scholar]
- Dirac, P.A.M. A theory of electrons and protons. Proc. R. Soc. A 1930, 126, 360. [Google Scholar]
- Gordon, W. Der Strom der Diracschen Elektrontheorie. Z. Phys. 1928, 48, 11. [Google Scholar] [CrossRef]
- Darwin, C.G. The wave equations of the electron. Proc. R. Soc. A 1928, 118, 654. [Google Scholar]
- Wichmann, E.H.; Kroll, N.M. Vacuum polarization in a strong Coulomb field. Phys. Rev. 1956, 101, 843. [Google Scholar] [CrossRef]
- Blomqvist, J. Vacuum polarization in exotic atoms. Nucl. Phys. B 1972, 48, 95. [Google Scholar] [CrossRef]
- Furry, W.H. A symmetry theorem in the positron theory. Phys. Rev. 1937, 51, 125. [Google Scholar] [CrossRef]
- Schweber, S.S. Relativistic Quantum Field Theory; Harper and Row: New York, NY, USA, 1961. [Google Scholar]
- Sapirstein, J.; Cheng, K.T. Vacuum polarization calculations for hydrogenlike and alkali-metal-like ions. Phys. Rev. 2003, 68, 042111. [Google Scholar] [CrossRef]
- Feynman, R.P. The theory of positrons. Phys. Rev. 1949, 76, 749. [Google Scholar] [CrossRef]
- Feynman, R.P. Space-time approach to quantum electrodynamics. Phys. Rev. 1949, 76, 769. [Google Scholar] [CrossRef]
- Racah, G. Theory of complex spectra: II. Phys. Rev. 1942, 62, 438. [Google Scholar] [CrossRef]
- Racah, G. Theory of complex spectra: III. Phys. Rev. 1943, 63, 367. [Google Scholar] [CrossRef]
- Racah, G. Theory of complex spectra: IV. Phys. Rev. 1949, 76, 1352. [Google Scholar] [CrossRef]
- Salman, M.; Saue, T. Charge conjugation symmetry in the finite basis approximation of the Dirac equation. Symmetry 2020, 12, 1121. [Google Scholar] [CrossRef]
−1 | −3532.1921489294 | −3532.1921489289 | −904.8478012876 | −392.0836928780 |
1 | −904.8478012882 | −904.8478012878 | −392.0836928781 | −216.4247478039 |
−2 | −817.8074977480 | −817.8074977480 | −366.1427114567 | −205.5771277760 |
2 | −366.1427114567 | −366.1427114567 | −205.5771277760 | −131.1010555098 |
−3 | −358.9868485160 | −358.9868485160 | −202.5363034958 | −129.6328330777 |
3 | −202.5363034958 | −202.5363034958 | −129.6328330776 | −89.9621990162 |
−4 | −201.0765233582 | −201.0765233582 | −128.8823613985 | −89.5273365309 |
4 | −128.8823613985 | −128.8823613985 | −89.5273365309 | −65.7655876909 |
−5 | −128.4392341889 | −128.4392341889 | −89.2702733629 | −65.6035374887 |
5 | −89.2702733629 | −89.2702733629 | −65.6035374887 | −50.2279904000 |
−6 | −89.1002663743 | −89.1002663743 | −65.4963124418 | −50.1561023779 |
6 | −65.4963124418 | −65.4963124419 | −50.1561023780 | −39.6314776684 |
−7 | −65.4200746697 | −65.4200746697 | −50.1049761176 | −39.5955492450 |
7 | −50.1049761176 | −50.1049761176 | −39.5955492450 | −32.0742810655 |
−8 | −50.0667420260 | −50.0667420260 | −39.5686766900 | −32.0546823612 |
8 | −39.5686766900 | −39.5686766900 | −32.0546823613 | −26.4929690886 |
−9 | −39.5478161969 | −39.5478161969 | −32.0394670086 | −26.4815336906 |
9 | −32.0394670087 | −32.0394670087 | −26.4815336906 | −22.2529707815 |
−10 | −32.0273112566 | −32.0273112566 | −26.4723972662 | −22.2459315332 |
10 | −26.4723972662 | −26.4723972662 | −22.2459315332 | −18.9559506743 |
1 | 3.29166528 | 3.22434547 | 6.73198 (−2) |
2 | 2.81964973 | 2.81325408 | 6.39565 (−3) |
3 | 2.40679616 | 2.40522784 | 1.56831 (−3) |
4 | 2.07156051 | 2.07095146 | 6.09053 (−4) |
5 | 1.79881093 | 1.79850086 | 3.10045 (−4) |
6 | 1.57229887 | 1.57211452 | 1.84348 (−4) |
7 | 1.38083155 | 1.38071232 | 1.29222 (−4) |
8 | 1.21719228 | 1.21711175 | 8.05279 (−5) |
Sum | 16.5588053 | 16.42822183 | 7.65869 (−2) |
Z | |||
---|---|---|---|
10 | 3.232201 (−7) | 3.740969 (−7) | 3.714822 (−7) |
20 | 1.862744 (−5) | 2.036149 (−5) | 2.042291 (−5) |
30 | 1.964703 (−4) | 2.093781 (−4) | 2.114400 (−4) |
40 | 1.046683 (−3) | 1.098815 (−3) | 1.120773 (−3) |
50 | 3.869888 (−3) | 4.023198 (−3) | 4.158461 (−3) |
60 | 1.144670 (−2) | 1.181736 (−2) | 1.242842 (−2) |
70 | 2.926072 (−2) | 3.005133 (−2) | 3.230899 (−2) |
80 | 6.784298 (−2) | 6.935930 (−2) | 7.667064 (−2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grant, I.; Quiney, H. GRASP: The Future? Atoms 2022, 10, 108. https://doi.org/10.3390/atoms10040108
Grant I, Quiney H. GRASP: The Future? Atoms. 2022; 10(4):108. https://doi.org/10.3390/atoms10040108
Chicago/Turabian StyleGrant, Ian, and Harry Quiney. 2022. "GRASP: The Future?" Atoms 10, no. 4: 108. https://doi.org/10.3390/atoms10040108
APA StyleGrant, I., & Quiney, H. (2022). GRASP: The Future? Atoms, 10(4), 108. https://doi.org/10.3390/atoms10040108