Metabolome Features of COPD: A Scoping Review
Abstract
:1. Introduction
2. Results
2.1. Metabolome Features of COPD vs. Controls
2.1.1. COPD Status Based on Spirometric Assessment of Lung Function
2.1.2. Evidence from Other Smaller Studies of Metabolite Classes Associated with COPD
Carnitines
Lipids (Sphingolipids: Ceramides, Glycophospholipids)
Amino Acids
TCA Cycle
Lipoproteins
Other Small Molecules
2.1.3. Metabolomic Signatures of COPD in Other Compartments
BALF
EB, EBC, and eNOSE
Oxidative and Nitrative Stress Markers
Fecal Metabolome
2.2. Reduced Lung Function
2.3. Emphysema
2.4. Exacerbation Frequency and Severity
2.5. Other Outcomes
Metabolite Endotyping
3. Discussion
4. Materials and Methods
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Hardie, J.; Buist, A.; Vollmer, W.; Ellingsen, I.; Bakke, P.; Morkve, O. Risk of over-diagnosis of COPD in asymptomatic elderly never-smokers. Eur. Respir. J. 2002, 20, 1117–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, F.; Derkach, A.; Freedman, N.D.; Landi, M.T.; Albanes, D.; Weinstein, S.J.; Mondul, A.M.; Matthews, C.E.; Guertin, K.A.; Xiao, Q.; et al. Cigarette smoking behaviour and blood metabolomics. Int. J. Epidemiol. 2016, 45, 1421–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowerman, K.L.; Rehman, S.F.; Vaughan, A.; Lachner, N.; Budden, K.F.; Kim, R.Y.; Wood, D.L.A.; Gellatly, S.L.; Shukla, S.D.; Wood, L.G.; et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat. Commun. 2020, 11, 5886. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Oh, J.Y.; Rhee, C.K.; Park, S.J.; Shim, J.J.; Cho, J.Y. Metabolic Fingerprinting Uncovers the Distinction Between the Phenotypes of Tuberculosis Associated COPD and Smoking-Induced COPD. Front. Med. 2021, 8, 619077. [Google Scholar] [CrossRef]
- McClay, J.L.; Adkins, D.E.; Isern, N.G.; O’Connell, T.M.; Wooten, J.B.; Zedler, B.K.; Dasika, M.S.; Webb, B.T.; Webb-Robertson, B.-J.; Pounds, J.G.; et al. 1H Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function. J. Proteome Res. 2010, 9, 3083–3090. [Google Scholar] [CrossRef]
- Wang, L.; Tang, Y.; Liu, S.; Mao, S.; Ling, Y.; Liu, D.; He, X.; Wang, X. Metabonomic Profiling of Serum and Urine by 1H NMR-Based Spectroscopy Discriminates Patients with Chronic Obstructive Pulmonary Disease and Healthy Individuals. PLoS ONE 2013, 8, e65675. [Google Scholar] [CrossRef] [Green Version]
- Bowler, R.P.; Wendt, C.H.; Fessler, M.B.; Foster, M.W.; Kelly, R.S.; Lasky-Su, J.; Rogers, A.J.; Stringer, K.A.; Winston, B.W. New Strategies and Challenges in Lung Proteomics and Metabolomics. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2017, 14, 1721–1743. [Google Scholar] [CrossRef]
- Regan, E.A.; Hokanson, J.E.; Murphy, J.R.; Make, B.; Lynch, D.A.; Beaty, T.H.; Curran-Everett, D.; Silverman, E.K.; Crapo, J.D. Genetic epidemiology of COPD (COPDGene) study design. COPD 2010, 7, 32–43. [Google Scholar] [CrossRef]
- Couper, D.; LaVange, L.M.; Han, M.; Barr, R.G.; Bleecker, E.; Hoffman, E.A.; Kanner, R.; Kleerup, E.; Martinez, F.J.; Woodruff, P.G.; et al. Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). Thorax 2014, 69, 492–495. [Google Scholar] [CrossRef] [Green Version]
- Vestbo, J.; Anderson, W.; Coxson, H.O.; Crim, C.; Dawber, F.; Edwards, L.; Hagan, G.; Knobil, K.; Lomas, D.A.; MacNee, W.; et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). Eur. Respir. J. 2008, 31, 869–873. [Google Scholar] [CrossRef] [Green Version]
- Kohler, M.; Sandberg, A.; Kjellqvist, S.; Thomas, A.; Karimi, R.; Nyren, S.; Eklund, A.; Thevis, M.; Sköld, C.M.; Wheelock, M. Gender differences in the bronchoalveolar lavage cell proteome of patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 2013, 131, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Prokić, I.; Lahousse, L.; De Vries, M.; Liu, J.; Kalaoja, M.; Vonk, J.M.; van der Plaat, D.A.; Van Diemen, C.C.; Van Der Spek, A.; Zhernakova, A.; et al. A cross-omics integrative study of metabolic signatures of chronic obstructive pulmonary disease. BMC Pulm. Med. 2020, 20, 193. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Flexeder, C.; McGarrah, R.W., 3rd; Wyss, A.; Morrison, A.C.; North, K.E.; Boerwinkle, E.; Kastenmüller, G.; Gieger, C.; Suhre, K.; et al. Metabolomics Identifies Novel Blood Biomarkers of Pulmonary Function and COPD in the General Population. Metabolites 2019, 9, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillenwater, L.A.; Kechris, K.J.; Pratte, K.A.; Reisdorph, N.; Petrache, I.; Labaki, W.W.; O’Neal, W.; Krishnan, J.A.; Ortega, V.E.; DeMeo, D.L.; et al. Metabolomic Profiling Reveals Sex Specific Associations with Chronic Obstructive Pulmonary Disease and Emphysema. Metabolites 2021, 11, 161. [Google Scholar] [CrossRef]
- Naz, S.; Kolmert, J.; Yang, M.; Reinke, S.N.; Kamleh, M.A.; Snowden, S.; Heyder, T.; Levänen, B.; Erle, D.J.; Sköld, C.M.; et al. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur. Respir. J. 2017, 49, 1602322. [Google Scholar] [CrossRef] [Green Version]
- Callejón-Leblic, B.; Pereira-Vega, A.; Vázquez-Gandullo, E.; Sánchez-Ramos, J.; Gómez-Ariza, J.; García-Barrera, T. Study of the metabolomic relationship between lung cancer and chronic obstructive pulmonary disease based on direct infusion mass spectrometry. Biochimie 2019, 157, 111–122. [Google Scholar] [CrossRef]
- Berdyshev, E.V.; Serban, K.A.; Schweitzer, K.S.; Bronova, I.A.; Mikosz, A.; Petrache, I. Ceramide and sphingosine-1 phosphate in COPD lungs. Thorax 2021, 76, 821–825. [Google Scholar] [CrossRef]
- Titz, B.; Luettich, K.; Leroy, P.; Boue, S.; Vuillaume, G.; Vihervaara, T.; Ekroos, K.; Martin, F.; Peitsch, M.C.; Hoeng, J. Alterations in Serum Polyunsaturated Fatty Acids and Eicosanoids in Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease (COPD). Int. J. Mol. Sci. 2016, 17, 1583. [Google Scholar] [CrossRef] [Green Version]
- Kilk, K.; Aug, A.; Ottas, A.; Soomets, U.; Altraja, S.; Altraja, A. Phenotyping of Chronic Obstructive Pulmonary Disease Based on the Integration of Metabolomes and Clinical Characteristics. Int. J. Mol. Sci. 2018, 19, 666. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Meister, M.; Zhang, S.; Vong, C.-I.; Wang, S.; Fang, R.; Li, L.; Wang, P.G.; Massion, P.; Ji, X. Identification of lipid biomarker from serum in patients with chronic obstructive pulmonary disease. Respir. Res. 2020, 21, 242. [Google Scholar] [CrossRef]
- Diao, W.; Labaki, W.W.; Han, M.K.; Yeomans, L.; Sun, Y.; Smiley, Z.; Kim, J.H.; McHugh, C.; Xiang, P.; Shen, N.; et al. Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 2015–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Hu, Y.; Dong, L.; Shu, Q.; Zhu, M.; Li, Y.; Chen, C.; Gao, H.; Yang, L. Predictive diagnosis of chronic obstructive pulmonary disease using serum metabolic biomarkers and least-squares support vector machine. J. Clin. Lab. Anal. 2021, 35, e23641. [Google Scholar] [CrossRef] [PubMed]
- Ubhi, B.K.; Riley, J.H.; Shaw, P.A.; Lomas, D.A.; Tal-Singer, R.; MacNee, W.; Griffin, J.L.; Connor, S.C. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur. Respir. J. 2012, 40, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertini, I.; Luchinat, C.; Miniati, M.; Monti, S.; Tenori, L. Phenotyping COPD by 1H NMR metabolomics of exhaled breath condensate. Metabolomics 2013, 10, 302–311. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Q.; Liu, C.; Pang, R.; Yin, Y. Plasma Metabolomics and Lipidomics Reveal Perturbed Metabolites in Different Disease Stages of Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Esther, C.R.; O’Neal, W.K.; Anderson, W.H.; Kesimer, M.; Ceppe, A.; Doerschuk, C.M.; Alexis, N.E.; Hastie, A.T.; Barr, R.G.; Bowler, R.P.; et al. Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in COPD. Chest 2021, 161, 1239–1249. [Google Scholar] [CrossRef]
- Ubhi, B.K.; Cheng, K.K.; Dong, J.; Janowitz, T.; Jodrell, D.; Tal-Singer, R.; MacNee, W.; Lomas, D.A.; Riley, J.H.; Griffin, J.L.; et al. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. Mol. BioSyst. 2012, 8, 3125–3133. [Google Scholar] [CrossRef]
- Pinto-Plata, V.; Casanova, C.; Divo, M.; Tesfaigzi, Y.; Calhoun, V.; Sui, J.; Polverino, F.; Priolo, C.; Petersen, H.; De Torres, J.P.; et al. Plasma metabolomics and clinical predictors of survival differences in COPD patients. Respir. Res. 2019, 20, 219. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Zeng, Y.; Lin, R.; Qu, H.-Q.; Zhang, T.; Zhang, X.D.; Liang, Y.; Zhen, Y.; Chen, H.; Huang, Z.; et al. Metabolomic profiling of anaerobic and aerobic energy metabolic pathways in chronic obstructive pulmonary disease. Exp. Biol. Med. 2021, 246, 1586–1596. [Google Scholar] [CrossRef]
- Celejewska-Wójcik, N.; Kania, A.; Górka, K.; Nastałek, P.; Wójcik, K.; Gielicz, A.; Mastalerz, L.; Sanak, M.; Sładek, K. Eicosanoids and Eosinophilic Inflammation of Airways in Stable COPD. Int. J. Chronic Obs. Pulm. Dis. 2021, 16, 1415–1424. [Google Scholar] [CrossRef]
- Chen, Q.; Deeb, R.S.; Ma, Y.; Staudt, M.R.; Crystal, R.G.; Gross, S.S. Serum Metabolite Biomarkers Discriminate Healthy Smokers from COPD Smokers. PLoS ONE 2015, 10, e0143937. [Google Scholar] [CrossRef] [PubMed]
- Balgoma, D.; Yang, M.; Sjödin, M.; Snowden, S.; Karimi, R.; Levänen, B.; Merikallio, H.; Kaarteenaho, R.; Palmberg, L.; Larsson, K.; et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. Eur. Respir. J. 2016, 47, 1645–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazzola, M.; Segreti, A.; Capuano, R.; Bergamini, A.; Martinelli, E.; Calzetta, L.; Rogliani, P.; Ciaprini, C.; Ora, J.; Paolesse, R.; et al. Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD Res. Pract. 2015, 1, 277. [Google Scholar] [CrossRef] [Green Version]
- Gaida, A.; Holz, O.; Nell, C.; Schuchardt, S.; Lavae-Mokhtari, B.; Kruse, L.; Boas, U.; Langejuergen, J.; Allers, M.; Zimmermann, S.; et al. A dual center study to compare breath volatile organic compounds from smokers and non-smokers with and without COPD. J. Breath Res. 2016, 10, 026006. [Google Scholar] [CrossRef]
- Westhoff, M.; Litterst, P.; Maddula, S.; Bödeker, B.; Rahmann, S.; Davies, A.N.; Baumbach, J.I. Differentiation of chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control group by breath analysis using ion mobility spectrometry. Int. J. Ion Mobil. Spectrom. 2010, 13, 131–139. [Google Scholar] [CrossRef]
- Bregy, L.; Nussbaumer-Ochsner, Y.; Sinues, P.; García-Gómez, D.; Suter, Y.; Gaisl, T.; Stebler, N.; Gaugg, M.T.; Kohler, M.; Zenobi, R. Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath. Clin. Mass Spectrom. 2018, 7, 29–35. [Google Scholar] [CrossRef]
- Rodríguez-Aguilar, M.; Ramírez-García, S.; Ilizaliturri-Hernández, C.; Gómez-Gómez, A.; Van-Brussel, E.; Díaz-Barriga, F.; Medellín-Garibay, S.; Flores-Ramírez, R. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Biomed. Chromatogr. 2019, 33, e4684. [Google Scholar] [CrossRef]
- Gillenwater, L.A.; Pratte, K.A.; Hobbs, B.D.; Cho, M.H.; Zhuang, Y.; Halper-Stromberg, E.; Cruickshank-Quinn, C.; Reisdorph, N.; Petrache, I.; Labaki, W.W.; et al. Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules. Netw. Syst. Med. 2020, 3, 159–181. [Google Scholar] [CrossRef]
- Cruickshank-Quinn, C.; Jacobson, S.; Hughes, G.; Powell, R.L.; Petrache, I.; Kechris, K.; Bowler, R.; Reisdorph, N. Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD. Sci. Rep. 2018, 8, 17132. [Google Scholar] [CrossRef]
- Halper-Stromberg, E.; Gillenwater, L.; Cruickshank-Quinn, C.; O’Neal, W.K.; Reisdorph, N.; Petrache, I.; Zhuang, Y.; Labaki, W.W.; Curtis, J.L.; Wells, J.; et al. Bronchoalveolar Lavage Fluid from COPD Patients Reveals More Compounds Associated with Disease than Matched Plasma. Metabolites 2019, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Mastej, E.; Gillenwater, L.; Zhuang, Y.; Pratte, K.A.; Bowler, R.P.; Kechris, K. Identifying Protein–metabolite Networks Associated with COPD Phenotypes. Metabolites 2020, 10, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LLabaki, W.W.; Gu, T.; Murray, S.; Curtis, J.L.; Yeomans, L.; Bowler, R.P.; Barr, R.G.; Comellas, A.P.; Hansel, N.N.; Cooper, C.B.; et al. Serum amino acid concentrations and clinical outcomes in smokers: SPIROMICS metabolomics study. Sci. Rep. 2019, 9, 11367. [Google Scholar] [CrossRef] [PubMed]
- Bowler, R.P.; Jacobson, S.; Cruickshank, C.; Hughes, G.J.; Siska, C.; Ory, D.S.; Petrache, I.; Schaffer, J.E.; Reisdorph, N.; Kechris, K. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am. J. Respir. Crit. Care Med. 2015, 191, 275–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillenwater, L.A.; Helmi, S.; Stene, E.; Pratte, K.A.; Zhuang, Y.; Schuyler, R.P.; Lange, L.; Castaldi, P.J.; Hersh, C.P.; Banaei-Kashani, F.; et al. Multi-omics subtyping pipeline for chronic obstructive pulmonary disease. PLoS ONE 2021, 16, e0255337. [Google Scholar] [CrossRef]
- Lee, S.H.; Park, S.; Kim, H.-S.; Jung, B.H. Metabolomic approaches to the normal aging process. Metabolomics 2014, 10, 1268–1292. [Google Scholar] [CrossRef]
- Harzing, A.W. Publish or Perish. 2007. Available online: https://harzing.com/resources/publish-or-perish (accessed on 14 February 2022).
Outcome | Authors | Title | Sample Description | Analytic Platform | Sample Type | Top 5 Positive Metabolite Associations | Top 5 Negative Metabolite Associations | Pathways Identified |
---|---|---|---|---|---|---|---|---|
COPD vs. Healthy Control | Bertini et al. | Phenotyping COPD by 1H NMR metabolomics of exhaled breath condensate | 37 COPD/25 controls 67.7% male 70/56 yrs (COPD/HC) | NMR | EBC | lactate; acetate; propionate, serine, proline; tyrosine | acetone; valine; lysine | |
COPD vs. Healthy Control | Bowerman et al. | Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease | 28 COPD/29 HC 39.9% male 67/60 yrs (COPD/HC) | LC-MS | Feces | N-acetyl-cadaverine; N-acetyltaurine; cotinine; N-carboxymethylalanine; asmol | N-acetylglutamate; 6-oxopiperidine-2-carboxylate; N-acetyltaurine; N-acetylproline; gamma-glutamylglutamate | |
COPD vs. Healthy Control | Bregy et al. | Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath | 22 COPD/14 controls 61.1% male 58.6/58.1 yrs (COPD/HC) | SESI-HRMS | EBC | 2-hydroxyisobutyric acid; Aspartic acid semialdehyde; Acetohydroxybutanoic acid; 2-oxoglutaric acid semialdehyde | Pyridine; 11-hydroxyundecanoic acid; (+)-γ-hydroxy-L-homoarginine; Oxo-tetradecenoic acid; Hexadecatrienoic acid | |
COPD vs. Healthy Control | Callejon-Leblic et al. | Study of the metabolomic relationship between lung cancer and chronic obstructive pulmonary disease based on direct infusion mass spectrometry | 30 COPD/30 HC/30 Lung Cancer 71.1% male 67/56/66 yrs (LC/HC/COPD) | DI-ESI-QTOF-MS | Serum | Acetic acid; Adenine; Dopamine; Phenylalanine; Arginine | Pyroglutamate; Aspartic acid; Creatine; Ornithine; Glutathione | |
COPD vs. Healthy Control | Cazzola et al. | Analysis of exhaled breath fingerprints and volatile organic compounds in COPD | 27 COPD/7 HC 79.4% male 72/27 yrs (COPD/HC) | Enose GC-MS | EBC | Decane; 6-ethyl-2-methyl-Decane | 1,3,5-tri-tert-butyl-Benzene; Butylated hydroxytoluene; 3-ethyl-4-methyl-Hexane; Hexyl ethylphosphonofluoridate; Limonene | |
COPD vs. Healthy Control | Celejewska-Wójcik et al. | Eicosanoids and Eosinophilic Inflammation of Airways in Stable COPD | 76 COPD/37 HC 68% male 65 years (mean age) | GC-MS HPLC-MS | Sputum | LTE4; LTD4; PGE2; PGD2; 8-izo-PGE2 | Tetranor-PGE-M; Tetranor-PGD-M | |
COPD vs. Healthy Control | Chen et. al. | Serum Metabolite Biomarkers Discriminate Healthy Smokers from COPD Smokers | 41 COPD Smoker/37 Healthy Smoker/37 Healthy Non-Smoker 78% male 39.5/41.8/53.2 yrs (HC/Smoker/COPD) | LC-MS | Fasting Serum | Cotinine; 3-Hydroxycotinine; Unknown 1; Quinic acid; PI(32:2) | ||
COPD vs. Healthy Control | Esther et al. | Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in Chronic Obstructive Pulmonary Disease | SPIROMICS cohort 77 HC/341 smokers preserved spirometry/562 COPD 53% male 55.4/59.6/65 yrs (HC/Smokers/COPD) | UPLC-MS | Sputum | Sialic Acid; Hypoxanthine; Xanthine; Methylthioadenosine; Adenine | ||
COPD vs. Healthy Control | Gillenwater et al. | Metabolomic Profiling Reveals Sex Specific Associations with Chronic Obstructive Pulmonary Disease and Emphysema | COPDGene Cohort: n = 839; 51.7% male; 67 yrs SPIROMICS Cohort: n = 446; 52% male; 64.5 yrs | LC-MS (Metabolon) | Plasma | Network Module (female): Ceramides, Sphingomyelins Network Module (Male): Steroids (Androgenic, Pregnenolone, Corticosteroids, Progestin)) Network Module (Male & COPD): Ceramides, Sphingomyelins Males: ceramide (d18:1/17:0, d17:1/18:0); octadecenedioate (C18:1-DC); N-stearoyl-sphingosine (d18:1/18:0) Males & Females: 4 acyl carnitines. | Network Module (COPD): Diacylglycerols, Phosphatidylethanolamines (PE), Acyl Carnitines Network Module (COPD): Amino Acids, Bile Acids, Acyl Cholines, Lysophospholipids Males & Females: retinol (Vitamin A); phosphocholine; ergothionene; 3-formylindole Male & COPD: sphingomyelins Female & COPD: phosphatidylethanolamines; acyl carnitines Opposite Direction By Sex: ceramide (d18:1/17:0, d17:1/18:0) | |
COPD vs. Healthy Control | Kilk et al. | Phenotyping of Chronic Obstructive Pulmonary Disease Based on the Integration of Metabolomes and Clinical Characteristics | 25 COPD; 21 HC 73.9% male 67/37 yrs (COPD/HC) | Untargeted: Electrospray ionization MS Targeted: HPLC-MS | EBC Serum | Ala; Arg; Gln; Orn; Phe | acylcarnitine C10; acylcarnitine C16:1; acylcarnitine C18; Ser; lysoPC a C18:0 | |
COPD vs. Healthy Control | Kim et al. | Metabolic Fingerprinting Uncovers the Distinction Between the Phenotypes of Tuberculosis Associated COPD and Smoking-Induced COPD | 59 T-COPD (TB)/70 S-COPD 39 healthy controls 100% male 66/68/55 yrs (TB/COPD/HC) | LC-QTOF-MS LC-MS/MS | Plasma Urine | Acylcarnitines C12; Acylcarnitines C141; Acylcarnitines C161; Acylcarnitines C10; Acylcarnitines C121 | lysoPC a C182; H1; PC aa C342; Pro; alpha-AAA | |
COPD vs. Healthy Control | Liu et al. | Identification of lipid biomarker from serum in patients with COPD | 20 COPD/5 Control 60% males 65.8/69.3 yrs (COPD/HC) | ESI-MS | Serum | C16:E1; TAG(54:6); PC(32:1); SM(22:0); ePS(40:5) Ratios: C16:1 CE/C19:0 CE; PC(40:4)/ePC(38:2) | ePE(34:2); ePS(38:3); LPE(20:2); PI(36:6); PI(44:6) Ratios: PI(38:4)/C16:1 CE; PI(36:2)/C16:1 CE; ePC(38:2)/C16:1 CE; LPC(18:0)/C20:3 CE; LPC(16:1)/C16:1 CE | |
COPD vs. Healthy Control | Prokić et al. | A cross-omics integrative study of metabolic signatures of chronic obstructive pulmonary disease | Discovery: 4948 Rotterdam Study (44.2% male; 70.3 yrs); 609 Erasmus Rucphen Family study (44.2% male; 49 yrs) Validation: 717 Lifelines-DEEP study (43.7% male; 46 yrs); 11,498 FINRISK (47.7% male 49.7 yrs); 854 Prospective Investigation of the Vasculature in Uppsala Seniors (51.8% male; 70 yrs) | NMR | Fasting Plasma | Discovery: Glycoprotein acetyls; 3-hydroxybutyrate; Free cholesterol in med. HDL; Acetoacetate Validation: Glycoprotein acetyls | Discovery: Histidine; Acetoacetate | |
COPD vs. Healthy Control | Rodríguez-Aguilar et al. | Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study | 23 COPD/33 HC 48.2% male 67.7/55.6 yrs (COPD/HC) | eNose (ultrafast GC) | Fasting Exhaled Breath | Alpha-pinene; Acetaldehyde; 2-Butyl octanol; Octane; Methyl isobutyrate | Delta-dodecalactone; 2-Methylbutanoic acid; Indole; 2-Acetylpyridine; Tetradecane; [E]-Cinnamaldehyde | |
COPD vs. Healthy Control | Titz et al. | Alterations in Serum Polyunsaturated Fatty Acids and Eicosanoids in Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease (COPD) | 39 Never-Smokers/39 Current Smokers/39 COPD/38 Former Smokers 55.5% males 55.8/55.5/57.9/57.1 yrs (NS/S/COPD/FS) | 4 MS platforms: shotgun; triacylglycerol; ceramide and cerebroside; eicosanoid lipidomics; | Serum | CE16:1; Cer(d18:1/22:1); DAG 18:1/18:1; DAG 16:0/18:1; 15-HETrE Clusters: (HODE); (CE; PC; LPC/LPE [x/20:5]; DHA/EPA) | triacylglycerols (TAGs), diacylglycerols (DAGs), and phosphatidylethanolamines (Pes) | |
COPD vs. Healthy Control | Wang et al. | Metabonomic Profiling of Serum and Urine by 1H NMRBased Spectroscopy Discriminates Patients with Chronic Obstructive Pulmonary Disease and Healthy Individuals | 32 COPD/21 HC 56.6% male 71/63 yrs (COPD/HC) | NMR | Serum | Glycerolphosphocholine | Alanine; Isoleucine; CH3-(CH2)n-HDL; Leucine | |
COPD vs. Healthy Control | Wang et al. | Metabonomic Profiling of Serum and Urine by 1H NMRBased Spectroscopy Discriminates Patients with Chronic Obstructive Pulmonary Disease and Healthy Individuals | 32 COPD/21 HC 56.6% male 71/63 yrs (COPD/HC) | NMR | Urine | Acetate; Acetoacetate; Acetone; Carnosine; m-Hydroxyphenylacetate | 1-methylnicotinamide; Creatinine; Lactate | |
COPD vs. Healthy Control | Westhoff et al. | Differentiation of chronic obstructive pulmonary disease (COPD) including lung cancer from healthy control group by breath analysis using ion mobility spectrometry | 97 COPD (35 w/Bronchial Carcinoma; 62 w/o)/35 HC No other details provided | IMS-MCC | Exhaled Breathe | cyclohexanone | ||
COPD vs. Healthy Control | Zheng et al. | Predictive diagnosis of chronic obstructive pulmonary disease using serum metabolic biomarkers and least-squares support vector machine | 54 COPD/74 HC 60.9% male 71.3/65.1 yrs (COPD/HC) | NMR | Fasting Serum | formate | N-acetyl-glycoprotein, lipoproteins mainly including LDL and VLDL, pUFA, glucose, alanine | |
COPD vs. Healthy Control | Zhou et al. | Plasma Metabolomics and Lipidomics Reveal Perturbed Metabolites in Different Disease Stages of Chronic Obstructive Pulmonary Disease | 48 HC/48 Stable COPD/48 AECOPD 79.2% male 63.7/67.3/66.2 yrs (HC/S-COPD/AECOPD) | LC-MS | Fasting Plasma | Xanthine; Dimethylglycine; Phenylalanine; D-Alanyl-D-alanine; Cysteinylglycine | Leucine; Oxazepam; L-Tryptopha; Serotonin; gama-Glutamylleucine | Aminoacyl-tRNA biosynthesis; Nitrogen metabolism; valine, leucine and isoleucine biosynthesis; arginine and proline metabolism; glycerine, serine, and threonine metabolism; phenylalanine metabolism; Pantothenate and CoA biosynthesis; Beta-alanine metabolism |
COPD (non-survivors) vs. Healthy Control | Pinto-Plata et al. | Plasma metaoblomics and clinical predictors of survival differences in COPD patients | 90 COPD/30 Controls 66% males 68.7/68 yrs (COPD/HC) | LC-MS GC-MS | Plasma | 2-ethylhexanoate; bradykinin, des-arg (9); Hexadecanedioate; Fucose; HWESASXX* | Benzoate; 2-aminobutyrate; dehydroisoandrosterone sulfate (DHEA-S); caproate (6:0); Isovalerate | COPD Survivors vs. Non-Survivors: Glyoxylate and dicarboxylate metabolism; Citrate cycle (TCA cycle) |
COPD vs. control | Yu et al. | Metabolomics Identifies Novel Blood Biomarkers of Pulmonary Function and COPD in the General Population | ARIC Cohort (n = 2354 African Americans, 1529 European American); 39.8% male; 53.0/54.6 yrs (AA/EA) KORA cohort (n = 859 Europeans); 46.8% male; 53.8 yrs | LC-MS | Serum | 3-(4-hydroxyphenyl)lactate; 3-methoxytyrosine; homocitrulline; ornithine; succinylcarnitine | serotonin (5HT); glycerate; docosahexaenoate (DHA, 22:6n3); androsterone sulfate | |
COPD vs. Control Severity | Ubhi et al. | Metabolic profiling detects biomarkers of protein degradation in COPD patients | ECLIPSE Cohort 15 Non-smokers/53 Smoker/163 COPD 64.5% males 61/57/64.2 (non-S/S/COPD) | NMR; LC-MS | Fasting Serum | COPD: 3-methylhistidine; Glutamine; Phenylalanine; 3-hydroxybutyrate; Acetoacetate GOLD IV: Trimethylamine; 3-methylhistidine; Glutamine; Phenylalanine; 3-hydroxybutyrate | COPD: N,N-dimethylglycine; LDL/VLDL; Polyunsaturated lipid; O-acetylated glycoproteins GOLD IV: N,N-dimethylglycine; 3-hydroxyisobutyrate; Isobutyrate; Isoleucine; Valine | |
COPD vs. Healthy Control (Severity) | Xue et al. | Metabolomic profiling of anaerobic and aerobic energy metabolic pathways in chronic obstructive pulmonary disease | 140 COPD/20 HC 78.8% males 60/52 yrs (COPD/HC) | UHPLC-Q-TOF/MS | Fasting Serum | GOLD IV: pyruvate; lactic acid | TCA Cycle | |
COPD vs. Smokers | Berdyshev et al. | Ceramide and sphingosine-1 phosphate in COPD lungs | 69 COPD/16 Smoker without COPD/13 Interstitial lung disease 48.4% males 66/62.8/60.5 years (S/COPD/ILD) | LC-MS | Lung tissue | ceramides (GOLD0—2) sphingosine-1 phosphate | ceramides (GOLD 3–4) | ceramide-to-S1P metabolism controlled by sphingosine kinase-1 (SphK1) |
COPD vs. Smokers | Diao et al. | Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease | 79 COPD/59 smokers no COPD/7 non-smokers 100% male 58.8/56.8/57.4 yrs (COPD/S/non-S) | NMR | Fasting Serum and Plasma | histamine | creatine; glycine; histidine; threonine | |
COPD vs. Smokers | Gaida et al. | A dual center study to compare breath volatile organic compounds from smokers and non-smokers with and without COPD | 52 Healthy non-/ex-smoker/52 COPD non-/ex-smoker/29 Healthy Smoker/ 37 COPD Smoker 52% male 35/64/43.5/61 yrs (HC/COPD non-S/HS/COPD Smoker) | Enose IMS detector GC-IMS TD-GC-APCI-MS | Exhaled Breathe | Indole; 1,6-Dimethyl-1,3,5-heptatriene; m,p-Xylene; 1-Ethyl-3-methyl benzene; Toluene; Benzene | ||
COPD vs. Smokers | Naz et al. | Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin–lysoPA axis in COPD | Karolinska COSMIC cohort 38 Never-smokers/40 smokers/38 COPD 51.7% males 58.8/53/60.3 yrs (NS/S/COPD) | LC-MS | Serum | Both Sexes: 12-HETE; 4-HdoHE; Carnitine(C12:0); Carnitine(C14:0); Carnitine(C14:1) Females: 12-HETE; 4-HdoHE; Carnitine(C12:0); Dityrosine; Erythronicacid | Both Sexes: Leu-Pro; PC(16:1/P-18:1) | Both Sexes: Citrate (tricarboxylic acid) cycle; Glycerophospholipid metabolism; Pyruvate metabolism Females: Fatty acid biosynthesis; Sphingolipid metabolism Males: cAMP signaling pathway; Retrograde endocannabinoid signaling; Tryptophan metabolism |
Case vs. Control (emphysema) | Ubhi et al. | Metabolic profiling detects biomarkers of protein degradation in COPD patients | ECLIPSE Cohort 41 non-emphysematous/77 Emphysematous 68.6% males 64/64 yrs (non-E/Emph) | NMR; LC-MS | Fasting Serum | 3-methylhistidine; Glutamine; Phenylalanine; 3-hydroxybutyrate | Creatine; Glycine; N,N-dimethylglycine; 3-hydroxyisobutyrate; Isoleucine | |
Case vs. Control (GOLD) | Ubhi et al. | Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD | ECLIPSE Cohort 30 smoker/30 COPD/100% male 57/65 (S/COPD) | LC-MS/MS | Fasting Serum | Beta-Aminoisobutyric acid*; 3-Methylhistidine; Aspartic acid; 1-Methylhistidine; Glutamine | alpha-Aminobutyric acid*; Proline; Aminoadipic acid; 4-Hydroxyproline; Leucine | |
Case vs. Control (emphysema) | Ubhi et al. | Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD | ECLIPSE Cohort 21 no emphysema/38 Emphysema 100% male 65/64 yrs (non-E/Emph) | LC-MS/MS | Fasting Serum | Glutamine; Aspartic acid; 3-Methylhistidine; 1-Methylhistidine; Histidine | Tryptophan; Sarcosine; beta-Aminoisobutyric acid; Aminoadipic acid | |
Case vs. Control (cachexic) | Ubhi et al. | Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD | ECLIPSE Cohort 30 no Cachexia/29 Cachexia 100% male 64/61 yrs (no Cach/Cach) | LC-MS/MS | Fasting Serum | Serine; Glutamine; Glutamic acid; Histidine; Asparagine | Cystathionine; Thiaproline; 1-Methylhistidine; Sarcosine; beta-Aminoisobutyric acid | |
Emphysema | Bowler et al. | Plasma Sphingolipids Associated with Chronic Obstructive Pulmonary Disease Phenotypes | COPDGene Cohort Targeted: n = 129; 57% male; 63 yrs Untargeted: n = 131; 56% male; 64 yrs | LC-MS | Plasma | Ganglioside GM3 (d18:1/16:0); Sphingomyelin(d18:0/24:1(15Z)); Sphingomyelin(d18:1/14:0); Sphingomyelin(d18:1/16:0); Sphingomyelin(d18:1/16:1); | ||
Emphysema | Halper-Stromberg et al. | Bronchoalveolar Lavage Fluid from COPD Patients Reveals More Compounds Associated with Disease than Matched Plasma | SPIROMICS cohort 12 Non-smokers/56 Smokers/47 COPD 50.7% male 56/58/64 yrs (non-S/S/COPD) | LC-MS | BALF | leucine; lysine | Amino acid derived compounds; fatty acids; phospholipids (phosphatidylethanolamines, phosphatidylinositols, phosphatidylcholines), carnitines | |
Emphysema | Labaki et al. | Serum amino acid concentrations and clinical outcomes in smokers | SPIROMICS cohort: n = 157; 49.7% male; 53.7 yrs | NMR | Serum | tryptophan | ||
Emphysema | Mastej et al. | Identifying Protein–metabolite Networks Associated with COPD Phenotypes | COPDGene Cohort 426 Controls/478 COPD/92 PRISm 12 missing Spirometry 50.9% males 64.6/71.1/67.3/72 yrs (HC/COPD/PRISm/missSpiro) | LC-MS | Plasma | 1-stearoyl-2-linoleoyl-GPI (18:0/18:2); androsterone glucuronide; 1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6); 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6); 1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) | ||
Emphysema | Gillenwater et al. | Metabolomic Profiling Reveals Sex Specific Associations with Chronic Obstructive Pulmonary Disease and Emphysema | COPDGene Cohort: n = 839; 51.7% male; 67 yrs SPIROMICS Cohort: n = 446; 52% male; 64.5 yrs | LC-MS (Metabolon) | Plasma | Network Module: Amino Acids, Bile Acids, Acyl Cholines, Lysophospholipids Network Module: Steroids Network Module: Xenobiotics, Amino Acids, and TCA cycle; Amino Acids, Bile Acids, Acyl Cholines, Lysophospholipids Network Module: Steroids | Full Cohort: 5-hydroxylysine, isovalerate (C5), X-17357 Males: 5-hydroxylysine; X-17357 Females: 2,3-dihydroxy-2-methylbutyrate; alpha-ketoglutaramate; homocitrulline | |
Emphysema | Gillenwater et al. | Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules | Discovery—COPDGene Cohort: n = 957; 51.2% male; 68.3 yrs Replication—COPDGene-Emory: n = 271; 46.9% male; 67.3 yrs Replication—SPIROMICS-Metabolon: n = 445; 54.8% males; 65.3 yrs Replication—SPIROMICS-UC: n = 76; 52.6% male; 61.6 yrs | LC-MS (Metabolon) | Plasma | tricarboxylic cycle metabolite (citrate) | ||
Emphysema | Diao et al. | Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease | 79 COPD/59 smokers no COPD/7 non-smokers 100% male 58.8/56.8/57.4 yrs (COPD/Smoker/NS) | NMR | Fasting Serum and Plasma | creatine; histidine; 3-hydroxybutyrate; betaine; carnitine | ||
FEV1 (% predicted) FEV1/FVC | Bregy et al. | Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath | 22 COPD/14 controls 61.1% male 58.6/58.1 yrs (COPD/HC) | SESI-HRMS | EBC | Pyridine; 11-hydroxyundecanoic acid; (+)-γ-hydroxy-L-homoarginine; Oxo-tetradecenoic acid; Hexadecatrienoic acid; Oxo-heptadecanoic acid | 2-hydroxyisobutyric acid; Aspartic acid semialdehyde; Acetohydroxybutanoic acid; 2-oxoglutaric acid semialdehyde | |
FEV1 FEV1/FVC | Celejewska-Wójcik et al. | Eicosanoids and Eosinophilic Inflammation of Airways in Stable COPD | 76/37 COPD/HC 68% male 65 years (mean age) | GC-MS HPLC-MS | Sputum | PGD2; 11-dehydro-TBX2 | ||
FEV1 % predicted FEV1/FVC | Cruickshank-Quinn et al. | Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD | COPDGene Cohort: (n = 149); 53.0% male; 63.1 yrs | LC-MS | Plasma | PE(P-38:2); Sphinganine-1-phosphate; Eicosapentaenoyl PAF C-16; Purine | cis-7-Hexadecenoic acid methyl ester; LysoPC(16:0); Ceramide (d18:1/24:1); Octanoyl-L-carnitine; Glucosaminic acid | Endocytosis; Fc gamma R-mediated phagocytosis; Glycerophospholipid metabolism; Hippo signaling pathway; Jak-STAT signaling pathway; Lysosome; mTOR signaling pathway; Neurotrophin signaling pathway; NF-kappa B signaling pathway; Notch signaling pathway; Osteoclast differentiation; Peroxisome; Phagosome; Phosphatidylinositol signaling system; Primary immunodeficiency; Ribosome; SNARE interactions in vesicular transport; Sphingolipid metabolism; Sphingolipid signaling pathway; T cell receptor signaling pathway; Th1 and Th2 cell differentiation; Th17 cell differentiation; Autophagy; Fat digestion and absorption; Glycerolipid metabolism; Hematopoietic cell lineage |
FEV1/FVC | Yu et al. | Metabolomics Identifies Novel Blood Biomarkers of Pulmonary Function and COPD in the General Population | ARIC Cohort (n = 2354 African Americans, 1529 European American); 39.8% male; 53.0/54.6 yrs (AA/EA) KORA cohort (n = 859 Europeans); 46.8% male; 53.8 yrs | LC-MS | Serum | androsterone sulfate; dehydroisoandrosterone sulfate (DHEA-S); lathosterol | 3-methoxytyrosine; glycerol; oleoylcarnitine; 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca); theophylline | |
FEV1/FVC | Prokić et al. | A cross-omics integrative study of metabolic signatures of chronic obstructive pulmonary disease | Discovery: 4948 Rotterdam Study (44.2% male; 70.3 yrs); 609 Erasmus Rucphen Family study (44.2% male; 49 yrs) Validation: 717 Lifelines-DEEP study (43.7% male; 46 yrs); 11,498 FINRISK (47.7% male 49.7 yrs); 854 Prospective Investigation of the Vasculature in Uppsala Seniors (51.8% male; 70 yrs) | NMR | Fasting Plasma | Discovery: Valine | Discovery: GlycA | |
FEV1/FVC -post | Gillenwater et al. | Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules | Discovery—COPDGene Cohort: n = 957; 51.2% male; 68.3 yrs Replication—COPDGene-Emory: n = 271; 46.9% male; 67.3 yrs Replication—SPIROMICS-Metabolon: n = 445; 54.8% males; 65.3 yrs Replication—SPIROMICS-UC: n = 76; 52.6% male; 61.6 yrs | LC-MS (Metabolon) | Plasma | 1-stearoyl-2-oleoyl-GPE (18:0/18:1); propionylcarnitine (C3); ergothioneine; 3-formylindole; 1-stearoyl-2-linoleoyl-GPE (18:0/18:2)* | myristoleoylcarnitine (C14:1); decanoylcarnitine (C10); sphingomyelin (d18:2/18:1); cis-4-decenoylcarnitine (C10:1); laurylcarnitine (C12) | diacylglycerol and BCAA (leucine, isoleucine, and valine) |
FEV1/FVC | Halper-Stromberg et al. | Bronchoalveolar Lavage Fluid from COPD Patients Reveals More Compounds Associated with Disease than Matched Plasma | SPIROMICS cohort 12 Non-smokers/56 Smokers/47 COPD 50.7% male 56/58/64 (NS/S/COPD) | LC-MS | BALF Plasma | BALF: Phosphatidylserine (37:3); Lophocerine; p-cresol; Phosphatidylethanolamine (38:3); Phosphatidycholine (40:6) Plasma: arginine; isoleucine; serine | BALF: Ceramide (d18:1/16:0) | Amino acid derived compounds; fatty acids; phospholipids (phosphatidylethanolamines, lysophosphatidylethanolamines, lysophosphatidylcholines, phosphatidylserines, phosphatidylinositols, phosphatidylcholines) |
FEV1 % predicted | Labaki et al. | Serum amino acid concentrations and clinical outcomes in smokers | SPIROMICS cohort: n = 157; 49.7% male; 53.7 yrs | NMR | Serum | tryptophan | ||
FEV1 % predicted | Gillenwater et al. | Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules | Discovery—COPDGene Cohort: n = 957; 51.2% male; 68.3 yrs Replication—COPDGene-Emory: n = 271; 46.9% male; 67.3 yrs Replication—SPIROMICS-Metabolon: n = 445; 54.8% males; 65.3 yrs Replication—SPIROMICS-UC: n = 76; 52.6% male; 61.6 yrs | LC-MS (Metabolon) | Plasma | phosphocholine; ergothioneine; gamma-glutamyl-2-aminobutyrate; dehydroepiandrosterone sulfate (DHEA-S); 3-formylindole | N6-carboxymethyllysine; cis-4-decenoylcarnitine (C10:1); 5-dodecenoylcarnitine (C12:1); C-glycosyltryptophan; myristoleoylcarnitine (C14:1) | |
FEV1 % predicted | Mastej et al. | Identifying Protein–metabolite Networks Associated with COPD Phenotypes | COPDGene Cohort 426 Controls/478 COPD/92 PRISm 12 missing Spirometry 50.9% males 64.6/71.1/67.3/72 (HC/COPD/PRISm/MissSpiro) | LC-MS | Plasma | Phosphocholine; Ergothioneine | 5-hydroxyhexanoate; Palmitoleoylcarnitine (C16:1); Myristoleoylcarnitine (C14:1); Cis-4-decenoylcarnitine (C10:1); (N(1) + N(8))-acetylspermidine | |
FEV1 % predicted | Diao et al. | Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease | 79 COPD/59 smokers no COPD/7 non-smokers 100% male 58.8/56.8/57.4 yrs (COPD/S/non-S) | NMR | Fasting Serum and Plasma | creatine; histidine; threonine; lactate; proline; serine | ||
FEV1 % predicted | Balgoma et al. | Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD | Karolinska COSMIC 25 COPD Smokers/10 COPD Former Smoker/40 Smokers/39 Never-Smokers 50% males 59.5/60/54/56.5 (COPD S/COPD FS/S/NS) | LC-MS/MS | BALF | Females: EpOMEs; DiHOMEs. | Score: 9,10,13-TriHOME (9,10,13-trihydroxy-11E-octadecenoic acid), 12(13)-EpOME (12[13]epoxy-9Z-octadecenoic acid), 9(10)-EpOME (9[10]-epoxy-12Z-octadecenoic acid), 9,10-DiHOME (9[10]-dihydroxy-12Z-octadecenoic acid), 12,13-DiHOME (12[13]-dihydroxy-12Zoctadecenoic acid), 12-HHTrE (12-hydroxy-5Z,8E,10E-heptadecatrienoic acid), 5-KETE (5-oxo-ETE, 5-oxo- 6E,8Z,11Z,14Z-eicosatetraenoic acid), TXB2 (thromboxane B2) and 9-KODE (9-oxo-10E,12Z-octadecadienoic acid) | |
FEV1 % predicted | Balgoma et al. | Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD | Karolinska COSMIC 25 COPD Smokers/10 COPD Former Smoker/40 Smokers/39 Never-Smokers 50% males 59.5/60/54/56.5 (COPD S/COPD FS/S/NS) | LC-MS/MS | BALF | PGF2α, 12-HHTrE, 12-HETE, 11(12)-EpETrE, 9,10,13-TriHOME, 5(6)-EpETrE, 11-β-PGF2α | 5,6-DiHETrE, 5-HEPE, 5-HETE | |
FEV1 | McClay et al. | 1H Nuclear Magnetic Resonance Metabolomics Analysis Identifies Novel Urinary Biomarkers for Lung Function | 197 COPD/90 Smokers/105 Never-Smokers 56.4% males 64.7/57.2/56.5 (COPD/S/NS) | NMR | Plasma Urine | trigonelline; ippurate; formate | ||
Lung Function | Xue et al. | Metabolomic profiling of anaerobic and aerobic energy metabolic pathways in chronic obstructive pulmonary disease | 140 COPD/20 HC 78.8% males 60/52 yrs (COPD/HC) | UHPLC-Q-TOF/MS | Fasting Serum | Citrate; alpha-ketogluatara; Succinate; Fumarate; Oxa | Isocitrate; Malate; Pyruvic; Lactic | |
FEV1 | Yu et al. | Metabolomics Identifies Novel Blood Biomarkers of Pulmonary Function and COPD in the General Population | ARIC Cohort (n = 2354 African Americans, 1529 European American); 39.8% male; 53.0/54.6 yrs (AA/EA) KORA cohort (n = 859 Europeans); 46.8% male; 53.8 yrs | LC-MS | Serum | glycine; 3-phenylpropionate (hydrocinnamate); asparagine; glutamine; serotonin (5HT) | 3-(4-hydroxyphenyl)lactate; 2-methylbutyrylcarnitine (C5); alpha-hydroxyisovalerate; isoleucine; lactate | Aminoacyl-tRNA biosynthesis; Phenylalanine metabolism; Nitrogen metabolism; Alanine, aspartate and glutamate metabolism |
FVC | Yu et al. | Metabolomics Identifies Novel Blood Biomarkers of Pulmonary Function and COPD in the General Population | ARIC Cohort (n = 2354 African Americans, 1529 European American); 39.8% male; 53.0/54.6 yrs (AA/EA) KORA cohort (n = 859 Europeans); 46.8% male; 53.8 yrs | LC-MS | Serum | glycine; N-acetylglycine; asparagine; glutamine; 3-phenylpropionate (hydrocinnamate) | isoleucine; 2-methylbutyrylcarnitine (C5); 3-(4-hydroxyphenyl)lactate; tyrosine; valine | Aminoacyl-tRNA biosynthesis; Phenylalanine metabolism |
Exacerbation vs. Not | Celejewska-Wójcik et al. | Eicosanoids and Eosinophilic Inflammation of Airways in Stable COPD | 76 COPD/37 HC 68% male 65 yrs (mean age) | GC-MS HPLC-MS | Sputum | PGD2; 12-oxo-ETE; 5-oxo-ETE | ||
Exacerbation vs. Not | Labaki et al. | Serum amino acid concentrations and clinical outcomes in smokers | SPIROMICS cohort: n = 157; 49.7% male; 53.7 yrs | NMR | Serum | O-acetylcarnitine; Lysine; 2-hydroxybutyrate; Tryptophan; Leucine | ||
Exacerbations | Esther et al. | Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in Chronic Obstructive Pulmonary Disease | SPIROMICS cohort 77 healthy non-smokers/341 smokers 29reserved spirometry/562 COPD 53% male 55.4/59.6/65 yrs (HC/Smokers/COPD) | UPLC-MS | Sputum | Sialic Acid; Hypoxanthine | ||
Exacerbation Frequency | Cruickshank-Quinn et al. | Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD | COPDGene Cohort: (n = 149); 53.0% male; 63.1 yrs | LC-MS | Plasma | Carnitine (C14:2) | L-Glutamine; Pyroglutamic acid; Tryptophan; Tyrosine; Oleamide | Aminoacyl-tRNA biosynthesis; Antigen processing and presentation; Glycerophospholipid metabolism; Mineral absorption; Protein digestion and absorption; Ribosome; RNA transport |
Exacerbation Frequency | Gillenwater et al. | Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules | Discovery—COPDGene Cohort: n = 957; 51.2% male; 68.3 yrs Replication—COPDGene-Emory: n = 271; 46.9% male; 67.3 yrs Replication—SPIROMICS-Metabolon: n = 445; 54.8% males; 65.3 yrs Replication—SPIROMICS-UC: n = 76; 52.6% male; 61.6 yrs | LC-MS (Metabolon) | Plasma | N,N,N-trimethyl-alanylproline betaine (TMAP) | ||
Exacerbation Severity | Cruickshank-Quinn et al. | Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD | COPDGene Cohort: (n = 149); 53.0% male; 63.1 yrs | LC-MS | Plasma | Lysine; Cholic acid; Alpha-D-glucose; Mannitol | Acetylcarnitine; Citrulline; Creatinine; L-Glutamine; L-Norvaline | ABC transporters; Aminoacyl-tRNA biosynthesis; Arginine and proline metabolism; Arginine biosynthesis; Autophagy; Glycerophospholipid metabolism; Glycine, serine and threonine metabolism; Insulin resistance; Mineral absorption; Phenylalanine, tyrosine and tryptophan biosynthesis; Protein digestion and absorption; Purine Metabolism; Retrograde endocannabinoid signaling; Sphingolipid metabolism; Sphingolipid signaling pathway |
Exacerbations (Moderate & Severe) | Bowler et al. | Plasma Sphingolipids Associated with Chronic Obstructive Pulmonary Disease Phenotypes | COPDGene Cohort Targeted: (n = 129; 57% male; 63 yrs) Untargeted: (n = 131; 56% male; 64 yrs) | LC-MS | Plasma | Trihexosylceramide (d18:1/16:0); 3-O-Sulfogalactosylceramide (d18:1/16:0); Galabiosylceramide (d18:1/24:1(15Z)) | Sphingosine 1-phosphate | |
GOLD Stage | Gillenwater et al. | Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules | Discovery—COPDGene Cohort: n = 957; 51.2% male; 68.3 yrs Replication—COPDGene-Emory: n = 271; 46.9% male; 67.3 yrs Replication—SPIROMICS-Metabolon: n = 445; 54.8% males; 65.3 yrs Replication—SPIROMICS-UC: n = 76; 52.6% male; 61.6 yrs | LC-MS (Metabolon) | Plasma | Ergothioneine | ||
IL6 | Diao et al. | Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease | 79 COPD/59 smokers no COPD/7 non-smokers 100% male 58.8/56.8/57.4 yrs (COPD/Smoker/non-S) | NMR | Fasting Serum and Plasma | creatine; glycine; histidine; carnitine; lactate | ||
TNF-alpha | Diao et al. | Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease | 79 COPD/59 smokers no COPD/7 non-smokers 100% male 58.8/56.8/57.4 yrs (COPD/Smoker/non-S) | NMR | Fasting Serum and Plasma | histidine; betaine; glutamine; acetylcarnitine; valine | ||
Subtyping | Gillenwater et al. | Multi-omics subtyping pipeline for chronic obstructive pulmonary disease | COPDGene Cohort: n = 1057; 50.5% male; 67.6 yrs | LC-MS (Metabolon) | Plasma | Support Vector Machine with Recursive Feature Extraction Metabolites: dehydroisoandrosterone sulfate (DHEA-S); 3-(3-amino-3-carboxypropyl)uridine; X—12,117; stearoyl sphingomyelin (d18:1/18:0); hydroxy-CMPF | Sphingomyelins | |
6MWD | Labaki et al. | Serum amino acid concentrations and clinical outcomes in smokers | SPIROMICS cohort: n = 157; 49.7% male; 53.7 yrs | NMR | Serum | tryptophan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godbole, S.; Bowler, R.P. Metabolome Features of COPD: A Scoping Review. Metabolites 2022, 12, 621. https://doi.org/10.3390/metabo12070621
Godbole S, Bowler RP. Metabolome Features of COPD: A Scoping Review. Metabolites. 2022; 12(7):621. https://doi.org/10.3390/metabo12070621
Chicago/Turabian StyleGodbole, Suneeta, and Russell P. Bowler. 2022. "Metabolome Features of COPD: A Scoping Review" Metabolites 12, no. 7: 621. https://doi.org/10.3390/metabo12070621
APA StyleGodbole, S., & Bowler, R. P. (2022). Metabolome Features of COPD: A Scoping Review. Metabolites, 12(7), 621. https://doi.org/10.3390/metabo12070621