Salicylic Acid Modulates Volatile Organic Compound Profiles During CEVd Infection in Tomato Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Viroid Inoculation, and Exogenous Application of VOCs
2.2. Gas Chromatography–Mass Spectrometry (GC-MS)
2.3. Normalization of Ion (m/z) Profiles Across Genotypes
2.4. Data Analysis
3. Results
3.1. Impact of Salicylic Acid Accumulation on Symptom Development and Metabolic Responses in CEVd-Infected Tomato Plants
3.2. Salicylic Acid Accumulation Modulate Volatile Profile in CEVd-Infected Tomato Plants
3.3. Volatile Organic Compounds as Potential Markers of Tolerance and Susceptibility in CEVd-Infected Plants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CEVd | Citrus Exocortis Viroid |
SA | salicylic acid |
GC-MS | gas chromatography–mass spectrometry |
VOCs | volatile organic compounds |
References
- Kochhar, S.L.; Gujral, S.K. Abiotic and biotic stress. In Plant Physiology: Theory and Applications; Cambridge University Press: Cambridge, UK, 2020; pp. 545–589. [Google Scholar]
- Checker, V.G.; Kushwaha, H.R.; Kumari, P.; Yadav, S. Role of Phytohormones in Plant Defense: Signaling and Cross Talk. In Molecular Aspects of Plant-Pathogen Interaction; Singh, A., Singh, I., Eds.; Springer: Singapore, 2018. [Google Scholar]
- Brading, P.A.; Hammond-Kosack, K.E.; Parr, A.; Jones, J.D.G. Salicylic acid is not required for Cf-2- and Cf-9-dependent resistance of tomato to Cladosporium fulvum. Plant J. 2000, 23, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Spoel, S.H.; Dong, X. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 2012, 12, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, X. Salicylic acid: Biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 2019, 50, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Bellés, J.M.; Garro, R.; Pallás, V.; Fayos, J.; Rodrigo, I.; Conejero, V. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta 2006, 223, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Halitschke, R.; Yin, C.; Liu, C.J.; Gan, S.S. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc. Natl. Acad. Sci. USA 2013, 110, 14807–14812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, L.; Zhao, J.; Li, Y.; Wang, J.; Guo, R.; Gan, S.; Liu, C.J.; Zhang, K. S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiol. 2017, 175, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Payá, C.; Minguillón, S.; Hernández, M.; Miguel, S.M.; Campos, L.; Rodrigo, I.; Bellés, J.M.; López-Gresa, M.P.; Lisón, P. SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato. BMC Plant Biol. 2022, 22, 549. [Google Scholar] [CrossRef] [PubMed]
- Navarro, B.; Flores, R.; Di Serio, F. Advances in viroid–host interactions. Annu. Rev. Virol. 2021, 8, 305–325. [Google Scholar] [CrossRef]
- Flores, R.; Hernández, C.; Martínez de Alba, A.E.; Daròs, J.A.; Di Serio, F. Viroids and viroid-host interactions. Annu. Rev. Phytopathol. 2005, 43, 117–139. [Google Scholar] [CrossRef]
- Venkataraman, S.; Badar, U.; Shoeb, E.; Hashim, G.; AbouHaidar, M.; Hefferon, K. An inside look into biological miniatures: Molecular mechanisms of viroids. Int. J. Mol. Sci. 2021, 22, 2795. [Google Scholar] [CrossRef]
- Márquez-Molins, J.; Villalba-Bermell, P.; Corell-Sierra, J.; Pallás, V.; Gómez, G. Integrative time-scale and multi-omics analysis of host responses to viroid infection. Plant Cell Environ. 2023, 46, 2909–2927. [Google Scholar] [CrossRef] [PubMed]
- Vernière, C.; Perrier, X.; Dubois, C.; Dubois, A.; Botella, L.; Chabrier, C.; Bové, J.M.; Vila, N.D. Interactions between citrus viroids affect symptom expression and field performance of clementine trees grafted on trifoliate orange. Phytopathology 2006, 96, 356–368. [Google Scholar] [CrossRef]
- López-Gresa, M.P.; Lisón, P.; Yenush, L.; Conejero, V.; Rodrigo, I.; Bellés, J.M. Salicylic acid is involved in the basal resistance of tomato plants to citrus exocortis viroid and tomato spotted wilt virus. PLoS ONE 2016, 11, e0166938. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, Y.; He, L.; Huang, F.; Zhang, D.; Wang, Y.; Wei, X.; Han, M.; Deng, H.; Luo, L.; et al. Molecular basis of methyl-salicylate-mediated plant airborne defence. Nature 2023, 622, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Ninkovic, V.; Markovic, D.; Rensing, M. Plant volatiles as cues and signals in plant communication. Plant Cell Environ. 2021, 44, 1030–1043. [Google Scholar] [CrossRef] [PubMed]
- Pickett, J.A.; Khan, Z.R. Plant volatile-mediated signaling and its application in agriculture: Successes and challenges. New Phytol. 2016, 212, 856–870. [Google Scholar] [CrossRef]
- Riedlmeier, M.; Ghirardo, A.; Wenig, M.; Knappe, C.; Koch, K.; Georgii, E.; Dey, S.; Parker, J.E.; Schnitzler, J.P.; Vlot, A.C. Monoterpenes support systemic acquired resistance within and between plants. Plant Cell 2017, 29, 1440–1459. [Google Scholar] [CrossRef] [PubMed]
- Holopainen, J.K.; Gershenzon, J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 2010, 15, 176–184. [Google Scholar] [CrossRef]
- Rambla, J.L.; Tikunov, Y.-M.; Monforte, A.J.; Bovy, A.G.; Granell, A. The expanded tomato fruit volatile landscape. J. Exp. Bot. 2014, 65, 4613–4623. [Google Scholar] [CrossRef] [PubMed]
- Lanier, E.R.; Andersen, T.B.; Hamberger, B. Plant terpene specialized metabolism: Complex networks or simple linear pathways? Plant J. 2023, 114, 1178–1201. [Google Scholar] [CrossRef] [PubMed]
- Bergman, M.E.; Kortbeek, R.W.J.; Gutensohn, M.; Dudareva, N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res. 2024, 95, 101287. [Google Scholar] [CrossRef]
- Lynch, J.H.; Pichersky, E.; Dudareva, N. Floral Scent Metabolic Pathways and Their Regulation; CRC Press eBooks: Boca Raton, FL, USA, 2020; pp. 147–164. [Google Scholar]
- Brosset, A.; Blande, J.D. Volatile-mediated plant-plant interactions: Volatile organic compounds as modulators of receiver plant defence, growth, and reproduction. J. Exp. Bot. 2022, 73, 511–528. [Google Scholar] [CrossRef]
- López-Gresa, M.P.; Lisón, P.; Campos, L.; Rodrigo, I.; Rambla, J.L.; Granell, A.; Conejero, V.; Bellés, J.M. A non-targeted metabolomics approach unravels the VOCs associated with the tomato immune response against Pseudomonas syringae. Front. Plant Sci. 2017, 8, 1188. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka, J.; Szymczak, K.; Skwarek-Fadecka, M.; Małolepsza, U. Toward the analysis of volatile organic compounds from tomato plants (Solanum lycopersicum L.) treated with Trichoderma virens or/and Botrytis cinerea. Cells 2023, 12, 1271. [Google Scholar] [CrossRef] [PubMed]
- López-Gresa, M.P.; Payá, C.; Ozáez, M.; Rodrigo, I.; Conejero, V.; Klee, H.; Bellés, J.M.; Lisón, P. A new role for green leaf volatile esters in tomato stomatal defense against Pseudomonas syringe pv. tomato. Front. Plant Sci. 2018, 9, 1855. [Google Scholar] [CrossRef]
- Payá, C.; Belda-Palazón, B.; Vera-Sirera, F.; Pérez-Pérez, J.; Jordá, L.; Rodrigo, I.; Bellés, J.M.; López-Gresa, M.P.; Lisón, P. Signalling mechanisms and agricultural applications of (Z)-3-hexenyl butyrate-mediated stomatal closure. Hortic. Res. 2023, 11, uhad248. [Google Scholar] [CrossRef]
- Pérez-Pérez, J.; Minguillón, S.; Kabbas-Piñango, E.; Payá, C.; Campos, L.; Rodríguez-Concepción, M.; Espinosa-Ruiz, A.; Rodrigo, I.; Bellés, J.M.; López-Gresa, M.P.; et al. Metabolic crosstalk between hydroxylated monoterpenes and salicylic acid in tomato defense response against bacteria. Plant Physiol. 2024, 195, 2323–2338. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Rana, A.; Dhaka, R.K.; Singh, A.P.; Chahar, M.; Singh, S.; Nain, L.; Singh, K.P.; Minz, D. Bacterial volatile organic compounds as biopesticides, growth promoters, and plant-defense elicitors: Current understanding and future scope. Biotechnol. Adv. 2023, 63, 108078. [Google Scholar] [CrossRef]
- Vázquez Prol, F.; Márquez-Molins, J.; Rodrigo, I.; López-Gresa, M.P.; Bellés, J.M.; Gómez, G.; Pallás, V.; Lisón, P. Symptom severity, infection progression, and plant responses in Solanum plants caused by three pospiviroids vary with the inoculation procedure. Int. J. Mol. Sci. 2021, 22, 6189. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Aparicio, F.; Lisón, P.; Rodrigo, I.; Bellés, J.M.; López-Gresa, M.P. Signaling in the tomato immunity against Fusarium oxysporum. Molecules 2021, 26, 1818. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Nielsen, P.V.; Rios, R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int. J. Food Microbiol. 2000, 60, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef]
- Gaffney, T.; Friedrich, L.; Vernooij, B.; Negrotto, D.; Nye, G.; Uknes, S.; Ward, E.; Kessmann, H.; Ryals, J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 1993, 261, 754–756. [Google Scholar] [CrossRef]
- Montejano-Ramírez, V.; Ávila-Oviedo, J.L.; Campos-Mendoza, F.J.; Valencia-Cantero, E. Microbial Volatile Organic Compounds: Insights into Plant Defense. Plants 2024, 13, 2013. [Google Scholar] [CrossRef] [PubMed]
- Brilli, F.; Loreto, F.; Baccelli, I. Exploiting Plant Volatile Organic Compounds (VOCs) in Agriculture to Improve Sustainable Defense Strategies and Productivity of Crops. Front Plant Sci. 2019, 10, 264. [Google Scholar] [CrossRef]
- Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef]
- Yang, J.; Duan, G.; Li, C.; Liu, L.; Han, G.; Zhang, Y.; Wang, C. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci. 2019, 10, 1349. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Jones, M. Hormone-mediated crosstalk and VOC modulation in stress response: Effects of JA and ET on secondary metabolites. J. Exp. Bot. 2023, 74, 1221–1235. [Google Scholar]
- Wang, Z.; Ding, Z.; Yang, L. The role of phytohormones in the regulation of plant VOCs and defense mechanisms under biotic stress. Plant Cell 2022, 34, 2829–2843. [Google Scholar]
- Van Gelder, K.; Forrester, T.; Akhtar, T.A. Evidence from stable-isotope labeling that catechol is an intermediate in salicylic acid catabolism in the flowers of Silene latifolia (white campion). Planta 2020, 252, 3. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.A.; Weng, S.H.; Chen, M.C.; Lin, J.S.; Tsai, W.S. Priming of plant resistance to heat stress and Tomato yellow leaf curl Thailand virus with plant-derived materials. Front. Plant Sci. 2019, 10, 906. [Google Scholar] [CrossRef]
- Sun, W.J.; Lv, W.J.; Li, L.N.; Yin, G.; Hang, X.; Xue, Y.; Chen, J.; Shi, Z. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. New Biotechnol. 2016, 33, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.J.; Leon-Reyes, A.; Van der Ent, S.; Van Wees, S.C.M. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2012, 8, 452–459. [Google Scholar] [CrossRef]
- Thaler, J.S.; Humphrey, P.T.; Whiteman, N.K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012, 17, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, G.; Yörük, E.; Teker, T.; Sefer, Ö. Investigation of antifungal activities of myrcene on Fusarium reference strains. Arch. Microbiol. 2023, 205, 82. [Google Scholar] [CrossRef] [PubMed]
- Hsiung, Y.C.; Chen, Y.A.; Chen, S.Y.; Chi, W.C.; Lee, R.H.; Chiang, T.Y.; Huang, H.J. Volatilized myrcene inhibits growth and activates defense responses in rice roots. Acta Physiol. Plant. 2013, 35, 2475–2482. [Google Scholar] [CrossRef]
- Yang, F.; Huang, T.; Tong, H.; Shi, X.; Zhang, R.; Gu, W.; Li, Y.; Han, P.; Zhang, X.; Yang, Y.; et al. Herbivore-induced volatiles reduce the susceptibility of neighboring tomato plants to transmission of a whitefly-borne begomovirus. J. Exp. Bot. 2024, 75, 6663–6675. [Google Scholar] [CrossRef]
Compound | Family Code/Number | Retention Time (min) | Specific Ion (m/z) | Log 2 (CEVd/Mock) |
---|---|---|---|---|
Malonamic acid * | Acid/1 | 7.98 | 43 | −1.72 |
(Z)-2-Caren-4-ol a* | Alc/1 | 24.58 | 107 | −2.56 |
p-Cymene | Mt hd/1 | 24.75 | 119 | 1.69 |
(E,E)-Cosmene * | Mt hd/2 | 24.79 | 98 | −1.48 |
(E)-2-Octenal | Ald/3 | 25.62 | 83 | 1.25 |
Guaiacol b | Alc/4 | 26.82 | 59 | 1.06 |
Linalool a | Alc/5 | 26.99 | 93 | −3.83 |
Methyl salicylate b | Est/1 | 30.57 | 65 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balanzá, M.; Vázquez-Prol, F.; Rodrigo, I.; Bellés, J.M.; Vera-Sirera, F.; López-Gresa, M.P.; Lisón, P. Salicylic Acid Modulates Volatile Organic Compound Profiles During CEVd Infection in Tomato Plants. Metabolites 2025, 15, 102. https://doi.org/10.3390/metabo15020102
Balanzá M, Vázquez-Prol F, Rodrigo I, Bellés JM, Vera-Sirera F, López-Gresa MP, Lisón P. Salicylic Acid Modulates Volatile Organic Compound Profiles During CEVd Infection in Tomato Plants. Metabolites. 2025; 15(2):102. https://doi.org/10.3390/metabo15020102
Chicago/Turabian StyleBalanzá, Marc, Francisco Vázquez-Prol, Ismael Rodrigo, José María Bellés, Francisco Vera-Sirera, Maria Pilar López-Gresa, and Purificación Lisón. 2025. "Salicylic Acid Modulates Volatile Organic Compound Profiles During CEVd Infection in Tomato Plants" Metabolites 15, no. 2: 102. https://doi.org/10.3390/metabo15020102
APA StyleBalanzá, M., Vázquez-Prol, F., Rodrigo, I., Bellés, J. M., Vera-Sirera, F., López-Gresa, M. P., & Lisón, P. (2025). Salicylic Acid Modulates Volatile Organic Compound Profiles During CEVd Infection in Tomato Plants. Metabolites, 15(2), 102. https://doi.org/10.3390/metabo15020102