Metabolic Objectives and Trade-Offs: Inference and Applications
Abstract
:1. Introduction
2. Metabolic Goals of Mammalian Cell Types
2.1. Cellular Objectives, Trade-Offs, and Archetypes
2.2. Brief Overview of Metabolic Modeling and Flux Balance Analysis (FBA)
2.3. Refining Biomass Objective Functions
2.4. Multi-Objective Frameworks for Predicting Metabolic Behaviors
2.5. The Inference of Metabolic Objective Functions Based on Experimental Fluxes
2.6. The Inference of Metabolic Objectives from Genomics Data
2.7. Beyond Metabolism: Discovery of Cellular Objectives with Gene Expression Profiles
Method | Input | Output | Summary | Study | Ref. |
---|---|---|---|---|---|
ParTI | Transcriptome | Archetypes | The computational framework relies on principal convex hull algorithms to discover archetypes from transcriptomics data. | Both microorganisms and cancer cells | [116] |
ParTI+spatial gradient model | Transcriptome | Archetypes | A spatial gradient of performance was formulated based on ParTI. | Multicellular/tissue | [119] |
ParTI+Markov chain models | Single-cell transcriptome and RNA velocity | Archetypes | Probabilistic transitions between parts based on ParTI to retrieve sequential dependencies between parts. | Cancer | [117] |
ParTI+longitudinal analysis | Longitudinal single-cell transcriptome | Archetypes | The method was adapted from the ParTI framework to identify archetypes of ovarian cancer and how they evolved after treatments and therapies. | Ovarian cancer | [121] |
Clustering with knowledge-based features | Transcriptome | Archetypes | Uses domain knowledge and clustering algorithms to identify archetypes. | Pan-cancer study | [122] |
N-NMF | Transcriptome | Archetypes | Decomposes a non-negative matrix into two lower-rank matrices representing parts and features. | Cancer and drug discovery | [123] |
SEACells | scATAC-seq and scRNA-seq | Metacells/archetypes | SEACells leverages archetypal analysis and an adaptive Gaussian kernel to identify archetypes based on similarity matrix of estimated single-cell data. | Hematopoietic differentiation and COVID-19 samples | [114] |
scAANet | Single-cell transcriptome | Archetypes | Utilizes an autoencoder with a count distribution-based loss to extract gene expression profiles (GEPs) of archetypes and infer their relative activity across cells. | Samples of pancreatic islet, lung IPF, and prefrontal cortex | [115] |
2.8. Integration of Pareto Framework, Multiomics and GEMs to Define Metabolic Objectives
2.9. Current Challenges of Inferring Metabolic Objectives Based on Omics Data
2.10. Validation of Inferred Metabolic Objectives
2.11. Bioengineering Applications of Cellular Objectives
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bich, L.; Pradeu, T.; Moreau, J.-F. Understanding Multicellularity: The Functional Organization of the Intercellular Space. Front. Physiol. 2019, 10, 1170. [Google Scholar] [CrossRef]
- Wooten, D.J.; Quaranta, V. Mathematical Models of Cell Phenotype Regulation and Reprogramming: Make Cancer Cells Sensitive Again! Biochim. Biophys. Acta Rev. Cancer 2017, 1867, 167–175. [Google Scholar] [CrossRef]
- Rueffler, C.; Hermisson, J.; Wagner, G.P. Evolution of Functional Specialization and Division of Labor. Proc. Natl. Acad. Sci. USA 2012, 109, E326–E335. [Google Scholar] [CrossRef]
- Bordbar, A.; Monk, J.M.; King, Z.A.; Palsson, B.O. Constraint-Based Models Predict Metabolic and Associated Cellular Functions. Nat. Rev. Genet. 2014, 15, 107–120. [Google Scholar] [CrossRef]
- Karr, J.R.; Sanghvi, J.C.; Macklin, D.N.; Gutschow, M.V.; Jacobs, J.M.; Bolival, B., Jr.; Assad-Garcia, N.; Glass, J.I.; Covert, M.W. A Whole-Cell Computational Model Predicts Phenotype from Genotype. Cell 2012, 150, 389–401. [Google Scholar] [CrossRef]
- Schuetz, R.; Kuepfer, L.; Sauer, U. Systematic Evaluation of Objective Functions for Predicting Intracellular Fluxes in Escherichia Coli. Mol. Syst. Biol. 2007, 3, 119. [Google Scholar] [CrossRef]
- Price, N.D.; Reed, J.L.; Palsson, B.Ø. Genome-Scale Models of Microbial Cells: Evaluating the Consequences of Constraints. Nat. Rev. Microbiol. 2004, 2, 886–897. [Google Scholar] [CrossRef]
- Moscardó García, M.; Pacheco, M.; Bintener, T.; Presta, L.; Sauter, T. Importance of the Biomass Formulation for Cancer Metabolic Modeling and Drug Prediction. iScience 2021, 24, 103110. [Google Scholar] [CrossRef]
- Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The Causes and Consequences of Genetic Heterogeneity in Cancer Evolution. Nature 2013, 501, 338–345. [Google Scholar] [CrossRef]
- Acar, M.; Mettetal, J.T.; van Oudenaarden, A. Stochastic Switching as a Survival Strategy in Fluctuating Environments. Nat. Genet. 2008, 40, 471–475. [Google Scholar] [CrossRef]
- Charlebois, D.A.; Abdennur, N.; Kaern, M. Gene Expression Noise Facilitates Adaptation and Drug Resistance Independently of Mutation. Phys. Rev. Lett. 2011, 107, 218101. [Google Scholar] [CrossRef] [PubMed]
- Levine, H.; Jolly, M.K.; Kulkarni, P.; Nanjundiah, V. Phenotypic Switching: Implications in Biology and Medicine; Academic Press: Cambridge, MA, USA, 2020; ISBN 9780128179970. [Google Scholar]
- Chang, H.H.; Hemberg, M.; Barahona, M.; Ingber, D.E.; Huang, S. Transcriptome-Wide Noise Controls Lineage Choice in Mammalian Progenitor Cells. Nature 2008, 453, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.D.; Thiele, I.; Palsson, B.Ø. What Is Flux Balance Analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.B.; Sulheim, S.; Almaas, E.; Segrè, D. Addressing Uncertainty in Genome-Scale Metabolic Model Reconstruction and Analysis. Genome Biol. 2021, 22, 64. [Google Scholar] [CrossRef] [PubMed]
- Tenaillon, O.; Barrick, J.E.; Ribeck, N.; Deatherage, D.E.; Blanchard, J.L.; Dasgupta, A.; Wu, G.C.; Wielgoss, S.; Cruveiller, S.; Médigue, C.; et al. Tempo and Mode of Genome Evolution in a 50,000-Generation Experiment. Nature 2016, 536, 165–170. [Google Scholar] [CrossRef]
- Urbán, N.; Blomfield, I.M.; Guillemot, F. Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron 2019, 104, 834–848. [Google Scholar] [CrossRef]
- Hamilton, W.D. The Genetical Evolution of Social Behaviour. II. J. Theor. Biol. 1964, 7, 17–52. [Google Scholar] [CrossRef]
- Howe, J.; Rink, J.C.; Wang, B.; Griffin, A.S. Multicellularity in Animals: The Potential for within-Organism Conflict. Proc. Natl. Acad. Sci. USA 2022, 119, e2120457119. [Google Scholar] [CrossRef]
- de Morree, A.; Rando, T.A. Regulation of Adult Stem Cell Quiescence and Its Functions in the Maintenance of Tissue Integrity. Nat. Rev. Mol. Cell Biol. 2023, 24, 334–354. [Google Scholar] [CrossRef]
- van Velthoven, C.T.J.; Rando, T.A. Stem Cell Quiescence: Dynamism, Restraint, and Cellular Idling. Cell Stem Cell 2019, 24, 213–225. [Google Scholar] [CrossRef]
- Rolfe, D.F.; Brown, G.C. Cellular Energy Utilization and Molecular Origin of Standard Metabolic Rate in Mammals. Physiol. Rev. 1997, 77, 731–758. [Google Scholar] [CrossRef]
- Sartori, R.; Romanello, V.; Sandri, M. Mechanisms of Muscle Atrophy and Hypertrophy: Implications in Health and Disease. Nat. Commun. 2021, 12, 330. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Author Correction: Skeletal Muscle Energy Metabolism during Exercise. Nat. Metab. 2020, 2, 990. [Google Scholar] [CrossRef]
- Watts, M.E.; Pocock, R.; Claudianos, C. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease. Front. Mol. Neurosci. 2018, 11, 216. [Google Scholar] [CrossRef]
- Sonnay, S.; Gruetter, R.; Duarte, J.M.N. How Energy Metabolism Supports Cerebral Function: Insights from C Magnetic Resonance Studies. Front. Neurosci. 2017, 11, 288. [Google Scholar] [CrossRef]
- Magistretti, P.J.; Allaman, I. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging. Neuron 2015, 86, 883–901. [Google Scholar] [CrossRef]
- Leese, H.J.; Brison, D.R.; Sturmey, R.G. The Quiet Embryo Hypothesis: 20 Years on. Front. Physiol. 2022, 13, 899485. [Google Scholar] [CrossRef]
- Lee, M.T.; Bonneau, A.R.; Giraldez, A.J. Zygotic Genome Activation during the Maternal-to-Zygotic Transition. Annu. Rev. Cell Dev. Biol. 2014, 30, 581–613. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, J.; Dahan, P.; Lu, V.; Zhang, C.; Li, H.; Teitell, M.A. Metabolism in Pluripotent Stem Cells and Early Mammalian Development. Cell Metab. 2018, 27, 332–338. [Google Scholar] [CrossRef]
- Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in the Body. J. Gen. Physiol. 1927, 8, 519–530. [Google Scholar] [CrossRef]
- Pavlova, N.N.; Zhu, J.; Thompson, C.B. The Hallmarks of Cancer Metabolism: Still Emerging. Cell Metab. 2022, 34, 355–377. [Google Scholar] [CrossRef]
- Sanchez, E.L.; Lagunoff, M. Viral Activation of Cellular Metabolism. Virology 2015, 479-480, 609–618. [Google Scholar] [CrossRef]
- Thaker, S.K.; Ch’ng, J.; Christofk, H.R. Viral Hijacking of Cellular Metabolism. BMC Biol. 2019, 17, 59. [Google Scholar] [CrossRef]
- Pouysségur, J.; Marchiq, I.; Parks, S.K.; Durivault, J.; Ždralević, M.; Vucetic, M. “Warburg Effect” Controls Tumor Growth, Bacterial, Viral Infections and Immunity—Genetic Deconstruction and Therapeutic Perspectives. Semin. Cancer Biol. 2022, 86, 334–346. [Google Scholar] [CrossRef]
- Port, A.M.; Ruth, M.R.; Istfan, N.W. Fructose Consumption and Cancer: Is There a Connection? Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 367–374. [Google Scholar] [CrossRef]
- Ben-Sahra, I.; Manning, B.D. mTORC1 Signaling and the Metabolic Control of Cell Growth. Curr. Opin. Cell Biol. 2017, 45, 72–82. [Google Scholar] [CrossRef]
- Pascual, G.; Avgustinova, A.; Mejetta, S.; Martín, M.; Castellanos, A.; Attolini, C.S.-O.; Berenguer, A.; Prats, N.; Toll, A.; Hueto, J.A.; et al. Targeting Metastasis-Initiating Cells through the Fatty Acid Receptor CD36. Nature 2017, 541, 41–45. [Google Scholar] [CrossRef]
- Bertero, T.; Oldham, W.M.; Grasset, E.M.; Bourget, I.; Boulter, E.; Pisano, S.; Hofman, P.; Bellvert, F.; Meneguzzi, G.; Bulavin, D.V.; et al. Tumor-Stroma Mechanics Coordinate Amino Acid Availability to Sustain Tumor Growth and Malignancy. Cell Metab. 2019, 29, 124–140.e10. [Google Scholar] [CrossRef]
- Zanotelli, M.R.; Zhang, J.; Reinhart-King, C.A. Mechanoresponsive Metabolism in Cancer Cell Migration and Metastasis. Cell Metab. 2021, 33, 1307–1321. [Google Scholar] [CrossRef]
- Yang, L.; Moss, T.; Mangala, L.S.; Marini, J.; Zhao, H.; Wahlig, S.; Armaiz-Pena, G.; Jiang, D.; Achreja, A.; Win, J.; et al. Metabolic Shifts toward Glutamine Regulate Tumor Growth, Invasion and Bioenergetics in Ovarian Cancer. Mol. Syst. Biol. 2014, 10, 728. [Google Scholar] [CrossRef]
- Xiang, L.; Mou, J.; Shao, B.; Wei, Y.; Liang, H.; Takano, N.; Semenza, G.L.; Xie, G. Glutaminase 1 Expression in Colorectal Cancer Cells Is Induced by Hypoxia and Required for Tumor Growth, Invasion, and Metastatic Colonization. Cell Death Dis. 2019, 10, 40. [Google Scholar] [CrossRef]
- Kim, J.; DeBerardinis, R.J. Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metab. 2019, 30, 434–446. [Google Scholar] [CrossRef]
- Garland, T., Jr.; Downs, C.J.; Ives, A.R. Trade-Offs (and Constraints) in Organismal Biology. Physiol. Biochem. Zool. 2022, 95, 82–112. [Google Scholar] [CrossRef]
- Garland, T., Jr. Trade-Offs. Curr. Biol. 2014, 24, R60–R61. [Google Scholar] [CrossRef]
- Baghdassarian, H.M.; Lewis, N.E. Resource Allocation in Mammalian Systems. Biotechnol. Adv. 2024, 71, 108305. [Google Scholar] [CrossRef]
- Inouye, B.D.; Brosi, B.J.; Le Sage, E.H.; Lerdau, M.T. Trade-Offs Among Resilience, Robustness, Stability, and Performance and How We Might Study Them. Integr. Comp. Biol. 2022, 61, 2180–2189. [Google Scholar] [CrossRef]
- Mitchell, A.; Romano, G.H.; Groisman, B.; Yona, A.; Dekel, E.; Kupiec, M.; Dahan, O.; Pilpel, Y. Adaptive Prediction of Environmental Changes by Microorganisms. Nature 2009, 460, 220–224. [Google Scholar] [CrossRef]
- Schuetz, R.; Zamboni, N.; Zampieri, M.; Heinemann, M.; Sauer, U. Multidimensional Optimality of Microbial Metabolism. Science 2012, 336, 601–604. [Google Scholar] [CrossRef]
- Spencer, C.C.; Bertrand, M.; Travisano, M.; Doebeli, M. Adaptive Diversification in Genes That Regulate Resource Use in Escherichia Coli. PLoS Genet. 2007, 3, e15. [Google Scholar] [CrossRef]
- Roff, D.A.; Fairbairn, D.J. The Evolution of Trade-Offs: Where Are We? J. Evol. Biol. 2007, 20, 433–447. [Google Scholar] [CrossRef]
- Garland, T., Jr.; Zhao, M.; Saltzman, W. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior. Integr. Comp. Biol. 2016, 56, 207–224. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.; Razaghi-Moghadam, Z.; Nikoloski, Z. Identification of Flux Trade-Offs in Metabolic Networks. Sci. Rep. 2021, 11, 23776. [Google Scholar] [CrossRef]
- Hashemi, S.; Razaghi-Moghadam, Z.; Laitinen, R.A.E.; Nikoloski, Z. Relative Flux Trade-Offs and Optimization of Metabolic Network Functionalities. Comput. Struct. Biotechnol. J. 2022, 20, 3963–3971. [Google Scholar] [CrossRef]
- Shoval, O.; Sheftel, H.; Shinar, G.; Hart, Y.; Ramote, O.; Mayo, A.; Dekel, E.; Kavanagh, K.; Alon, U. Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space. Science 2012, 336, 1157–1160. [Google Scholar] [CrossRef]
- Basan, M.; Honda, T.; Christodoulou, D.; Hörl, M.; Chang, Y.-F.; Leoncini, E.; Mukherjee, A.; Okano, H.; Taylor, B.R.; Silverman, J.M.; et al. A Universal Trade-off between Growth and Lag in Fluctuating Environments. Nature 2020, 584, 470–474. [Google Scholar] [CrossRef]
- Ying, B.-W.; Honda, T.; Tsuru, S.; Seno, S.; Matsuda, H.; Kazuta, Y.; Yomo, T. Evolutionary Consequence of a Trade-Off between Growth and Maintenance along with Ribosomal Damages. PLoS ONE 2015, 10, e0135639. [Google Scholar] [CrossRef]
- Yi, X.; Dean, A.M. Phenotypic Plasticity as an Adaptation to a Functional Trade-Off. Elife 2016, 5, e19307. [Google Scholar] [CrossRef]
- Aktipis, C.A.; Boddy, A.M.; Gatenby, R.A.; Brown, J.S.; Maley, C.C. Life History Trade-Offs in Cancer Evolution. Nat. Rev. Cancer 2013, 13, 883–892. [Google Scholar] [CrossRef]
- Hausser, J.; Alon, U. Tumour Heterogeneity and the Evolutionary Trade-Offs of Cancer. Nat. Rev. Cancer 2020, 20, 247–257. [Google Scholar] [CrossRef]
- Jerby, L.; Wolf, L.; Denkert, C.; Stein, G.Y.; Hilvo, M.; Oresic, M.; Geiger, T.; Ruppin, E. Metabolic Associations of Reduced Proliferation and Oxidative Stress in Advanced Breast Cancer. Cancer Res. 2012, 72, 5712–5720. [Google Scholar] [CrossRef]
- Sonveaux, P.; Végran, F.; Schroeder, T.; Wergin, M.C.; Verrax, J.; Rabbani, Z.N.; De Saedeleer, C.J.; Kennedy, K.M.; Diepart, C.; Jordan, B.F.; et al. Targeting Lactate-Fueled Respiration Selectively Kills Hypoxic Tumor Cells in Mice. J. Clin. Investig. 2008, 118, 3930–3942. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sharife, H.; Kreisel, T.; Mogilevsky, M.; Bar-Lev, L.; Grunewald, M.; Aizenshtein, E.; Karni, R.; Paldor, I.; Shlomi, T.; et al. Intra-Tumoral Metabolic Zonation and Resultant Phenotypic Diversification Are Dictated by Blood Vessel Proximity. Cell Metab. 2019, 30, 201–211.e6. [Google Scholar] [CrossRef] [PubMed]
- Biddle, A.; Liang, X.; Gammon, L.; Fazil, B.; Harper, L.J.; Emich, H.; Costea, D.E.; Mackenzie, I.C. Cancer Stem Cells in Squamous Cell Carcinoma Switch between Two Distinct Phenotypes That Are Preferentially Migratory or Proliferative. Cancer Res. 2011, 71, 5317–5326. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, J.E., Jr. Bistability, Bifurcations, and Waddington’s Epigenetic Landscape. Curr. Biol. 2012, 22, R458–R466. [Google Scholar] [CrossRef]
- Uthamacumaran, A. A Review of Dynamical Systems Approaches for the Detection of Chaotic Attractors in Cancer Networks. Patterns 2021, 2, 100226. [Google Scholar] [CrossRef]
- Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current Status and Applications of Genome-Scale Metabolic Models. Genome Biol. 2019, 20, 1–18. [Google Scholar] [CrossRef]
- Ma, S.; Minch, K.J.; Rustad, T.R.; Hobbs, S.; Zhou, S.-L.; Sherman, D.R.; Price, N.D. Integrated Modeling of Gene Regulatory and Metabolic Networks in Mycobacterium Tuberculosis. PLoS Comput. Biol. 2015, 11, e1004543. [Google Scholar] [CrossRef]
- Banos, D.T.; Trébulle, P.; Elati, M. Integrating Transcriptional Activity in Genome-Scale Models of Metabolism. BMC Syst. Biol. 2017, 11, 134. [Google Scholar] [CrossRef]
- Wang, Z.; Danziger, S.A.; Heavner, B.D.; Ma, S.; Smith, J.J.; Li, S.; Herricks, T.; Simeonidis, E.; Baliga, N.S.; Aitchison, J.D.; et al. Combining Inferred Regulatory and Reconstructed Metabolic Networks Enhances Phenotype Prediction in Yeast. PLoS Comput. Biol. 2017, 13, e1005489. [Google Scholar] [CrossRef]
- Motamedian, E.; Mohammadi, M.; Shojaosadati, S.A.; Heydari, M. TRFBA: An Algorithm to Integrate Genome-Scale Metabolic and Transcriptional Regulatory Networks with Incorporation of Expression Data. Bioinformatics 2017, 33, 1057–1063. [Google Scholar] [CrossRef]
- Shen, F.; Sun, R.; Yao, J.; Li, J.; Liu, Q.; Price, N.D.; Liu, C.; Wang, Z. OptRAM: In-Silico Strain Design via Integrative Regulatory-Metabolic Network Modeling. PLoS Comput. Biol. 2019, 15, e1006835. [Google Scholar] [CrossRef]
- Blazier, A.S.; Papin, J.A. Integration of Expression Data in Genome-Scale Metabolic Network Reconstructions. Front. Physiol. 2012, 3, 299. [Google Scholar] [CrossRef] [PubMed]
- Brunk, E.; Mih, N.; Monk, J.; Zhang, Z.; O’Brien, E.J.; Bliven, S.E.; Chen, K.; Chang, R.L.; Bourne, P.E.; Palsson, B.O. Systems Biology of the Structural Proteome. BMC Syst. Biol. 2016, 10, 26. [Google Scholar] [CrossRef]
- Lee, S.; Zhang, C.; Kilicarslan, M.; Piening, B.D.; Bjornson, E.; Hallström, B.M.; Groen, A.K.; Ferrannini, E.; Laakso, M.; Snyder, M.; et al. Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance. Cell Metab. 2016, 24, 172–184. [Google Scholar] [CrossRef]
- Campit, S.; Chandrasekaran, S. Inferring Metabolic Flux from Time-Course Metabolomics. Methods Mol. Biol. 2020, 2088, 299–313. [Google Scholar]
- Chandrasekaran, S.; Zhang, J.; Sun, Z.; Zhang, L.; Ross, C.A.; Huang, Y.-C.; Asara, J.M.; Li, H.; Daley, G.Q.; Collins, J.J. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling. Cell Rep. 2017, 21, 2965–2977. [Google Scholar] [CrossRef]
- Shen, F.; Boccuto, L.; Pauly, R.; Srikanth, S.; Chandrasekaran, S. Genome-Scale Network Model of Metabolism and Histone Acetylation Reveals Metabolic Dependencies of Histone Deacetylase Inhibitors. Genome Biol. 2019, 20, 49. [Google Scholar] [CrossRef]
- Chung, C.H.; Lin, D.-W.; Eames, A.; Chandrasekaran, S. Next-Generation Genome-Scale Metabolic Modeling through Integration of Regulatory Mechanisms. Metabolites 2021, 11, 606. [Google Scholar] [CrossRef]
- Schildcrout, R.; Smith, K.; Bhowmick, R.; Menon, S.; Kapadia, M.; Kurtz, E.; Coffeen-Vandeven, A.; Chandrasekaran, S. Recon8D: A Metabolic Regulome Network from Oct-Omics and Machine Learning. bioRxiv 2024. [Google Scholar] [CrossRef]
- Segrè, D.; Deluna, A.; Church, G.M.; Kishony, R. Modular Epistasis in Yeast Metabolism. Nat. Genet. 2005, 37, 77–83. [Google Scholar] [CrossRef]
- Motter, A.E.; Gulbahce, N.; Almaas, E.; Barabási, A.-L. Predicting Synthetic Rescues in Metabolic Networks. Mol. Syst. Biol. 2008, 4, 168. [Google Scholar] [CrossRef] [PubMed]
- Wintermute, E.H.; Silver, P.A. Emergent Cooperation in Microbial Metabolism. Mol. Syst. Biol. 2010, 6, 407. [Google Scholar] [CrossRef] [PubMed]
- Klitgord, N.; Segrè, D. Environments That Induce Synthetic Microbial Ecosystems. PLoS Comput. Biol. 2010, 6, e1001002. [Google Scholar] [CrossRef] [PubMed]
- Diener, C.; Resendis-Antonio, O. Personalized Prediction of Proliferation Rates and Metabolic Liabilities in Cancer Biopsies. Front. Physiol. 2016, 7, 644. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.S.; DeJongh, M.; Best, A.A.; Frybarger, P.M.; Linsay, B.; Stevens, R.L. High-Throughput Generation, Optimization and Analysis of Genome-Scale Metabolic Models. Nat. Biotechnol. 2010, 28, 977–982. [Google Scholar] [CrossRef]
- Beck, A.; Hunt, K.; Carlson, R. Measuring Cellular Biomass Composition for Computational Biology Applications. Processes 2018, 6, 38. [Google Scholar] [CrossRef]
- Schulz, C.; Kumelj, T.; Karlsen, E.; Almaas, E. Genome-Scale Metabolic Modelling When Changes in Environmental Conditions Affect Biomass Composition. PLoS Comput. Biol. 2021, 17, e1008528. [Google Scholar] [CrossRef]
- Choi, Y.-M.; Choi, D.-H.; Lee, Y.Q.; Koduru, L.; Lewis, N.E.; Lakshmanan, M.; Lee, D.-Y. Mitigating Biomass Composition Uncertainties in Flux Balance Analysis Using Ensemble Representations. Comput. Struct. Biotechnol. J. 2023, 21, 3736–3745. [Google Scholar] [CrossRef]
- Burgard, A.P.; Maranas, C.D. Optimization-Based Framework for Inferring and Testing Hypothesized Metabolic Objective Functions. Biotechnol. Bioeng. 2003, 82, 670–677. [Google Scholar] [CrossRef]
- Gianchandani, E.P.; Oberhardt, M.A.; Burgard, A.P.; Maranas, C.D.; Papin, J.A. Predicting Biological System Objectives de Novo from Internal State Measurements. BMC Bioinformatics 2008, 9, 43. [Google Scholar] [CrossRef]
- Zhao, Q.; Stettner, A.I.; Reznik, E.; Paschalidis, I.C.; Segrè, D. Mapping the Landscape of Metabolic Goals of a Cell. Genome Biol. 2016, 17, 109. [Google Scholar] [CrossRef] [PubMed]
- Knorr, A.L.; Jain, R.; Srivastava, R. Bayesian-Based Selection of Metabolic Objective Functions. Bioinformatics 2007, 23, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.B. The Energy Spilling Reactions of Bacteria and Other Organisms. J. Mol. Microbiol. Biotechnol. 2007, 13, 1–11. [Google Scholar] [CrossRef]
- Russell, J.B.; Cook, G.M. Energetics of Bacterial Growth: Balance of Anabolic and Catabolic Reactions. Microbiol. Rev. 1995, 59, 48–62. [Google Scholar] [CrossRef]
- Du, Y.; Gupta, P.; Qin, S.; Sieber, M. The Role of Metabolism in Cellular Quiescence. J. Cell Sci. 2023, 136, jcs260787. [Google Scholar] [CrossRef]
- Ebenhöh, O.; Heinrich, R. Evolutionary Optimization of Metabolic Pathways. Theoretical Reconstruction of the Stoichiometry of ATP and NADH Producing Systems. Bull. Math. Biol. 2001, 63, 21–55. [Google Scholar] [CrossRef]
- Heinrich, R.; Montero, F.; Klipp, E.; Waddell, T.G.; Meléndez-Hevia, E. Theoretical Approaches to the Evolutionary Optimization of Glycolysis: Thermodynamic and Kinetic Constraints. Eur. J. Biochem. 1997, 243, 191–201. [Google Scholar]
- Zielinski, D.C.; Jamshidi, N.; Corbett, A.J.; Bordbar, A.; Thomas, A.; Palsson, B.O. Systems Biology Analysis of Drivers Underlying Hallmarks of Cancer Cell Metabolism. Sci. Rep. 2017, 7, 41241. [Google Scholar] [CrossRef]
- Schnitzer, B.; Österberg, L.; Cvijovic, M. The Choice of the Objective Function in Flux Balance Analysis Is Crucial for Predicting Replicative Lifespans in Yeast. PLoS ONE 2022, 17, e0276112. [Google Scholar] [CrossRef]
- Schnitzer, B.; Österberg, L.; Skopa, I.; Cvijovic, M. Multi-Scale Model Suggests the Trade-off between Protein and ATP Demand as a Driver of Metabolic Changes during Yeast Replicative Ageing. PLoS Comput. Biol. 2022, 18, e1010261. [Google Scholar] [CrossRef]
- Wortel, M.T.; Noor, E.; Ferris, M.; Bruggeman, F.J.; Liebermeister, W. Metabolic Enzyme Cost Explains Variable Trade-Offs between Microbial Growth Rate and Yield. PLoS Comput. Biol. 2018, 14, e1006010. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.; Pfeiffer, T.; Lenski, R.E.; Sauer, U.; Bonhoeffer, S. Experimental Tests for an Evolutionary Trade-off between Growth Rate and Yield in E. Coli. Am. Nat. 2006, 168, 242–251. [Google Scholar] [CrossRef]
- Maharjan, R.P.; Seeto, S.; Ferenci, T. Divergence and Redundancy of Transport and Metabolic Rate-Yield Strategies in a Single Escherichia Coli Population. J. Bacteriol. 2007, 189, 2350–2358. [Google Scholar] [CrossRef]
- Lewis, N.E.; Hixson, K.K.; Conrad, T.M.; Lerman, J.A.; Charusanti, P.; Polpitiya, A.D.; Adkins, J.N.; Schramm, G.; Purvine, S.O.; Lopez-Ferrer, D.; et al. Omic Data from Evolved E. Coli Are Consistent with Computed Optimal Growth from Genome-Scale Models. Mol. Syst. Biol. 2010, 6, 390. [Google Scholar] [CrossRef]
- Burgard, A.P.; Pharkya, P.; Maranas, C.D. Optknock: A Bilevel Programming Framework for Identifying Gene Knockout Strategies for Microbial Strain Optimization. Biotechnol. Bioeng. 2003, 84, 647–657. [Google Scholar] [CrossRef]
- Andrade, R.; Doostmohammadi, M.; Santos, J.L.; Sagot, M.-F.; Mira, N.P.; Vinga, S. MOMO—Multi-Objective Metabolic Mixed Integer Optimization: Application to Yeast Strain Engineering. BMC Bioinformatics 2020, 21, 69. [Google Scholar] [CrossRef]
- Patil, K.R.; Rocha, I.; Förster, J.; Nielsen, J. Evolutionary Programming as a Platform for in Silico Metabolic Engineering. BMC Bioinformatics 2005, 6, 308. [Google Scholar] [CrossRef] [PubMed]
- Patané, A.; Jansen, G.; Conca, P.; Carapezza, G.; Costanza, J.; Nicosia, G. Multi-Objective Optimization of Genome-Scale Metabolic Models: The Case of Ethanol Production. Ann. Oper. Res. 2019, 276, 211–227. [Google Scholar] [CrossRef]
- Lachance, J.-C.; Lloyd, C.J.; Monk, J.M.; Yang, L.; Sastry, A.V.; Seif, Y.; Palsson, B.O.; Rodrigue, S.; Feist, A.M.; King, Z.A.; et al. BOFdat: Generating Biomass Objective Functions for Genome-Scale Metabolic Models from Experimental Data. PLoS Comput. Biol. 2019, 15, e1006971. [Google Scholar] [CrossRef]
- Street, K.; Risso, D.; Fletcher, R.B.; Das, D.; Ngai, J.; Yosef, N.; Purdom, E.; Dudoit, S. Slingshot: Cell Lineage and Pseudotime Inference for Single-Cell Transcriptomics. BMC Genom. 2018, 19, 1–16. [Google Scholar] [CrossRef]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The Dynamics and Regulators of Cell Fate Decisions Are Revealed by Pseudotemporal Ordering of Single Cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Grün, D.; Muraro, M.J.; Boisset, J.-C.; Wiebrands, K.; Lyubimova, A.; Dharmadhikari, G.; van den Born, M.; van Es, J.; Jansen, E.; Clevers, H.; et al. De Novo Prediction of Stem Cell Identity Using Single-Cell Transcriptome Data. Cell Stem Cell 2016, 19, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Persad, S.; Choo, Z.-N.; Dien, C.; Sohail, N.; Masilionis, I.; Chaligné, R.; Nawy, T.; Brown, C.C.; Sharma, R.; Pe’er, I.; et al. SEACells Infers Transcriptional and Epigenomic Cellular States from Single-Cell Genomics Data. Nat. Biotechnol. 2023, 41, 1746–1757. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, H. Non-Linear Archetypal Analysis of Single-Cell RNA-Seq Data by Deep Autoencoders. PLOS Comput. Biol. 2022, 18, e1010025. [Google Scholar] [CrossRef]
- Hart, Y.; Sheftel, H.; Hausser, J.; Szekely, P.; Ben-Moshe, N.B.; Korem, Y.; Tendler, A.; Mayo, A.E.; Alon, U. Inferring Biological Tasks Using Pareto Analysis of High-Dimensional Data. Nat. Methods 2015, 12, 233–235. [Google Scholar] [CrossRef]
- Groves, S.M.; Ildefonso, G.V.; McAtee, C.O.; Ozawa, P.M.M.; Ireland, A.S.; Stauffer, P.E.; Wasdin, P.T.; Huang, X.; Qiao, Y.; Lim, J.S.; et al. Archetype Tasks Link Intratumoral Heterogeneity to Plasticity and Cancer Hallmarks in Small Cell Lung Cancer. Cell Syst. 2022, 13, 690–710.e17. [Google Scholar] [CrossRef]
- Hausser, J.; Szekely, P.; Bar, N.; Zimmer, A.; Sheftel, H.; Caldas, C.; Alon, U. Tumor Diversity and the Trade-off between Universal Cancer Tasks. Nat. Commun. 2019, 10, 5423. [Google Scholar] [CrossRef]
- Adler, M.; Korem Kohanim, Y.; Tendler, A.; Mayo, A.; Alon, U. Continuum of Gene-Expression Profiles Provides Spatial Division of Labor within a Differentiated Cell Type. Cell Syst. 2019, 8, 43–52.e5. [Google Scholar] [CrossRef]
- Adler, M.; Moriel, N.; Goeva, A.; Avraham-Davidi, I.; Mages, S.; Adams, T.S.; Kaminski, N.; Macosko, E.Z.; Regev, A.; Medzhitov, R.; et al. Emergence of Division of Labor in Tissues through Cell Interactions and Spatial Cues. Cell Rep. 2023, 42, 112412. [Google Scholar] [CrossRef]
- Nath, A.; Cosgrove, P.A.; Mirsafian, H.; Christie, E.L.; Pflieger, L.; Copeland, B.; Majumdar, S.; Cristea, M.C.; Han, E.S.; Lee, S.J.; et al. Evolution of Core Archetypal Phenotypes in Progressive High Grade Serous Ovarian Cancer. Nat. Commun. 2021, 12, 3039. [Google Scholar] [CrossRef]
- Combes, A.J.; Samad, B.; Tsui, J.; Chew, N.W.; Yan, P.; Reeder, G.C.; Kushnoor, D.; Shen, A.; Davidson, B.; Barczak, A.J.; et al. Discovering Dominant Tumor Immune Archetypes in a Pan-Cancer Census. Cell 2022, 185, 184–203.e19. [Google Scholar] [CrossRef] [PubMed]
- Weistuch, C.; Murgas, K.A.; Zhu, J.; Norton, L.; Dill, K.A.; Tannenbaum, A.R.; Deasy, J.O. Functional Transcriptional Signatures for Tumor-Type-Agnostic Phenotype Prediction. bioRxiv 2024. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Price, N.D. Probabilistic Integrative Modeling of Genome-Scale Metabolic and Regulatory Networks in Escherichia Coli and Mycobacterium Tuberculosis. Proc. Natl. Acad. Sci. USA 2010, 107, 17845–17850. [Google Scholar] [CrossRef] [PubMed]
- Reķēna, A.; Pinheiro, M.J.; Bonturi, N.; Belouah, I.; Tammekivi, E.; Herodes, K.; Kerkhoven, E.J.; Lahtvee, P.-J. Genome-Scale Metabolic Modeling Reveals Metabolic Trade-Offs Associated with Lipid Production in Rhodotorula Toruloides. PLoS Comput. Biol. 2023, 19, e1011009. [Google Scholar] [CrossRef]
- Lin, D.-W.; Zhang, L.; Zhang, J.; Chandrasekaran, S. Inferring Metabolic Objectives and Trade-Offs in Single Cells During Embryogenesis. Cell Syst. 2025, 16, 101164. [Google Scholar] [CrossRef]
- Steach, H.; Viswanath, S.; He, Y.; Zhang, X.; Ivanova, N.; Hirn, M.; Perlmutter, M.; Krishnaswamy, S. Inferring Metabolic States from Single Cell Transcriptomic Data via Geometric Deep Learning. bioRxiv 2023. [Google Scholar] [CrossRef]
- Richelle, A.; Kellman, B.P.; Wenzel, A.T.; Chiang, A.W.T.; Reagan, T.; Gutierrez, J.M.; Joshi, C.; Li, S.; Liu, J.K.; Masson, H.; et al. Model-Based Assessment of Mammalian Cell Metabolic Functionalities Using Omics Data. Cell Rep. Methods 2021, 1, 100040. [Google Scholar] [CrossRef]
- Gao, S.; Dai, Z.; Xu, H.; Lai, L. Pinpointing Cancer Sub-Type Specific Metabolic Tasks Facilitates Identification of Anti-Cancer Targets. Front. Med. 2022, 9, 872024. [Google Scholar] [CrossRef]
- Gandrillon, O.; Gaillard, M.; Espinasse, T.; Garnier, N.B.; Dussiau, C.; Kosmider, O.; Sujobert, P. Entropy as a Measure of Variability and Stemness in Single-Cell Transcriptomics. Curr. Opin. Syst. Biol. 2021, 27, 100348. [Google Scholar] [CrossRef]
- Pereiro-Morejón, J.A.; Fernandez-de-Cossio-Diaz, J.; Mulet, R. Inference of Metabolic Fluxes in Nutrient-Limited Continuous Cultures: A Maximum Entropy Approach with the Minimum Information. iScience 2022, 25, 105450. [Google Scholar] [CrossRef]
- De Martino, D.; Mc Andersson, A.; Bergmiller, T.; Guet, C.C.; Tkačik, G. Statistical Mechanics for Metabolic Networks during Steady State Growth. Nat. Commun. 2018, 9, 2988. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Long, C.; Hong, Y.; Luo, L.; Zuo, Y. Characterizing Cellular Differentiation Potency and Waddington Landscape via Energy Indicator. Research 2023, 6, 0118. [Google Scholar] [CrossRef]
- Wagner, A.; Wang, C.; Fessler, J.; DeTomaso, D.; Avila-Pacheco, J.; Kaminski, J.; Zaghouani, S.; Christian, E.; Thakore, P.; Schellhaass, B.; et al. Metabolic Modeling of Single Th17 Cells Reveals Regulators of Autoimmunity. Cell 2021, 184, 4168–4185.e21. [Google Scholar] [CrossRef]
- Bhowmick, R.; Campit, S.; Katkam, S.K.; Keshamouni, V.G.; Chandrasekaran, S. Genome-Scale Modeling Identifies Dynamic Metabolic Vulnerabilities during the Epithelial to Mesenchymal Transition. Commun. Biol. 2024, 7, 1704. [Google Scholar] [CrossRef]
- Brophy, J.A.N.; Voigt, C.A. Principles of Genetic Circuit Design. Nat. Methods 2014, 11, 508–520. [Google Scholar] [CrossRef]
- Weiße, A.Y.; Oyarzún, D.A.; Danos, V.; Swain, P.S. Mechanistic Links between Cellular Trade-Offs, Gene Expression, and Growth. Proc. Natl. Acad. Sci. USA 2015, 112, E1038–E1047. [Google Scholar] [CrossRef]
- Nilsson, A.; Nielsen, J. Metabolic Trade-Offs in Yeast Are Caused by F1F0-ATP Synthase. Sci. Rep. 2016, 6, 22264. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Ehsan, S.F.; Karacosta, L.G. Phenotypic Maps for Precision Medicine: A Promising Systems Biology Tool for Assessing Therapy Response and Resistance at a Personalized Level. Front. Netw. Physiol. 2023, 3, 1256104. [Google Scholar] [CrossRef]
- Surendran, P.; Stewart, I.D.; Au Yeung, V.P.W.; Pietzner, M.; Raffler, J.; Wörheide, M.A.; Li, C.; Smith, R.F.; Wittemans, L.B.L.; Bomba, L.; et al. Rare and Common Genetic Determinants of Metabolic Individuality and Their Effects on Human Health. Nat. Med. 2022, 28, 2321–2332. [Google Scholar] [CrossRef]
- Yubero, P.; Lavin, A.A.; Poyatos, J.F. The Limitations of Phenotype Prediction in Metabolism. PLoS Comput. Biol. 2023, 19, e1011631. [Google Scholar] [CrossRef] [PubMed]
- Heinken, A.; Hertel, J.; Acharya, G.; Ravcheev, D.A.; Nyga, M.; Okpala, O.E.; Hogan, M.; Magnúsdóttir, S.; Martinelli, F.; Nap, B.; et al. Genome-Scale Metabolic Reconstruction of 7302 Human Microorganisms for Personalized Medicine. Nat. Biotechnol. 2023, 41, 1320–1331. [Google Scholar] [CrossRef] [PubMed]
- Foguet, C.; Xu, Y.; Ritchie, S.C.; Lambert, S.A.; Persyn, E.; Nath, A.P.; Davenport, E.E.; Roberts, D.J.; Paul, D.S.; Di Angelantonio, E.; et al. Genetically Personalised Organ-Specific Metabolic Models in Health and Disease. Nat. Commun. 2022, 13, 1–15. [Google Scholar] [CrossRef]
- Raghav, P.; Kumar, R.; Lathwal, A.; Sharma, N. Computational Biology for Stem Cell Research; Elsevier: Amsterdam, The Netherlands, 2024; ISBN 9780443132216. [Google Scholar]
Name | Input | Output | Summary | Organisms | Ref. |
---|---|---|---|---|---|
ObjFIND | Fluxomics | Objective functions | Bi-layer optimization problems firstly minimizing the distance between predicted and experimental fluxes to solve coefficients of candidate demand reactions | Bacterial cells | [90] |
BOSS | Fluxomics | Objective functions | Bi-layer optimization problems firstly minimizing the distance between predicted and experimental fluxes to solve coefficients of randomly scanned objective functions | Bacterial cells | [91] |
SEED | Fluxomics | Objective functions | Approximate coefficients with experimental data and select biomass components with a template in which non-universal metabolites were chosen when meeting certain criteria | Bacterial cells | [86] |
invFBA | Fluxomics | Objective functions | Two-step optimization problems that minimize the error between measured and predicted objective functions | Bacterial cells | [92] |
Bayesian-based selection | Fluxomics | Score of objective functions | Score each candidate objective functions with probabilities calculated based on a Bayesian-based function of measured fluxes | Bacterial cells | [93] |
BOFdat | Multiomics | Objective functions | Draft coefficients of biomass components based on omic datasets and phenotypes (e.g., growth) measurements and finalize the functions with genetic algorithms | Bacterial cells | [110] |
BTW and HIP | Fluxomics | Objective functions | BTW weighs multiple pre-built objective functions to fit phenotype measurement such as growth rate and HIP interpolates between different biomass compositions | Bacterial cells | [88] |
pFBAwEB | Transcriptomics, proteomics, and fluxomics | Ensemble representations of biomass | Gather coefficient of variation to generate a range of biomass composition | E. coli, S. cerevisiae, and CHO cells | [89] |
Gao et al. | Transcriptomics | Metabolic tasks | Leverage ParTI method to identify metabolic tasks from transcriptomics datasets and predicted fluxes and phenotypes corresponding to the metabolic tasks | Cancer cells | [129] |
CellFile | Transcriptomics | Scores of metabolic tasks | Summarize flux solutions of transcriptomics-based context-specific models with metabolic subsystems | Mammanlian cells | [128] |
GEFMAP | Single-cell transcriptomics | Objective function and scores | GEFMAP-constructed graph neural network from single-cell data and the association between gene to infer objective functions | E. coli, S. cerevisiae, and hESC | [127] |
SCOOTI | Single-cell and bulk multiomics | Metabolic objectives | Infer condition- or cell-specific metabolic objectives based on any type of omics dataset and identifies metabolic traits with these objectives | Mammanlian cells | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.-W.; Khattar, S.; Chandrasekaran, S. Metabolic Objectives and Trade-Offs: Inference and Applications. Metabolites 2025, 15, 101. https://doi.org/10.3390/metabo15020101
Lin D-W, Khattar S, Chandrasekaran S. Metabolic Objectives and Trade-Offs: Inference and Applications. Metabolites. 2025; 15(2):101. https://doi.org/10.3390/metabo15020101
Chicago/Turabian StyleLin, Da-Wei, Saanjh Khattar, and Sriram Chandrasekaran. 2025. "Metabolic Objectives and Trade-Offs: Inference and Applications" Metabolites 15, no. 2: 101. https://doi.org/10.3390/metabo15020101
APA StyleLin, D.-W., Khattar, S., & Chandrasekaran, S. (2025). Metabolic Objectives and Trade-Offs: Inference and Applications. Metabolites, 15(2), 101. https://doi.org/10.3390/metabo15020101