# The “Emerging” Reality from “Hidden” Spaces

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction and Preliminaries

**Definition**

**1.**

- -
- if $dim\left(M\right)>0$ (i.e., system solutions (6)), we have the projection:$${\pi}_{(>0)}:\mathrm{PNDP}\to \left({\Pi}_{i=({q}^{\prime}+1)}^{\tilde{q}}{B}_{i}\right)=\tilde{B},$$
- -
- if $dim\left(M\right)=0$ (i.e., system solutions (5)), we have the projection:$${\pi}_{(=0)}:\mathrm{PNDP}\to P,$$
- -
- if $dim\left(M\right)<0$, (i.e., system solutions (5)), we have the projection:$${\pi}_{(<0)}:\mathrm{PNDP}\to {\Sigma}^{dim\left(M\right)<0}\left(p\right);$$

## 2. PNDP-Manifold, Non-Orientable Wormhole and “Information” Time Travel

## 3. PNDP-Strings

**Remark**

**1.**

#### T-Duality and Mirror Symmetry

## 4. Point-Like Universe and PNDP-Universe with Multiple Times

## 5. Conclusions and Future Perspectives

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Pigazzini, A.; Ozel, C.; Linker, P.; Jafari, S. On PNDP-manifold. arXiv
**2021**, arXiv:2102.09240. [Google Scholar] - Joyce, D. Kuranishis and Symplectic Geometry; The Mathematical Institute, Radcliffe Observatory Quarter: Oxford, UK, 2017; Volume II. [Google Scholar]
- Margolis, H.R. Spectra and the Steenrod Algebra; North-Holland: Amsterdam, The Netherlands; New York, NY, USA, 1983. [Google Scholar]
- Wolcott, L.; McTernan, E. Imagining Negative-Dimensional Space. In Proceedings of the Bridges 2012: Mathematics, Music, Art, Architecture, Culture, Towson, MD, USA, 25–29 July 2012; pp. 637–642. [Google Scholar]
- Clingher, A.; Hill, T.; Malmendier, A. The duality between F-Theory and the heterotic string in D = 8 with two Wilson lines. Lett. Math. Phys.
**2020**, 110, 3081–3104. [Google Scholar] [CrossRef] - Jia, B. Topological string theory revisited I: The stage. Int. J. Mod. Phys. A
**2016**, 31, 1650135. [Google Scholar] [CrossRef][Green Version] - Sato, M. String geometry and nonperturbative formulation of string theory. Int. J. Mod. Phys. A
**2019**, 34, 1950126. [Google Scholar] [CrossRef][Green Version] - Noja, S. Non-Projected Supermanifolds and Embeddings in Super Grassmannians. Universe
**2018**, 4, 114. [Google Scholar] [CrossRef][Green Version] - Catenacci, R.; Grassi, P.A. String Sigma Models on Curved Supermanifolds. Universe
**2018**, 4, 60. [Google Scholar] [CrossRef][Green Version] - Carmeli, C.; Fioresi, R.; Varadarajan, V.S. Super bundles. Universe
**2018**, 4, 46. [Google Scholar] [CrossRef][Green Version] - Catenacci, R.; Grassi, P.A.; Noja, S. Superstring field theory, superforms and supergeometry. J. Geom. Phys.
**2020**, 148, 103559. [Google Scholar] [CrossRef][Green Version] - Ellis, H.G. Ether flow through a drainhole: A particle model in general relativity. J. Math. Phys.
**1973**, 14, 104. [Google Scholar] [CrossRef] - Joyce, D. Compact Riemannian 7-manifolds with holonomy G2. I. J. Differ. Geom.
**1996**, 43, 104–118. [Google Scholar] - Joyce, D. Compact Riemannian 7-manifolds with holonomy G2. II. J. Differ. Geom.
**1996**, 43, 329–375. [Google Scholar] - Atiyah, M.; Witten, E. M-Theory Dynamics On A Manifold Of G
_{2}Holonomy. Adv. Theor. Math. Phys.**2003**, 6, 1–106. [Google Scholar] [CrossRef][Green Version] - Dijkgraaf, R.; Gukov, S.; Neitzke, A.; Vafa, C. Topological M-theory as unification of form theories of gravity. Adv. Theor. Math. Phys.
**2005**, 9, 603–665. [Google Scholar] [CrossRef][Green Version] - Sepehri, A.; Ghaffary, T.; Naimi, Y. MOG without anomaly. Phys. Dark Universe (Elsevier)
**2018**, 19, 91–103. [Google Scholar] [CrossRef][Green Version] - Capozziello, S.; Pincak, R.; Saridakis, E.N. Constructing superconductors by graphene Chern–Simons wormholes. Ann. Phys.
**2018**, 390, 303–333. [Google Scholar] [CrossRef] - Silverberg, L.M.; Eischen, J.W. On a new field theory formulation and a space-time adjustment that predict the same precession of Mercury and the same bending of light as general relativity. Phys. Essays
**2020**, 33, 489–512. [Google Scholar] [CrossRef] - Sepehri, A.; Pincak, R. G-theory and its reduction to F(R)-gravity in FRW universe. Int. J. Geom. Methods Mod. Phys.
**2018**, 15, 1850144. [Google Scholar] [CrossRef] - Sepehri, A.; Pincak, R. G-theory: The generator of M-theory and supersymmetry. Int. J. Geom. Methods Mod. Phys.
**2018**, 33, 1850058. [Google Scholar] [CrossRef] - Strominger, A.; Yau, S.T.; Zaslow, E. Mirror symmetry is T-duality. Nucl. Phys. B
**1996**, 479, 243–259. [Google Scholar] [CrossRef][Green Version] - Greene, B.R. String Theory on Calabi-Yau Manifolds. arXiv
**1997**, arXiv:arXiv:hep-th/9702155. [Google Scholar] - Green, B.R.; Morrison, D.R.; Strominger, A. Black Hole Condensation and the Unification of String Vacua. Nucl. Phys. B
**1995**, 451, 109–120. [Google Scholar] [CrossRef][Green Version] - Bars, I.; Deliduman, C.; Andreev, O. Gauged duality, conformal symmetry and space-time with two times. Phys. Rev. D
**1998**, 58, 066004. [Google Scholar] [CrossRef][Green Version] - Johnson, C.V. D-Branes. Camb. Monogr. Math. Phys.
**2020**, 29, 2041009. [Google Scholar] - Gurrea-Ysasi, G.; Olmo, G.J. Particle Creation by Wormholes: A 1+1 Model. Int. J. Mod. Phys. D
**2020**, 29, 2041009. [Google Scholar] [CrossRef] - Nelson, E. Quantum Fluctuations—An Introduction. Phys. A Stat. Mech. Its Appl.
**1984**, 14, 509–519. [Google Scholar] [CrossRef] - Bengtsson, I.; Zyczkowski, K. Geometry of Quantum States—An Introduction to Quantum Entanglement; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Brody, J. Quantum Entanglement; The MIT Press Essential Knowledge Series: Cambridge, MA, USA; London, UK, 2020. [Google Scholar]
- Bertone, G.; Silk, J. Particle Dark Matter—Observations, Models and Searches; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Bauer, M.; Plehn, T. Yet Another Introduction to Dark Matter—The Particle Physics Approach; Springer: Berlin, Germany, 2019. [Google Scholar]

**Figure 1.**It shows a non-orientable wormhole which information enters the wormhole and takes a trip back in time. The red arrows indicate the information journey when it is making the first lap, while the blue arrows of the second lap are indicated to return to the correct side of the strip and, therefore, to be able to return to the wormhole entry instant. Then, all space time instants will be retraced from the past to the instant of the journey, but the fact that the information has to make a double tour, means that, in this parallel non-interacting universe, in which information is only a spectator, the time runs slower than an orientable wormhole. Within the dashed part we indicate that the non-orientable part of the wormhole a point-like PNDP, i.e., it emerges as a point, zero dimension.

**Figure 2.**A $2-1$- PNDP is shown, i.e., $({I}_{1}\times {I}_{2})\times (\mathbb{R}+E)$. From the interaction between the positive and virtual negative dimensions, a line interval emerges, topologically equivalent to a string.

**Figure 3.**In (

**a**), it was represented the $(1+1)$ wormhole introduced and studied in Reference [27], in which we consider it created by a PNDP in a point-like version. The curve ${\gamma}_{IN}$ represents the entrance, while the curve ${\gamma}_{OUT}$ represents the exit. In (

**b**), a vacuum place in space-time is represented. In (

**c**), pairs of virtual particles are represented, particle-anti particle that annihilate. So, (

**b**,

**c**) represent the phenomenon known as quantum fluctuation, i.e., fluctuations in the energy of the vacuum that suddenly generate particle-antiparticle pairs that annihilate. Here, we assume that this could be generated by (

**a**), i.e., the interactions between the dimensions that generate the wormhole point like, are perceived, in the entry and exit areas, as virtual energy fluctuations, as in (

**d**).

**Figure 4.**The image shows a PNDP-manifold, in which the emerging part is considered visible matter, while hidden part of the structure, which we considered non-interacting, represents dark matter.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pincak, R.; Pigazzini, A.; Jafari, S.; Ozel, C.
The “Emerging” Reality from “Hidden” Spaces. *Universe* **2021**, *7*, 75.
https://doi.org/10.3390/universe7030075

**AMA Style**

Pincak R, Pigazzini A, Jafari S, Ozel C.
The “Emerging” Reality from “Hidden” Spaces. *Universe*. 2021; 7(3):75.
https://doi.org/10.3390/universe7030075

**Chicago/Turabian Style**

Pincak, Richard, Alexander Pigazzini, Saeid Jafari, and Cenap Ozel.
2021. "The “Emerging” Reality from “Hidden” Spaces" *Universe* 7, no. 3: 75.
https://doi.org/10.3390/universe7030075