Non-Targeted Metabolomics Analysis Reveals Metabolite Profiles Change During Whey Fermentation with Kluyveromyces marxianus
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Bacteria, Culture Media, and Growth Condition
2.3. Sample Preparation
2.4. LC-MC Analysis
2.5. Data Processing and Multivariate Analysis
3. Results
3.1. Metabolic Profiling of Different Stages of K. Marxianus KM812-Fermented Whey
3.2. Trend Analysis of Changes in Different Stages of K. marxianus KM812-Fermented Whey
3.3. Differential Metabolites Analysis of K. marxianus KM812-Fermented Whey
3.4. Metabolic Pathway Analysis of K. marxianus KM812-Fermented Whey
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pires, A.F.; Marnotes, N.G.; Rubio, O.D.; Garcia, A.C.; Pereira, C.D. Dairy by-products: A review on the valorization of whey and second cheese whey. Foods 2021, 10, 1067. [Google Scholar] [CrossRef] [PubMed]
- Zandona, E.; Blažić, M.; Jambrak, A.R. Whey utilization: Sustainable uses and environmental approach. Food Technol. Biotechnol. 2021, 59, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Królczyk, J.B.; Dawidziuk, T.; Janiszewska-Turak, E.; Sołowiej, B. Use of whey and whey preparations in the food industry—A review. Pol. J. Food Nutr. Sci. 2016, 66, 157–165. [Google Scholar] [CrossRef]
- Olvera-Rosales, L.B.; Cruz-Guerrero, A.E.; García-Garibay, J.M.; Gómez-Ruíz, L.C.; Contreras-López, E.; Guzmán-Rodríguez, F.; González-Olivares, L.G. Bioactive peptides of whey: Obtaining, activity, mechanism of action, and further applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 10351–10381. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Robles-Porchas, G.R.; González-Velázquez, D.A.; Torres-Llanez, M.J.; Martínez-Porchas, M.; García-Sifuentes, C.O.; González-Córdova, A.F.; Vallejo-Córdoba, B. Cheese whey fermentation by its native microbiota: Proteolysis and bioactive peptides release with ace-inhibitory activity. Fermentation 2020, 6, 19. [Google Scholar] [CrossRef]
- Chen, M.Y.; Wu, H.T.; Chen, F.F.; Wang, Y.T.; Chou, D.L.; Wang, G.H.; Chen, Y.P. Characterization of tibetan kefir grain-fermented milk whey and its suppression of melanin synthesis. J. Biosci. Bioeng. 2022, 133, 547–554. [Google Scholar] [CrossRef]
- Cordeiro, B.F.; Oliveira, E.R.; da Silva, S.H.; Savassi, B.M.; Acurcio, L.B.; Lemos, L.; Alves, J.L.; Carvalho Assis, H.; Vieira, A.T.; Faria, A.M.C.; et al. Whey protein isolate-supplemented beverage, fermented by Lactobacillus casei BL23 and Propionibacterium freudenreichii 138, in the prevention of mucositis in mice. Front. Microbiol. 2018, 9, 2035. [Google Scholar] [CrossRef]
- Zeng, X.R.; Wang, Y.J.; Yang, S.D.; Liu, Y.J.; Li, X.; Liu, D. The functionalities and applications of whey/whey protein in fermented foods: A review. Food Sci. Biotechnol. 2024, 33, 769–790. [Google Scholar] [CrossRef]
- Leonel, L.V.; Arruda, P.V.; Chandel, A.K.; Felipe, M.G.A.; Sene, L. Kluyveromyces marxianus: A potential biocatalyst of renewable chemicals and lignocellulosic ethanol production. Crit. Rev. Biotechnol. 2021, 41, 1131–1152. [Google Scholar] [CrossRef]
- Karim, A.; Gerliani, N.; Aïder, M. Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. Int. J. Food Microbiol. 2020, 333, 108818. [Google Scholar] [CrossRef]
- Beniwal, A.; Saini, P.; Kokkiligadda, A.; Vij, S. Physiological growth and galactose utilization by dairy yeast Kluyveromyces marxianus in mixed sugars and whey during fermentation. 3 Biotech 2017, 7, 349. [Google Scholar] [CrossRef] [PubMed]
- De Moura Ferreira, M.A.; da Silveira, F.A.; da Silveira, W.B. Ethanol stress responses in Kluyveromyces marxianus: Current knowledge and perspectives. Appl. Microbiol. Biotechnol. 2022, 106, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.D.; Kádár, Z.; Oleskowicz-Popiel, P.; Thomsen, M.H. Production of bioethanol from organic whey using Kluyveromyces marxianus. J. Ind. Microbiol. Biotechnol. 2011, 38, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Castillo, M.V.; Tahmasbi, H.; Pachapur, V.L.; Brar, S.K.; Vuckovic, D.; Sitnikov, D.; Arriaga, S.; Blais, J.F.; Ramirez, A.A. Production of aroma and flavor-rich fusel alcohols by cheese whey fermentation using the Kluyveromyces marxianus and Debaryomyces hansenii yeasts in monoculture and co-culture modes. J. Chem. Technol. Biotechnol. 2021, 96, 2354–2367. [Google Scholar] [CrossRef]
- Rivera Flores, V.K.; Demarsh, T.A.; Gibney, P.A.; Alcaine, S.D. Fermentation of dairy-relevant sugars by Saccharomyces, Kluyveromyces, and Brettanomyces: An exploratory study with implications for the utilization of acid whey, part I. Fermentation 2021, 7, 266. [Google Scholar] [CrossRef]
- Yamahata, N.; Toyotake, Y.; Kunieda, S.; Wakayama, M. Application of multiple sensory evaluations to produce fermented beverages made from sole whey using Kluyveromyces marxianus. Int. J. Food Sci. Technol. 2020, 55, 1698–1704. [Google Scholar] [CrossRef]
- Singh, A.K.; Sinha, S.; Singh, K. Study on β-galactosidase isolation, purification and optimization of lactose hydrolysis in whey for production of instant energy drink. Int. J. Food Eng. 2009, 5, 1556–3758. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Human Serum Metabolome (HUSERMET) Consortium. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Zelena, E.; Dunn, W.B.; Broadhurst, D.; Francis-McIntyre, S.; Carroll, K.M.; Begley, P.; O’Hagan, S.; Knowles, J.D.; Halsall, A.; HUSERMET Consortium; et al. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal. Chem. 2009, 81, 1357–1364. [Google Scholar] [CrossRef]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Konno, Y.; Ashida, T.; Inaba, Y.; Ito, T.; Tanabe, H.; Maemoto, A.; Ayabe, T.; Mizukami, Y.; Fujiya, M.; Kohgo, Y. Isoleucine, an essential amino acid, induces the expression of human β defensin 2 through the activation of the G-protein coupled receptor-ERK pathway in the intestinal epithelia. Food Nutr. Sci. 2012, 3, 548–555. [Google Scholar] [CrossRef][Green Version]
- Muthukumaran, S.; Jaidev, J.; Umashankar, V.; Sulochana, K.N. Ornithine and its role in metabolic diseases: An appraisal. Biomed. Pharmacother. 2017, 86, 185–194. [Google Scholar]
- Arumugam, M.K.; Paal, M.C.; Donohue Jr, T.M.; Ganesan, M.; Osna, N.A.; Kharbanda, K.K. Beneficial effects of betaine: A comprehensive review. Biology 2021, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Naveed, M.; Arif, M.; Kakar, M.U.; Manzoor, R.; Abd El-Hack, M.E.; Alagawany, M.; Tiwari, R.; Khandia, R.; Munjal, A.; et al. Green tea (Camellia sinensis) and L-theanine: Medicinal values and beneficial applications in humans-a comprehensive review. Biomed. Pharmacother. 2017, 95, 1260–1275. [Google Scholar] [CrossRef]
- Stark, A.H.; Crawford, M.A.; Reifen, R. Update on alpha-linolenic acid. Nutr. Rev. 2008, 66, 326–332. [Google Scholar] [CrossRef]
- Frigolet, M.E.; Gutiérrez-Aguilar, R. The role of the novel lipokine palmitoleic acid in health and disease. Adv. Nutr. 2017, 8, 173S–181S. [Google Scholar] [CrossRef]
Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 | Cluster 8 | Cluster 9 |
---|---|---|---|---|---|---|---|---|
Ketoleucine | Triethylamine | Glyceric acid | 1,3-Dihydro-(2H)-indol-2-one | Benzamide | Cytosine | 2-Phenylethanol | Isovaleric acid | Antiarol |
1-Pyrroline-2-carboxylic acid | 4-Hydroxyphenylacetaldehyde | m-Cresol | L-Glutamic acid | L-Carnitine | Isonicotinic acid | 2,6-Dimethylaniline | trans-trans-Muconic acid | Gamma-Glutamyl-beta-aminopropiononitrile |
Ornithine | Gentisic acid | L-Iditol | (3S)-6-Acetamido-3-aminohexanoate | (2S,5S)-trans-Carboxymethylproline | Chavicol | L-Theanine | Decanoyl-L-carnitine | N-Acetyl-D-galactosamine |
2-Naphthol | Miglitol | Anserine | Jasmonic acid | (R)-3-(4-Hydroxyphenyl)lactate | Aminoadipic acid | Glucosamine | L-Ribulose | 3-Dehydrosphinganine |
Biotin | Cytidine | Arachidic acid | Dodecanoic acid | 3,4-Dihydroxymandelic acid | Spermidine | Kynurenic acid | 10-Hydroxydecanoic acid | 1-O-Feruloyl-beta-D-glucose |
N6-(L-1,3-Dicarboxypropyl)-L-lysine | Glycerophosphocholine | Labetalol | 4-Hydroxycinnamoylagmatine | N-Acetylhistidine | Nicotine | Lumichrome | 5-Hydroxyindoleacetic acid | Caprylic acid |
Gamma-Glutamyltyramine | (5-L-Glutamyl)-L-glutamate | Docosapentaenoic acid (22n-3) | Methylmalonic acid | Dibutyl phthalate | L-Methionine S-oxide | Galactosylglycerol | L-Cystine | Threonic acid |
gamma-L-Glutamyl-L-cysteinyl-beta-alanine | Octadecanamide | Picolinic acid | Palustradienal | beta-Selinene | epsilon-(gamma-L-Glutamyl)-L-lysine | Tropate | ||
2-Hydroxy-6-pentadecylbenzoic acid | N-Acetyl-a-neuraminic acid | 2-Pyrocatechuic acid | Androstenedione | L-Kynurenine | Triethyl citrate | beta-D-Glucosamine | ||
Nobiletin | Oleoylethanolamide | Phenylacetylglycine | Sphinganine | Pantetheine | Cyclopeptine | Formylanthranilic acid | ||
Glycochenodeoxycholic acid | dAMP | Phenylacetylglutamine | 8(R)-Hydroperoxylinoleic acid | 3-Ketosphingosine | Linoleic acid | L-3-Phenyllactic acid | ||
Retinoyl b-glucuronide | L-Tryptophan | all-trans-Retinoic acid | beta-Lactose | D-4’-Phosphopantothenate | 2-Hydroxyestrone | N-Acetylleucine | ||
D-Arabitol | N-Acetyl-L-phenylalanine | 5alpha-Cholestanone | CMP | L-Octanoylcarnitine | Myristoleic acid | |||
Suberic acid | 17a-Estradiol | alpha-Tocopherol | Tangeritin | 17-Hydroxyprogesterone | 16-Hydroxy hexadecanoic acid | |||
Deoxyguanosine | Alpha-Linolenic acid | 26-Hydroxyecdysone | Rutin | Lubiprostone | 19(S)-HETE | |||
[8]-Shogaol | Cellobiose | alpha-Ketoisovaleric acid | O-Phosphoethanolamine | Genistin | Arachidonic acid | |||
N-Acetylmuramate | Riboflavin | Betaine | 2-Carboxybenzaldehyde | L-Isoleucine | 9,10-DHOME | |||
Beta-Leucine | Glucuronic acid-3,6-lactone | D-Phenylalanine | Fructose 1,6-bisphosphate | |||||
D-Ribose | Isocitric acid | Carglumic acid | ||||||
1H-Indole-3-carboxaldehyde | Nonadecanoic acid | Palmitoleic acid | ||||||
Mannitol | N-Acetyl-D-Glucosamine 6-Phosphate | Apigenin | ||||||
Gluconic acid | Cyclic AMP | dTMP | ||||||
Thymidine | ATP | |||||||
Xylulose 5-phosphate | ||||||||
Xylitol 5-phosphate | ||||||||
2-Keto-3-deoxy-6-phosphogluconic acid | ||||||||
dGMP | ||||||||
Glycocholic acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Gao, L.; Kang, Y.; Yang, G.; Zhao, Z.; Zhao, Y.; Li, S. Non-Targeted Metabolomics Analysis Reveals Metabolite Profiles Change During Whey Fermentation with Kluyveromyces marxianus. Metabolites 2024, 14, 694. https://doi.org/10.3390/metabo14120694
Gao Y, Gao L, Kang Y, Yang G, Zhao Z, Zhao Y, Li S. Non-Targeted Metabolomics Analysis Reveals Metabolite Profiles Change During Whey Fermentation with Kluyveromyces marxianus. Metabolites. 2024; 14(12):694. https://doi.org/10.3390/metabo14120694
Chicago/Turabian StyleGao, Yansong, Lei Gao, You Kang, Ge Yang, Zijian Zhao, Yujuan Zhao, and Shengyu Li. 2024. "Non-Targeted Metabolomics Analysis Reveals Metabolite Profiles Change During Whey Fermentation with Kluyveromyces marxianus" Metabolites 14, no. 12: 694. https://doi.org/10.3390/metabo14120694
APA StyleGao, Y., Gao, L., Kang, Y., Yang, G., Zhao, Z., Zhao, Y., & Li, S. (2024). Non-Targeted Metabolomics Analysis Reveals Metabolite Profiles Change During Whey Fermentation with Kluyveromyces marxianus. Metabolites, 14(12), 694. https://doi.org/10.3390/metabo14120694