Non-Targeted Metabolomic Profiling Identifies Metabolites with Potential Antimicrobial Activity from an Anaerobic Bacterium Closely Related to Terrisporobacter Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Conditioned Medium (CM)
2.2. Sample Preparation and Chemical Isotope Labelling
2.3. LC-MS Analysis
2.4. Data Processing
2.5. Metabolite Identification and Statistical Analysis
3. Results and Discussion
3.1. Multivariate Analysis of FS03CM and CMGS
3.2. Univariate Analysis of FS03CM from CMGS
3.3. Metabolite Identification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papagianni, M. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol. Adv. 2003, 21, 465–499. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Chen, X.; Zhang, W.; Guo, Y.; Liu, G. Nonribosomal antibacterial peptides isolated from Streptomyces agglomeratus 5-1-3 in the Qinghai-Tibet Plateau. Microb. Cell Factories 2023, 22, 5. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Korpi, A.; Järnberg, J.; Pasanen, A.-L. Microbial volatile organic compounds. Crit. Rev. Toxicol. 2009, 39, 139–193. [Google Scholar] [CrossRef] [PubMed]
- Lemfack, M.C.; Gohlke, B.-O.; Toguem, S.M.T.; Preissner, S.; Piechulla, B.; Preissner, R. mVOC 2.0: A database of microbial volatiles. Nucleic Acids Res. 2017, 46, D1261–D1265. [Google Scholar] [CrossRef]
- Tahir, H.A.S.; Gu, Q.; Wu, H.; Niu, Y.; Huo, R.; Gao, X. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 2017, 7, 40481. [Google Scholar] [CrossRef]
- Gu, Y.-Q.; Mo, M.-H.; Zhou, J.-P.; Zou, C.-S.; Zhang, K.-Q. Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol. Biochem. 2007, 39, 2567–2575. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, X.; Wang, J.; Wu, L.; Zheng, Z.; Yu, Z. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnol. Lett. 2008, 30, 919–923. [Google Scholar] [CrossRef]
- Passmore, I.J.; Letertre, M.P.M.; Preston, M.D.; Bianconi, I.; Harrison, M.A.; Nasher, F.; Kaur, H.; Hong, H.A.; Baines, S.D.; Cutting, S.M.; et al. Para-cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria. PLoS Pathog. 2018, 14, e1007191. [Google Scholar] [CrossRef]
- Watve, M.G.; Tickoo, R.; Jog, M.M.; Bhole, B.D. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 2001, 176, 386–390. [Google Scholar] [CrossRef]
- Pahalagedara, A.S.N.W.; Flint, S.; Palmer, J.; Brightwell, G.; Gupta, T.B. Antimicrobial production by strictly anaerobic Clostridium spp. Int. J. Antimicrob. Agents 2020, 55, 105910. [Google Scholar] [CrossRef] [PubMed]
- Pahalagedara, A.S.N.W.; Flint, S.; Palmer, J.; Subbaraj, A.; Brightwell, G.; Gupta, T.B. Antimicrobial activity of soil Clostridium enriched conditioned media against Bacillus mycoides, Bacillus cereus, and Pseudomonas aeruginosa. Front. Microbiol. 2020, 11, 608998. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases; World Health Organization: Geneva, Switzerland, 2015.
- Yang, S.; Lin, C.; Sung, C.T.; Fang, J. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar] [CrossRef] [PubMed]
- Kraszewska, J.; Beckett, M.C.; James, T.C.; Bond, U. Comparative analysis of the antimicrobial activities of plant defensin-like and ultrashort peptides against food-spoiling bacteria. Appl. Environ. Microbiol. 2016, 82, 4288–4298. [Google Scholar] [CrossRef]
- Cammack, R.; Joannou, C.L.; Cui, X.; Torres Martinez, C.; Maraj, S.R.; Hughes, M.N. Nitrite and nitrosyl compounds in food preservation. Biochim. Et Biophys. Acta (BBA)—Bioenerg. 1999, 1411, 475–488. [Google Scholar] [CrossRef]
- Juneja, V.K.; Sofos, J.N. Control of Foodborne Microorganisms; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Hintz, T.; Matthews, K.K.; Di, R. The use of plant antimicrobial compounds for food preservation. BioMed Res. Int. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci. 2022, 183, 108661. [Google Scholar] [CrossRef]
- Fan, A.M.; Steinberg, V.E. Health implications of nitrate and nitrite in drinking water: An update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol. 1996, 23, 35–43. [Google Scholar] [CrossRef]
- Kennedy, N.; Smith, C.P.; McWhinney, P. Faulty sausage production causing methaemoglobinaemia. Arch. Dis. Child. 1997, 76, 367–368. [Google Scholar] [CrossRef]
- Reis, J.A.; Paula, A.T.; Casarotti, S.N.; Penna, A.L.B. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev. 2012, 4, 124–140. [Google Scholar] [CrossRef]
- Gerritsen, J.; Fuentes, S.; Grievink, W.; van Niftrik, L.; Tindall, B.J.; Timmerman, H.M.; Rijkers, G.T.; Smidt, H. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 1600–1616. [Google Scholar] [CrossRef] [PubMed]
- Gaston, L.W.; Stadtman, E.R. Fermentation of ethylene glycole by Clostridium glycolicum. J. Bacteriol. 1963, 85, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Abrar, S.; Romagnoli, M.; Carroll, K.C. Clostridium glycolicum wound infections: Case reports and review of the literature. J. Clin. Microbiol. 2009, 47, 1599–1601. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liang, Z.; Zhang, Y. Evolution of physicochemical properties and bacterial community in aerobic composting of swine manure based on a patent compost tray. Bioresour. Technol. 2022, 343, 126136. [Google Scholar] [CrossRef]
- Pahalagedara, A.S.N.W.; Jauregui, R.; Maclean, P.; Altermann, E.; Flint, S.; Palmer, J.; Brightwell, G.; Gupta, T.B. Culture and genome-based analysis of four soil Clostridium isolates reveal their potential for antimicrobial production. BMC Genom. 2021, 22, 686. [Google Scholar] [CrossRef]
- Guo, K.; Li, L. High-performance isotope labeling for profiling carboxylic acid-containing metabolites in biofluids by mass spectrometry. Anal. Chem. 2010, 82, 8789–8793. [Google Scholar] [CrossRef]
- Guo, K.; Li, L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal. Chem. 2009, 81, 3919–3932. [Google Scholar] [CrossRef]
- Zhao, S.; Li, H.; Han, W.; Chan, W.; Li, L. Metabolomic coverage of chemical-group-submetabolome analysis: Group classification and four-channel chemical isotope labeling LC-MS. Anal. Chem. 2019, 91, 12108–12115. [Google Scholar] [CrossRef]
- Zhou, R.; Tseng, C.-L.; Huan, T.; Li, L. IsoMS: Automated processing of LC-MS data generated by a chemical isotope labeling metabolomics platform. Anal. Chem. 2014, 86, 4675–4679. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.; Venancio, A.; Abrunhosa, L. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Addit. Contam. Part A 2018, 35, 1803–1818. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, O.O.; Soyer, F. Pseudomonas aeruginosa presents multiple vital changes in its proteome in the presence of 3-hydroxyphenylacetic acid, a promising antimicrobial agent. ACS Omega 2020, 5, 19938–19951. [Google Scholar] [CrossRef] [PubMed]
- Halstead, F.D.; Rauf, M.; Moiemen, N.S.; Bamford, A.; Wearn, C.M.; Fraise, A.P.; Lund, P.A.; Oppenheim, B.A.; Webber, M.A. The antibacterial activity of acetic acid against biofilm-producing pathogens of relevance to burns patients. PLoS ONE 2015, 10, e0136190. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.B.; Alimova, Y.; Myers, T.M.; Ebersole, J.L. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol 2011, 56, 650–654. [Google Scholar] [CrossRef]
- Takahama, U.; Ansai, T.; Hirota, S. Chapter Four—Nitrogen oxides toxicology of the aerodigestive tract. In Advances in Molecular Toxicology; Fishbein, J.C., Heilman, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 7, pp. 129–177. [Google Scholar]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2021, 50, D622–D631. [Google Scholar] [CrossRef]
- Tammali, R.; Seenayya, G.; Reddy, G. Fermentation of cellulose to acetic acid by Clostridium lentocellum SG6: Induction of sporulation and effect of buffering agent on acetic acid production. Lett. Appl. Microbiol. 2003, 37, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.A. Chapter 20—Thermal processing for food sterilization and preservation. In Handbook of Farm, Dairy and Food Machinery Engineering, 3rd ed.; Kutz, M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 499–523. [Google Scholar]
- EFSA Panel on Food Contact Materials, E.; Aids, P.; Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Brüschweiler, B.J.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; et al. Evaluation of the safety and efficacy of the organic acids lactic and acetic acids to reduce microbiological surface contamination on pork carcasses and pork cuts. Efsa J. 2018, 16, e05482. [Google Scholar] [CrossRef]
- Heimann, E.; Nyman, M.; Pålbrink, A.-K.; Lindkvist-Petersson, K.; Degerman, E. Branched short-chain fatty acids modulate glucose and lipid metabolism in primary adipocytes. Adipocyte 2016, 5, 359–368. [Google Scholar] [CrossRef]
- Petrognani, C.; Boon, N.; Ganigué, R. Production of isobutyric acid from methanol by Clostridium luticellarii. Green Chem. 2020, 22, 8389–8402. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Isobutyric Acid. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&id=ISOBUTYRICACID (accessed on 2 May 2021).
- Stadtman, E.R.; Stadtman, T.C.; Barker, H.A. Tracer experiments on the mechanism of synthesis of valeric and caproic acids by Clostridium kluyveri. J. Biol. Chem. 1949, 178, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Gio-Batta, M.; Sjöberg, F.; Jonsson, K.; Barman, M.; Lundell, A.-C.; Adlerberth, I.; Hesselmar, B.; Sandberg, A.-S.; Wold, A.E. Fecal short chain fatty acids in children living on farms and a link between valeric acid and protection from eczema. Sci. Rep. 2020, 10, 22449. [Google Scholar] [CrossRef]
- Rasmussen, H.S.; Holtug, K.; Mortensen, P.B. Degradation of amino acids to short-chain fatty acids in humans: An in vitro study. Scand. J. Gastroenterol. 1988, 23, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Kovanda, L.; Zhang, W.; Wei, X.; Luo, J.; Wu, X.; Atwill, E.R.; Vaessen, S.; Li, X.; Liu, Y. In vitro antimicrobial activities of organic acids and their derivatives on several species of Gram-negative and Gram-positive bacteria. Molecules 2019, 24, 3770. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.B.; Van Benschoten, A.H.; Cimermancic, P.; Donia, M.S.; Zimmermann, M.; Taketani, M.; Ishihara, A.; Kashyap, P.C.; Fraser, J.S.; Fischbach, M.A. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 2014, 16, 495–503. [Google Scholar] [CrossRef]
- Scott-Ham, M.; Stark, M.M. Substance misuse: Legal highs. In Encyclopedia of Forensic and Legal Medicine, 2nd ed.; Payne-James, J., Byard, R.W., Eds.; Elsevier: Oxford, UK, 2016; pp. 394–399. [Google Scholar]
- Campos, P.; Pichon, E.; Moriou, C.; Clerc, P.; Trépos, R.; Frederich, M.; De Voogd, N.; Hellio, C.; Gauvin-Bialecki, A.; Al-Mourabit, A. New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata. Mar. Drugs 2019, 17, 167. [Google Scholar]
- Chandrika, K.; Ian, M. Inhibition of yeast growth by tryptamine and recovery with tryptophan. Curr. Bioact. Compd. 2020, 16, 48–52. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Y.; Yang, G.; Zhang, Q.; Meng, L.; Xin, Y.; Jiang, X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol. Res. 2021, 165, 105420. [Google Scholar] [CrossRef]
- Caponio, G.R.; Celano, G.; Calabrese, F.M.; Riezzo, G.; Orlando, A.; D’Attoma, B.; Ignazzi, A.; Vacca, M.; Porrelli, A.; Tutino, V.; et al. Evaluation of the effects of the tritordeum-based diet compared to the low-FODMAPs diet on the fecal metabolome of IBS-D patients: A preliminary investigation. Nutrients 2022, 14, 4628. [Google Scholar] [CrossRef]
- Calabrese, F.M.; Disciglio, V.; Franco, I.; Sorino, P.; Bonfiglio, C.; Bianco, A.; Campanella, A.; Lippolis, T.; Pesole, P.L.; Polignano, M.; et al. A low glycemic index mediterranean diet combined with aerobic physical activity rearranges the gut microbiota signature in NAFLD patients. Nutrients 2022, 14, 1773. [Google Scholar]
- Usta-Gorgun, B.; Yilmaz-Ersan, L. Short-chain fatty acids production by Bifidobacterium species in the presence of salep. Electron. J. Biotechnol. 2020, 47, 29–35. [Google Scholar] [CrossRef]
- Markowiak-Kopeć, P.; Śliżewska, K. The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillor, O.; Etzion, A.; Riley, M.A. The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. Biotechnol. 2008, 81, 591–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Ngo, H.; Wu, C. Natural and bio-based antimicrobials: A review. In Natural and Bio-Based Antimicrobials for Food Applications; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2018; Volume 1287, pp. 1–24. [Google Scholar]
External Identifier | Compound Name | Neutral Mass (Da) | Normalized RT (s) |
---|---|---|---|
C02043 | Indolelactate | 205.0722 | 320.7 |
C05629 | Hydrocinnamic Acid | 150.0686 | 426.5 |
C05145 | 3-Aminoisobutanoic Acid | 103.0625 | 208.7 |
C05984 | 2-Hydroxyglutaric Acid | 148.0361 | 340.7 |
C01620 | Threonic Acid | 136.0387 | 130 |
C00327 | Citrulline | 175.0963 | 222.1 |
C00954 | Indoleacetic Acid | 175.0631 | 364.6 |
HMDB0029005 | Phenylalanyl-Threonine | 266.1259 | 530.6 |
C00398 | Tryptamine | 160.1009 | 1070.7 |
C00346 | O-Phosphoethanolamine | 141.0197 | 121.4 |
C00632 | 3-Hydroxyanthranilic acid | 153.0422 | 1070.4 |
C00334 | Gamma-Aminobutyric Acid | 103.0622 | 176.2 |
C00803 | Valeric Acid | 102.0689 | 404.9 |
C05852 | 3-Hydroxyphenylacetic acid | 152.0483 | 990.4 |
C00431 | 5-Aminopentanoic acid | 117.0803 | 513.2 |
C05852 | Ortho-Hydroxyphenylacetic acid | 152.0471 | 980.7 |
C00099 | Beta-Alanine | 89.0481 | 430.3 |
C02632 | Isobutyric Acid | 88.053 | 352.6 |
C00232 | Succinic Semialdehyde | 102.0319 | 226.9 |
HMDB0000479 | 3-Methylhistidine | 169.0846 | 121.9 |
C00020 | Adenosine monophosphate | 347.0643 | 110.2 |
C00064 | Glutamine | 146.0689 | 216.8 |
C00262 | Hypoxanthine | 136.0392 | 545.6 |
C00033 | Acetic Acid | 60.021 | 247.6 |
C03672 | Hydroxyphenyllactici acid | 182.0573 | 837.3 |
C00666 | Diaminopimelic acid | 190.094 | 740 |
HMDB0000678 | N-Isovaleroylglycine | 159.0887 | 260.5 |
C02372 | 4-Aminophenol | 109.0511 | 1473.3 |
HMDB0028991 | Phenylalanyl-Aspartate | 280.1052 | 493.6 |
C01732 | Mesaconic Acid | 130.0261 | 441.4 |
C00642 | Parahydroxyphenylacetic Acid | 152.0478 | 291.7 |
HMDB0000866 | N-Acetyl-Tyrosine | 223.083 | 227.3 |
C01161 | 3,4-Dihydroxybenzeneacetic acid | 168.0427 | 1422.5 |
C2136 | 2-Hydroxybutyric Acid | 104.0472 | 243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pahalagedara, A.S.N.W.; Flint, S.; Palmer, J.; Brightwell, G.; Luo, X.; Li, L.; Gupta, T.B. Non-Targeted Metabolomic Profiling Identifies Metabolites with Potential Antimicrobial Activity from an Anaerobic Bacterium Closely Related to Terrisporobacter Species. Metabolites 2023, 13, 252. https://doi.org/10.3390/metabo13020252
Pahalagedara ASNW, Flint S, Palmer J, Brightwell G, Luo X, Li L, Gupta TB. Non-Targeted Metabolomic Profiling Identifies Metabolites with Potential Antimicrobial Activity from an Anaerobic Bacterium Closely Related to Terrisporobacter Species. Metabolites. 2023; 13(2):252. https://doi.org/10.3390/metabo13020252
Chicago/Turabian StylePahalagedara, Amila S. N. W., Steve Flint, Jon Palmer, Gale Brightwell, Xian Luo, Liang Li, and Tanushree B. Gupta. 2023. "Non-Targeted Metabolomic Profiling Identifies Metabolites with Potential Antimicrobial Activity from an Anaerobic Bacterium Closely Related to Terrisporobacter Species" Metabolites 13, no. 2: 252. https://doi.org/10.3390/metabo13020252
APA StylePahalagedara, A. S. N. W., Flint, S., Palmer, J., Brightwell, G., Luo, X., Li, L., & Gupta, T. B. (2023). Non-Targeted Metabolomic Profiling Identifies Metabolites with Potential Antimicrobial Activity from an Anaerobic Bacterium Closely Related to Terrisporobacter Species. Metabolites, 13(2), 252. https://doi.org/10.3390/metabo13020252