Multiverse Predictions for Habitability: Fraction of Life That Develops Intelligence
Abstract
:1. Introduction
Mass Extinctions
2. Rates
2.1. Catastrophes
2.2. What Sets the Recovery Time?
3. Comets
3.1. Comet Dynamics
3.2. What Sets the Size of Deadly Comets?
3.2.1. Sulfate
3.2.2. Dust
4. Volcanism, Glaciations, and Sea Level Change
4.1. Glaciations
4.2. Volcanoes
5. Gamma Ray Bursts
5.1. Gamma Ray Bursts and Extinctions
5.2. GRB Rate
5.3. What Sets ${r}_{\u2020}$?
6. Discussion
6.1. Multiple Causes
6.2. Why Are We in This Universe?
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
 Sandora, M. Multiverse Predictions for Habitability I: The Number of Stars and Their Properties. arXiv 2019, arXiv:1901.04614. [Google Scholar] [CrossRef]
 Sandora, M. Multiverse Predictions for Habitability II: Number of Habitable Planets. arXiv 2019, arXiv:1902.06784. [Google Scholar]
 Sandora, M. Multiverse Predictions for Habitability III: Fraction of Planets That Develop Life. arXiv 2019, arXiv:1903.06283. [Google Scholar]
 Hallam, A.; Wignall, P.B. Mass Extinctions and Their Aftermath; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
 Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. Extraterrestrial cause for the CretaceousTertiary extinction. Science 1980, 208, 1095–1108. [Google Scholar] [CrossRef] [PubMed]
 Schulte, P.; Alegret, L.; Arenillas, I.; Arz, J.A.; Barton, P.J.; Bown, P.R.; Bralower, T.J.; Christeson, G.L.; Claeys, P.; Cockell, C.S.; et al. The Chicxulub asteroid impact and mass extinction at the CretaceousPaleogene boundary. Science 2010, 327, 1214–1218. [Google Scholar] [CrossRef]
 Berry, W.B.; Boucot, A.J. Glacioeustatic control of Late Ordovician–Early Silurian platform sedimentation and faunal changes. Geol. Soc. Am. Bull. 1973, 84, 275–284. [Google Scholar] [CrossRef]
 Melott, A.L.; Lieberman, B.S.; Laird, C.M.; Martin, L.D.; Medvedev, M.V.; Thomas, B.C.; Cannizzo, J.; Gehrels, N.; Jackman, C. Did a gammaray burst initiate the late Ordovician mass extinction? Int. J. Astrobiol. 2004, 3, 55–61. [Google Scholar] [CrossRef]
 Algeo, T.J.; Scheckler, S.E. Terrestrialmarine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1998, 353, 113–130. [Google Scholar] [CrossRef]
 Kamo, S.L.; Czamanske, G.K.; Amelin, Y.; Fedorenko, V.A.; Davis, D.; Trofimov, V. Rapid eruption of Siberian floodvolcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Planet. Sci. Lett. 2003, 214, 75–91. [Google Scholar] [CrossRef]
 Rothman, D.H.; Fournier, G.P.; French, K.L.; Alm, E.J.; Boyle, E.A.; Cao, C.; Summons, R.E. Methanogenic burst in the endPermian carbon cycle. Proc. Natl. Acad. Sci. USA 2014, 111, 5462–5467. [Google Scholar] [CrossRef] [Green Version]
 Embry, A.F. Triassic SeaLevel Changes: Evidence from the Canadian Arctic Archipelago. 1988. Available online: http://archives.datapages.com/data/sepm_sp/SP42/Triassic_SeaLevel_Changes.htm (accessed on 16 July 2019).
 Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51. [Google Scholar] [CrossRef] [PubMed]
 Gorban, A.N.; Pokidysheva, L.I.; Smirnova, E.V.; Tyukina, T.A. Law of the minimum paradoxes. Bull. Math. Biol. 2011, 73, 2013–2044. [Google Scholar] [CrossRef] [PubMed]
 Connell, J.H. Diversity in tropical rain forests and coral reefs. Science 1978, 199, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
 Randall Hughes, A.; Byrnes, J.E.; Kimbro, D.L.; Stachowicz, J.J. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol. Lett. 2007, 10, 849–864. [Google Scholar] [CrossRef] [PubMed]
 Miller, A.D.; Roxburgh, S.H.; Shea, K. How frequency and intensity shape diversity—Disturbance relationships. Proc. Natl. Acad. Sci. USA 2011, 108, 5643–5648. [Google Scholar] [CrossRef] [PubMed]
 Press, W.H.; Lightman, A.P. Dependence of macrophysical phenomena on the values of the fundamental constants. Philos. Trans. R. Soc. Lond. Ser. A 1983, 310, 323–334. [Google Scholar] [CrossRef]
 Lightman, A.P. A fundamental determination of the planetary day and year. Am. J. Phys. 1984, 52, 211–214. [Google Scholar] [CrossRef]
 Horner, J.; Jones, B. Jupiter: Friend or foe? An answer. Astron. Geophys. 2010, 51, 6–16. [Google Scholar] [CrossRef]
 Fernández, J.; Ip, W.H. Statistical and evolutionary aspects of cometary orbits. In International Astronomical Union Colloquium; Cambridge University Press: Cambridge, UK, 1989; Volume 116, pp. 487–535. [Google Scholar]
 Dones, L.; Weissman, P.R.; Levison, H.F.; Duncan, M.J. Oort cloud formation and dynamics. In Star Formation in the Interstellar Medium: In Honor of David Hollenbach; ASP: San Francisco, CA, USA, 2004; Volume 323, p. 371. [Google Scholar]
 Heisler, J.; Tremaine, S. The influence of the galactic tidal field on the Oort comet cloud. Icarus 1986, 65, 13–26. [Google Scholar] [CrossRef]
 Gaidos, E.J. Paleodynamics: Solar System formation and the early environment of the Sun. Icarus 1995, 114, 258–268. [Google Scholar] [CrossRef]
 Brasser, R.; Duncan, M.; Levison, H. Embedded star clusters and the formation of the Oort Cloud: II. The effect of the primordial Solar nebula. Icarus 2007, 191, 413–433. [Google Scholar] [CrossRef]
 Heisler, J.; Tremaine, S.; Alcock, C. The frequency and intensity of comet showers from the Oort cloud. Icarus 1987, 70, 269–288. [Google Scholar] [CrossRef]
 Byl, J. Galactic perturbations on nearlyparabolic cometary orbits. Moon Planets 1983, 29, 121–137. [Google Scholar] [CrossRef]
 Meech, K.; Hainaut, O.; Marsden, B. Comet nucleus size distributions from HST and Keck telescopes. Icarus 2004, 170, 463–491. [Google Scholar] [CrossRef]
 Safronov, V. Ejection of Bodies from the Solar System in the Course of the Accumulation of the Giant Planets and the Formation of the Cometary Cloud. In SymposiumInternational Astronomical Union; Cambridge University Press: Cambridge, UK, 1972; Volume 45, pp. 329–334. [Google Scholar]
 Tremaine, S. The distribution of comets around stars. Planets Around Pulsars 1993, 36, 335–344. [Google Scholar]
 Bland, P.A.; Artemieva, N.A. The rate of small impacts on Earth. Meteorit. Planet. Sci. 2006, 41, 607–631. [Google Scholar] [CrossRef]
 Toon, O.B.; Zahnle, K.; Morrison, D.; Turco, R.P.; Covey, C. Environmental perturbations caused by the impacts of asteroids and comets. Rev. Geophys. 1997, 35, 41–78. [Google Scholar] [CrossRef]
 Pope, K.O. Impact dust not the cause of the CretaceousTertiary mass extinction. Geology 2002, 30, 99–102. [Google Scholar] [CrossRef]
 Belcher, C.M.; Collinson, M.E.; Sweet, A.R.; Hildebrand, A.R.; Scott, A.C. Fireball passes and nothing burns—The role of thermal radiation in the CretaceousTertiary event: Evidence from the charcoal record of North America. Geology 2003, 31, 1061–1064. [Google Scholar] [CrossRef]
 Alegret, L.; Thomas, E.; Lohmann, K.C. EndCretaceous marine mass extinction not caused by productivity collapse. Proc. Natl. Acad. Sci. USA 2012, 109, 728–732. [Google Scholar] [CrossRef]
 Twitchett, R.J. The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 232, 190–213. [Google Scholar] [CrossRef]
 Brugger, J.; Feulner, G.; Petri, S. Baby, it’s cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous. Geophys. Res. Lett. 2017, 44, 419–427. [Google Scholar] [CrossRef]
 Melosh, H.J. Impact Cratering: A Geologic Process; Research Supported by NASA; Oxford University Press: New York, NY, USA, 1989; Volume 253, p. 11. [Google Scholar]
 Manins, P. Cloud heights and stratospheric injections resulting from a thermonuclear war. Atmos. Environ. (1967) 1985, 19, 1245–1255. [Google Scholar] [CrossRef]
 Kennett, J.P. Cenozoic evolution of Antarctic glaciation, the circumAntarctic Ocean, and their impact on global paleoceanography. J. Geophys. Res. 1977, 82, 3843–3860. [Google Scholar] [CrossRef]
 Konhauser, K.O. Introduction to Geomicrobiology; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
 Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; et al. Partial radiogenic heat model for Earth revealed by geoneutrino measurements. Nat. Geosci. 2011, 4, 647. [Google Scholar]
 Sandora, M. The fine structure constant and habitable planets. J. Cosmol. Astropart. Phys. 2016, 8, 048. [Google Scholar] [CrossRef]
 Saunders, A.D. Large igneous provinces: Origin and environmental consequences. Elements 2005, 1, 259–263. [Google Scholar] [CrossRef]
 Schmidt, A.; Skeffington, R.A.; Thordarson, T.; Self, S.; Forster, P.M.; Rap, A.; Ridgwell, A.; Fowler, D.; Wilson, M.; Mann, G.W.; et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 2016, 9, 77. [Google Scholar] [CrossRef]
 Benton, M.J. Hyperthermaldriven mass extinctions: Killing models during the Permian—Triassic mass extinction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170076. [Google Scholar] [CrossRef]
 Tan, K.K.; Thorpe, R.B.; Zhao, Z. On predicting mantle mushroom plumes. Geosci. Front. 2011, 2, 223–235. [Google Scholar] [CrossRef] [Green Version]
 McKenzie, D.P. The viscosity of the lower mantle. J. Geophys. Res. 1966, 71, 3995–4010. [Google Scholar] [CrossRef]
 Tan, K.K.; Thorpe, R.B. The onset of convection driven by buoyancy caused by various modes of transient heat conduction: Part II. The sizes of plumes. Chem. Eng. Sci. 1999, 54, 239–244. [Google Scholar] [CrossRef]
 Saunders, A.; Reichow, M. The Siberian Traps and the EndPermian mass extinction: A critical review. Chin. Sci. Bull. 2009, 54, 20–37. [Google Scholar] [CrossRef]
 Thorsett, S. Terrestrial implications of cosmological gammaray burst models. arXiv 1995, arXiv:10.1086/187858. [Google Scholar] [CrossRef]
 Scalo, J.; Wheeler, J.C. Astrophysical and astrobiological implications of gammaray burst properties. Astrophys. J. 2002, 566, 723. [Google Scholar] [CrossRef]
 Wanderman, D.; Piran, T. The luminosity function and the rate of Swift’s gammaray bursts. Mon. Not. R. Astron. Soc. 2010, 406, 1944–1958. [Google Scholar] [CrossRef]
 Thomas, B.C.; Melott, A.L.; Jackman, C.H.; Laird, C.M.; Medvedev, M.V.; Stolarski, R.S.; Gehrels, N.; Cannizzo, J.K.; Hogan, D.P.; Ejzak, L.M. Gammaray bursts and the Earth: Exploration of atmospheric, biological, climatic, and biogeochemical effects. Astrophys. J. 2005, 634, 509. [Google Scholar] [CrossRef]
 Thomas, B.C.; Jackman, C.H.; Melott, A.L.; Laird, C.M.; Stolarski, R.S.; Gehrels, N.; Cannizzo, J.K.; Hogan, D.P. Terrestrial ozone depletion due to a Milky Way gammaray burst. Astrophys. J. Lett. 2005, 622, L153. [Google Scholar] [CrossRef]
 Ejzak, L.M.; Melott, A.L.; Medvedev, M.V.; Thomas, B.C. Terrestrial consequences of spectral and temporal variability in ionizing photon events. Astrophys. J. 2007, 654, 373. [Google Scholar] [CrossRef]
 Crawford, I.A. The moon as a recorder of nearby supernovae. arXiv 2016, arXiv:1608.03926. [Google Scholar]
 Bromm, V.; Loeb, A. The expected redshift distribution of gammaray bursts. Astrophys. J. 2002, 575, 111. [Google Scholar] [CrossRef]
 Stanek, K.Z.; Gnedin, O.; Beacom, J.; Gould, A.; Johnson, J.; Kollmeier, J.; Modjaz, M.; Pinsonneault, M.; Pogge, R.; Weinberg, D. Protecting life in the Milky Way: Metals keep the GRBs away. Acta Astron. 2006, 56, 333–345. [Google Scholar]
 Melott, A.L. Comment on: Protecting Life in the Milky Way: Metals Keep the GRBs Away by Stanek et al. arXiv 2006, arXiv:astroph/0604440. [Google Scholar]
 Atoyan, A.; Buckley, J.; Krawczynski, H. A GammaRay Burst Remnant in Our Galaxy: HESS J1303–1631. Astrophys. J. Lett. 2006, 642, L153. [Google Scholar] [CrossRef]
 Putman, M.; Peek, J.; Joung, M. Gaseous galaxy halos. Annu. Rev. Astron. Astrophys. 2012, 50, 491–529. [Google Scholar] [CrossRef]
 Jimenez, R.; Piran, T. Reconciling the gammaray burst rate and star formation histories. Astrophys. J. 2013, 773, 126. [Google Scholar] [CrossRef]
 Kennicutt, R.C. The global Schmidt law in starforming galaxies. Astrophys. J. 1998, 498, 541. [Google Scholar] [CrossRef]
 Gowanlock, M.G. Astrobiological effects of gammaray bursts in the Milky Way galaxy. Astrophys. J. 2016, 832, 38. [Google Scholar] [CrossRef]
 Gowanlock, M.G.; Morrison, I.S. The Habitability of our Evolving Galaxy. arXiv 2018, arXiv:1802.07036. [Google Scholar]
 Annis, J. An astrophysical explanation for the great silence. arXiv 1999, arXiv:astroph/9901322. [Google Scholar]
 Piran, T.; Jimenez, R.; Cuesta, A.J.; Simpson, F.; Verde, L. Cosmic explosions, life in the universe, and the cosmological constant. Phys. Rev. Lett. 2016, 116, 081301. [Google Scholar] [CrossRef] [PubMed]
 Ruffini, R.; Rueda, J.; Muccino, M.; Aimuratov, Y.; Becerra, L.; Bianco, C.; Kovacevic, M.; Moradi, R.; Oliveira, F.; Pisani, G.; et al. On the classification of GRBs and their occurrence rates. Astrophys. J. 2016, 832, 136. [Google Scholar] [CrossRef]
 Goldstein, A.; Connaughton, V.; Briggs, M.S.; Burns, E. Estimating long grb jet opening angles and restframe energetics. Astrophys. J. 2016, 818, 18. [Google Scholar] [CrossRef]
 Ratner, M.I.; Walker, J.C. Atmospheric ozone and the history of life. J. Atmos. Sci. 1972, 29, 803–808. [Google Scholar] [CrossRef]
 Craig, R.A. The Upper Atmosphere: Meteorology and Physics; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
 Brasser, R.; Morbidelli, A. Oort cloud and Scattered Disc formation during a late dynamical instability in the Solar System. Icarus 2013, 225, 40–49. [Google Scholar] [CrossRef] [Green Version]
 Vilenkin, A. Predictions from Quantum Cosmology. Phys. Rev. Lett. 1995, 74, 846–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Bostrom, N. Anthropic bias: Observation Selection Effects in Science and Philosophy; Routledge: New York, NY, USA, 2013. [Google Scholar]
 Olum, K.D. Conflict between anthropic reasoning and observation. Analysis 2004, 64, 1–8. [Google Scholar] [CrossRef]
1.  
2.  This hierarchy does not actually hold for all parameters, but the full implications of this will be explored in future work. 
3.  The inner edge will exceed the outer for stars above the mass
$${\lambda}_{\mathrm{none}}=5.7\times {10}^{12}\frac{{\alpha}^{5/2}\phantom{\rule{0.166667em}{0ex}}{\beta}^{15/8}}{{\kappa}^{3/2}}$$

4.  This is the reason comets can be deadlier than asteroids, even though they are less dense: since they can come from any direction rather than being roughly coorbital with the Earth, the average speed will be $\sqrt{3}{v}_{\oplus}=52\phantom{\rule{4.pt}{0ex}}\mathrm{km}/\mathrm{s}$, rather than $(\sqrt{3}2\sqrt{2}){v}_{\oplus}=12.4\phantom{\rule{4.pt}{0ex}}\mathrm{km}/\mathrm{s}$, a factor of 17.5 more energy. Therefore, comets can be smaller and still impart more energy than asteroids, and so their rate of deadly impacts will be more numerous (which depends on their relative population sizes as well, of course). 
5.  The code to compute all probabilities discussed in the text is made available at https://github.com/mccsandora/MultiverseHabitabilityHandler. 
6.  This Gaussian approximation can be improved upon by treating the sum as an integral and using the saddle point approximation: this yields ${f}_{\mathrm{rad}}=2.7e^\left(1+\ell (1x){e}^{l(1x)}\right)$, with $x=1/\sqrt{144\alpha}$ and $\ell =52.72+log\left(\widehat{{t}_{\mathrm{rec}}/{t}_{\mathrm{decay}}}\right)$, where the hatted quantity inside the log evaluates to 1 for our values. Using this more accurate expression does not affect our results at all. 
Setback Model  

${\mathit{t}}_{\mathbf{rec}}$  Molecular  Year  
$\mathbb{P}\left({\alpha}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\beta}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\gamma}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\alpha}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\beta}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\gamma}_{\mathbf{obs}}\right)$  
comets  0.125  0.0809  0.287  0.169  0.217  0.117 
grbs  0.323  0.233  0.042  0.241  0.277  0.019 
volcanoes  0.193  0.426  0.303  0.192  0.425  0.293 
glaciations  0.193  0.423  0.304  0.193  0.426  0.305 
comets+grbs  0.208  0.0761  0.0757  0.207  0.242  0.0284 
comets+glaciations  0.123  0.116  0.267  0.169  0.25  0.154 
comets+volcanoes  0.124  0.115  0.265  0.169  0.25  0.148 
grbs+glaciations  0.299  0.253  0.0527  0.233  0.289  0.0309 
grbs+volcanoes  0.299  0.253  0.052  0.232  0.289  0.0301 
glaciations+volcanoes  0.193  0.423  0.303  0.193  0.426  0.299 
comets+grbs+glac  0.198  0.1  0.0905  0.207  0.255  0.037 
comets+grbs+vol  0.198  0.0998  0.0895  0.206  0.256  0.036 
comets+glac+vol  0.125  0.146  0.262  0.169  0.274  0.171 
grbs+glac+vol  0.283  0.262  0.0697  0.228  0.297  0.0387 
all  0.193  0.123  0.0995  0.205  0.266  0.043 
Reset Model  

${\mathit{t}}_{\mathbf{noo}}$  Molecular  Year  
$\mathbb{P}\left({\alpha}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\beta}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\gamma}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\alpha}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\beta}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\gamma}_{\mathbf{obs}}\right)$  
comets  0.105  0.0717  0.251  0.168  0.26  0.136 
grbs  0.294  0.243  0.0332  0.226  0.293  0.0194 
volcanoes  0.19  0.436  0.317  0.188  0.432  0.31 
glaciations  0.192  0.43  0.312  0.19  0.43  0.31 
comets+grbs  0.179  0.0804  0.0617  0.202  0.273  0.0351 
comets+glaciations  0.114  0.132  0.248  0.167  0.288  0.174 
comets+volcanoes  0.114  0.131  0.247  0.168  0.289  0.168 
grbs+glaciations  0.265  0.262  0.0506  0.22  0.308  0.038 
grbs+volcanoes  0.265  0.262  0.0497  0.22  0.309  0.0368 
glaciations+volcanoes  0.191  0.431  0.313  0.189  0.431  0.31 
comets+grbs+glac  0.175  0.119  0.07  0.201  0.288  0.0428 
comets+grbs+vol  0.175  0.119  0.0692  0.201  0.288  0.042 
comets+glac+vol  0.12  0.189  0.257  0.167  0.303  0.19 
grbs+glac+vol  0.25  0.271  0.0616  0.217  0.317  0.0467 
all  0.173  0.145  0.0874  0.2  0.297  0.0504 
Intermediate Disturbance Hypothesis Model  

${\mathit{t}}_{\mathbf{dist}}$  Molecular  Year  
$\mathbb{P}\left({\alpha}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\beta}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\gamma}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\alpha}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\beta}_{\mathbf{obs}}\right)$  $\mathbb{P}\left({\gamma}_{\mathbf{obs}}\right)$  
comets  0.106  0.119  0.251  0.151  0.462  0.4 
grbs  0.2  0.329  0.0984  0.129  0.384  0.0963 
volcanoes  0.128  0.356  0.368  0.156  0.404  0.262 
glaciations  0.131  0.323  0.337  0.148  0.466  0.455 
comets+grbs  0.165  0.135  0.0818  0.18  0.453  0.124 
comets+glaciations  0.113  0.205  0.256  0.144  0.498  0.454 
comets+volcanoes  0.113  0.202  0.261  0.147  0.496  0.489 
grbs+glaciations  0.185  0.353  0.113  0.142  0.414  0.146 
grbs+volcanoes  0.185  0.351  0.113  0.141  0.423  0.162 
glaciations+volcanoes  0.129  0.345  0.359  0.153  0.435  0.4 
comets+grbs+glac  0.16  0.18  0.132  0.175  0.46  0.158 
comets+grbs+vol  0.16  0.179  0.131  0.179  0.472  0.166 
comets+glac+vol  0.123  0.281  0.274  0.147  0.438  0.489 
grbs+glac+vol  0.167  0.349  0.178  0.138  0.443  0.186 
all  0.159  0.227  0.154  0.172  0.482  0.187 
Setback  Reset  IDH  

${\mathit{t}}_{\mathbf{rec}}$  mol  Year  mol  Year  mol  Year 
comets  140  71  132  55  70  12 
grbs  424  1061  422  813  96  95 
volcanoes  10  10  10  10  10  10 
glaciations  10  10  10  10  10  10 
comets+grbs  160  640  201  473  102  68 
comets+glaciations  74  40  69  32  39  10 
comets+volcanoes  75  45  70  36  40  13 
grbs+glaciations  216  537  215  412  46  58 
grbs+volcanoes  218  540  217  415  50  52 
glaciations+volcanoes  10  10  10  10  10  10 
comets+grbs+glac  114  430  138  319  69  52 
comets+grbs+vol  117  433  139  321  69  47 
comets+glac+vol  53  33  49  27  29  10 
grbs+glac+vol  148  364  148  280  33  41 
all  91  328  107  243  53  41 
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandora, M. Multiverse Predictions for Habitability: Fraction of Life That Develops Intelligence. Universe 2019, 5, 175. https://doi.org/10.3390/universe5070175
Sandora M. Multiverse Predictions for Habitability: Fraction of Life That Develops Intelligence. Universe. 2019; 5(7):175. https://doi.org/10.3390/universe5070175
Chicago/Turabian StyleSandora, McCullen. 2019. "Multiverse Predictions for Habitability: Fraction of Life That Develops Intelligence" Universe 5, no. 7: 175. https://doi.org/10.3390/universe5070175