μPPET: Investigating the Muon Puzzle with J-PET Detectors
Abstract
:1. Introduction: The Muon Puzzle
1.1. The Muon Puzzle
- 1.
- The measured values appear consistent with the model predictions [7], suggesting that the unknown phenomenon responsible for the muon excess likely does not occur during the early stages of shower development (i.e., it does not involve high-energy muons, GeV), or its effect at these stages is negligible.
- 2.
- The impact of the unknown mechanism becomes evident at the ground level, implying that it may occur during the later stages of shower development (it involves lower-energy muons, GeV), or it could be a small effect per interaction that accumulates over multiple interactions, ultimately becoming significant by the time the particles reach the ground.
- 3.
- For primary energies below 100 PeV, the observed muon counts and the values show reasonable agreement. This could indicate that the unknown effect either does not accumulate sufficiently at these energies, is partially compensated for by other mechanisms, or does not occur at all.
1.2. PPET and the Tested Hypothesis for Solving the Muon Puzzle
- In deeper showers (i.e., those initiated by high-energy primaries), the shower maximum occurs closer to the ground. If the muon production is shifted to higher altitudes, due to the pions decaying further from the ground, the predicted muon content at the ground could change, without affecting , dominated by the electromagnetic component. This might justify points 1 and 2 in Section 1.1.
- In shallow showers (i.e., those initiated by low-energy primaries), the shower maximum occurs higher in the atmosphere. In this case, even if polarized pions decay into muons further from the ground, all relevant processes are largely completed by the time the muons reach the surface, rendering the effect negligible. This may account for point 3 in Section 1.1.
2. J-PET Detectors
2.1. The “Big Barrel” J-PET Detector
2.2. The “Modular” J-PET Detector
3. Expected Trajectory Resolution
4. The Array Design for Shower Reconstruction
4.1. Array Configuration
4.2. Cages
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | An interaction length is the average distance a particle travels in a medium before undergoing a strong interaction. Similarly to the radiation length, it is expressed as a slant depth X [g ], and it is a characteristic of a material. |
References
- Matthews, J. A Heitler model of extensive air showers. Astropart. Phys. 2005, 22, 387–397. [Google Scholar] [CrossRef]
- Heck, D.; Knapp, J.; Capdevielle, J.N.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo code to simulate extensive air showers. Rep. Fzka 1998, 6019, 11. Available online: https://www.iap.kit.edu/corsika/70.php (accessed on 23 May 2025).
- Dedenko, L.G.; Lukyashin, A.V.; Roganova, T.M.; Fedorova, G.F. Testing of the EPOS LHC, QGSJET01, QGSJETII-03 and QGSJETII-04 hadronic interaction models via help of the atmospheric vertical muon spectra. J. Phys. Conf. Ser. 2017, 934, 012017. [Google Scholar] [CrossRef]
- Pierog, T. Air Shower Simulation with a New Generation of post-LHC Hadronic Interaction Models in CORSIKA. PoS 2018, ICRC2017, 1100. [Google Scholar] [CrossRef]
- Riehn, F.; Engel, R.; Fedynitch, A.; Gaisser, T.K.; Stanev, T. Hadronic interaction model Sibyll 2.3d and extensive air showers. Phys. Rev. D 2020, 102, 063002. [Google Scholar] [CrossRef]
- Abdul Halim, A.; Abreu, P.; Aglietta, M.; Allekotte, I.; Almeida Cheminant, K.; Almela, A.; Aloisio, R.; Alvarez-Muñiz, J.; Ammerman Yebra, J.; Anastasi, G.A.; et al. Measurement of the depth of maximum of air-shower profiles with energies between 1018.5 and 1020 eV using the surface detector of the Pierre Auger Observatory and deep learning. Phys. Rev. D 2025, 111, 022003. [Google Scholar] [CrossRef]
- Albrecht, J.; Cazon, L.; Dembinski, H.; Fedynitch, A.; Kampert, K.; Pierog, T.; Rhode, W.; Soldin, D.; Spaan, B.; Ulrich, R.; et al. The Muon Puzzle in cosmic-ray induced air showers and its connection to the Large Hadron Collider. Astrophys. Space Sci. 2022, 367, 27. [Google Scholar] [CrossRef]
- Baur, S.; Dembinski, H.; Perlin, M.; Pierog, T.; Ulrich, R.; Werner, K. Core-corona effect in hadron collisions and muon production in air showers. Phys. Rev. D 2023, 107, 094031. [Google Scholar] [CrossRef]
- Acharya, S.; Agarwal, A.; Rinella, G.A.; Aglietta, L.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; Ahuja, I.; et al. Multimuons in cosmic-ray events as seen in ALICE at the LHC. JCAP 2025, 04, 009. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Canal, C.G.; Kling, F.; Sciutto, S.J.; Soriano, J.F. An explanation of the muon puzzle of ultrahigh-energy cosmic rays and the role of the Forward Physics Facility for model improvement. JHEAp 2022, 34, 19–32. [Google Scholar] [CrossRef]
- Sivers, D.W. Single Spin Production Asymmetries from the Hard Scattering of Point-Like Constituents. Phys. Rev. D 1990, 41, 83. [Google Scholar] [CrossRef]
- Collins, J.C. Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B 1993, 396, 161–182. [Google Scholar] [CrossRef]
- Musch, B.U.; Hagler, P.; Engelhardt, M.; Negele, J.W.; Schafer, A. Sivers and Boer-Mulders observables from lattice QCD. Phys. Rev. D 2012, 85, 094510. [Google Scholar] [CrossRef]
- Airapetian, A.; Akopov, N.; Akopov, Z.; Aschenauer, E.C.; Augustyniak, W.; Avetissian, E.; Avetisyan, A.; Bacchetta, A.; Ball, B.; Bianchi, N.; et al. Observation of the Naive-T-odd Sivers Effect in Deep-Inelastic Scattering. Phys. Rev. Lett. 2009, 103, 152002. [Google Scholar] [CrossRef] [PubMed]
- Parsamyan, B. SIDIS transverse spin azimuthal asymmetries at COMPASS: Multidimensional analysis. PoS 2015, QCDEV2015, 007. [Google Scholar] [CrossRef]
- Moskal, P.; Kowalski, P.; Shopa, R.Y.; Raczyński, L.; Baran, J.; Chug, N.; Curceanu, C.; Czerwiński, E.; Dadgar, M.; Dulski, K.; et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl. Instrum. Meth. A 2014, 764, 317–321. [Google Scholar] [CrossRef]
- Moskal, P.; Kowalski, P.; Shopa, R.Y.; Raczyński, L.; Baran, J.; Chug, N.; Curceanu, C.; Czerwiński, E.; Dadgar, M.; Dulski, K.; et al. Simulating NEMA characteristics of the modular total-body J-PET scanner—An economic total-body PET from plastic scintillators. Phys. Med. Biol. 2021, 66, 175015. [Google Scholar] [CrossRef]
- Moskal, P.; Stepien, E.; Khreptak, A. A vision to increase the availability of PET diagnostics in low- and medium-income countries by combining a low-cost modular J-PET tomograph with the 44Ti/44Sc generator. Bio-Algorithms Med-Syst. 2024, 20, 55–62. [Google Scholar] [CrossRef]
- Moskal, P.; Czerwiński, E.; Raj, J.; Bass, S.D.; Beyene, E.Y.; Chug, N.; Coussat, A.; Curceanu, C.; Dadgar, M.; Das, M.; et al. Discrete symmetries tested at 10-4 precision using linear polarization of photons from positronium annihilations. Nat. Commun. 2024, 15, 78. [Google Scholar] [CrossRef]
- Moskal, P.; Gajos, A.; Mohammed, M.; Chhokar, J.; Chug, N.; Curceanu, C.; Czerwiński, E.; Dadgar, M.; Dulski, K.; Gorgol, M.; et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat. Commun. 2021, 12, 5658. [Google Scholar] [CrossRef]
- Moskal, P.; Kumar, D.; Sharma, S.; Beyene, E.Y.; Chug, N.; Coussat, A.; Curceanu, C.; Czerwiński, E.; Das, M.; Dulski, K.; et al. Non-maximal entanglement of photons from positron-electron annihilation demonstrated using a novel plastic PET scanner. Sci. Adv. 2025, 11, eads3046. [Google Scholar] [CrossRef] [PubMed]
- Moskal, P.; Dulski, K.; Chug, N.; Curceanu, C.; Czerwiński, E.; Dadgar, M.; Gajewski, J.; Gajos, A.; Grudzień, G.; Hiesmayr, B.C.; et al. Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 2021, 7, eabh4394. [Google Scholar] [CrossRef]
- Moskal, P.; Baran, J.; Bass, S.; Choiński, J.; Chug, N.; Curceanu, C.; Czerwiński, E.; Dadgar, M.; Das, M.; Dulski, K.; et al. Positronium image of the human brain in vivo. Sci. Adv. 2024, 10, eadp2840. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Bayerlein, R.; Sharma, S.; Parzych, S.; Niedzwiecki, S.; Badawi, R.D.; Beyene, E.Y.; Chug, N.; Curceanu, C.; Czerwiński, E.; et al. Development of correction techniques for the J-PET scanner. Bio-Algorithms Med-Syst. 2024, 20, 101–110. [Google Scholar] [CrossRef]
- Niedźwiecki, S.; Białas, P.; Curceanu, C.; Czerwinski, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B.C.; Jasinsk, B.; et al. J-PET: A new technology for the whole-body PET imaging. Acta Phys. Polon. B 2017, 48, 1567–1577. [Google Scholar] [CrossRef]
- Tayefi Ardebili, F.; Niedźwiecki, S.; Moskal, P. Evaluation of Modular J-PET sensitivity. Bio-Algorithms Med-Syst. 2023, 19, 132–138. [Google Scholar] [CrossRef]
- Tayefi Ardebili, F.; Moskal, P. Assessing the Spatial Resolution of the Modular J-PET Scanner using the Maximum-Likelihood Expectation-Maximization (MLEM) algorithm. Bio-Algorithms Med-Syst. 2024, 20, 1–9. [Google Scholar] [CrossRef]
- Korcyl, G.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Flak, B. Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA-SoC Devices. IEEE Trans. Med. Imaging 2018, 37, 2526–2535. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instrum. Meth. A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; et al. Measurement of the Charge Ratio of Atmospheric Muons with the CMS Detector. Phys. Lett. B 2010, 692, 83–104. [Google Scholar] [CrossRef]
- Anastasi, G.A. AugerPrime: The Pierre Auger Observatory upgrade. Nucl. Instrum. Meth. A 2022, 1044, 167497. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The window to the extreme Universe. J. Phys. G 2021, 48, 060501. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porcelli, A.; Eliyan, K.V.; Moskal, G.; Protiti, N.N.; Sirghi, D.L.; Beyene, E.Y.; Chug, N.; Curceanu, C.; Czerwiński, E.; Das, M.; et al. μPPET: Investigating the Muon Puzzle with J-PET Detectors. Universe 2025, 11, 180. https://doi.org/10.3390/universe11060180
Porcelli A, Eliyan KV, Moskal G, Protiti NN, Sirghi DL, Beyene EY, Chug N, Curceanu C, Czerwiński E, Das M, et al. μPPET: Investigating the Muon Puzzle with J-PET Detectors. Universe. 2025; 11(6):180. https://doi.org/10.3390/universe11060180
Chicago/Turabian StylePorcelli, Alessio, Kavya Valsan Eliyan, Gabriel Moskal, Nousaba Nasrin Protiti, Diana Laura Sirghi, Ermias Yitayew Beyene, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Manish Das, and et al. 2025. "μPPET: Investigating the Muon Puzzle with J-PET Detectors" Universe 11, no. 6: 180. https://doi.org/10.3390/universe11060180
APA StylePorcelli, A., Eliyan, K. V., Moskal, G., Protiti, N. N., Sirghi, D. L., Beyene, E. Y., Chug, N., Curceanu, C., Czerwiński, E., Das, M., Gorgol, M., Hajduga, J., Jalali, S., Jasińska, B., Kacprzak, K., Kaplanoglu, T., Kapłon, Ł., Kasperska, K., Khreptak, A., ... Moskal, P. (2025). μPPET: Investigating the Muon Puzzle with J-PET Detectors. Universe, 11(6), 180. https://doi.org/10.3390/universe11060180