# Chronology Protection in f(T) Gravity: The Case of Gott’s Pair of Moving Cosmic Strings

## Abstract

**:**

## 1. Introduction

## 2. Infinitely Long Cosmic Strings in GR and Gott’s Construction

## 3. Gott’s Construction According to f(T) Gravity

#### 3.1. Infinitely Long Cosmic Strings and the Tetrad Field

#### 3.2. Gott’s Construction and Remnant Symmetries

## 4. Final Comments

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Note

1 |

## References

- Richard Gott, J., III. Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. Phys. Rev. Lett.
**1991**, 66, 1126. [Google Scholar] [CrossRef] [PubMed] - Hawking, S.W. Chronology protection conjecture. Phys. Rev. D
**1992**, 46, 603. [Google Scholar] [CrossRef] [PubMed] - Earman, J.; Smeenk, C.; Wüthrich, C. Do the laws of physics forbid the operation of time machines? Synthese
**2009**, 169, 91. [Google Scholar] [CrossRef] - Krasnikov, S. Back-in-Time and Faster-than-Light Travel in General Relativity; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Xiao, H.; Dai, L.; McQuinn, M. Detecting cosmic strings with lensed fast radio bursts. Phys. Rev. D
**2022**, 106, 103033. [Google Scholar] [CrossRef] - Li, L.-X. Must time machine be unstable against vacuum fluctuations? Class. Quantum Grav.
**1996**, 13, 2563. [Google Scholar] [CrossRef] - Li, L.-X.; Richard Gott, J., III. A self-consistent vacuum for Misner space and the chronology protection conjecture. Phys. Rev. Lett.
**1998**, 80, 2980. [Google Scholar] [CrossRef] - Grant, J.D.E. Cosmic strings and chronology protection. Phys. Rev. D
**1993**, 47, 2338. [Google Scholar] [CrossRef] - Deser, S.; Jackiw, R.; ’t Hooft, G. Physical cosmic strings do not generate closed timelike curves. Phys. Rev. Lett.
**1992**, 68, 267. [Google Scholar] [CrossRef] - Carroll, S.M.; Farhi, E.; Guth, A.H.; Olum, K.D. Energy-momentum restrictions on the creation of Gott time machines. Phys. Rev. D
**1994**, 50, 6190. [Google Scholar] [CrossRef] - Krasnikov, S. A causality preserving evolution of a pair of strings. Universe
**2022**, 8, 640. [Google Scholar] [CrossRef] - Richard Gott, J., III. Gravitational lensing effects of vaccum strings: Exact solutions. Astrophys. J.
**1985**, 288, 422. [Google Scholar] [CrossRef] - Ori, A. Rapidly moving cosmic strings and chronology protection. Phys. Rev. D
**1991**, 44, R2214. [Google Scholar] [CrossRef] [PubMed] - Cutler, C. Global structure of Gott’s two-string spacetime. Phys. Rev. D
**1992**, 45, 487. [Google Scholar] [CrossRef] [PubMed] - Ferraro, R.; Fiorini, F. Modified teleparallel gravity: Inflation without inflaton. Phys. Rev. D
**2007**, 75, 084031. [Google Scholar] [CrossRef] - Bengochea, G.R.; Ferraro, R. Dark torsion as the cosmic speed up. Phys. Rev. D
**2009**, 79, 124019. [Google Scholar] [CrossRef] - Ferraro, R.; Fiorini, F. Remnant group of local Lorentz transformations in f(T) theories. Phys. Rev. D
**2015**, 91, 064019. [Google Scholar] [CrossRef] - Bejarano, C.; Ferraro, R.; Fiorini, F.; Guzmán, M.J. Reflections on the covariance of modified teleparallel theories of gravity. Universe
**2019**, 5, 158. [Google Scholar] [CrossRef] - Bahamonde, S.; Dialektopoulos, K.F.; Escamilla-Rivera, C.; Farrugia, G.; Gakis, V.; Hendry, M.; Hohmann, M.; Said, J.L.; Mifsud, J.; Valentino, E.D. Teleparallel gravity: From theory to cosmology. Rep. Prog. Phys.
**2023**, 86, 026901. [Google Scholar] [CrossRef] - Krššák, M.; Saridakis, E.N. The covariant formulation of f(T) gravity. Class. Quantum Grav.
**2016**, 33, 115009. [Google Scholar] [CrossRef] - Blixt, D.; Ferraro, R.; Golovnev, A.; Guzmán, M.J. Lorentz gauge-invariant variables in torsion-based theories of gravity. Phys. Rev. D
**2022**, 105, 084029. [Google Scholar] [CrossRef] - Fiorini, F.; Onetto, M. Matching tetrads in f(T) gravity. Phys. Rev. D
**2021**, 103, 084051. [Google Scholar] [CrossRef] - de la Cruz-Dombriz, A.; Dunsby, P.K.S.; Saez-Gomez, D. Junction conditions in extended Teleparallel gravities. J. Cosmol. Astropart. Phys.
**2014**, 1412, 048. [Google Scholar] [CrossRef] - Velay-Vitow, J.; DeBenedictis, A. Junction conditions for F(T) gravity from a variational principle. Phys. Rev. D
**2017**, 96, 024055. [Google Scholar] [CrossRef] - Fiorini, F.; Paliathanasis, A. Role of the remnant symmetries in gravitational theories based on absolute parallelism: A 2D standpoint. Class. Quantum Grav.
**2022**, 39, 095003. [Google Scholar] [CrossRef] - Fiorini, F.; Vattuone, N. An analysis of Born-Infeld determinantal gravity in Weitzenböck spacetime. Phys. Lett. B
**2016**, 763, 45. [Google Scholar] [CrossRef]

**Figure 1.**Embedding diagrams for the cross sectional geometry corresponding to the interior and exterior solutions. (

**a**) ${\theta}_{M}<\pi /2$, $0<\mu <1/4$. (

**b**) ${\theta}_{M}=\pi /2$, $\mu =1/4$. (

**c**) $\pi /2<{\theta}_{M}<\pi $, $1/4<\mu <1/2$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fiorini, F.
Chronology Protection in *f*(*T*) Gravity: The Case of Gott’s Pair of Moving Cosmic Strings. *Universe* **2024**, *10*, 52.
https://doi.org/10.3390/universe10010052

**AMA Style**

Fiorini F.
Chronology Protection in *f*(*T*) Gravity: The Case of Gott’s Pair of Moving Cosmic Strings. *Universe*. 2024; 10(1):52.
https://doi.org/10.3390/universe10010052

**Chicago/Turabian Style**

Fiorini, Franco.
2024. "Chronology Protection in *f*(*T*) Gravity: The Case of Gott’s Pair of Moving Cosmic Strings" *Universe* 10, no. 1: 52.
https://doi.org/10.3390/universe10010052