Association of Vitamin D Deficiency with Diabetic Nephropathy in Type 2 Diabetes: A Hospital-Based Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Population
2.3. Inclusion and Exclusion Criteria
2.4. Clinical and Demographic Assessment
2.5. Laboratory Measurements
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Biochemical Characteristics
3.3. Prevalence of Vitamin D Deficiency in DN and T2DM Without DN
3.4. Association Between Vitamin D Deficiency with DN and T2DM Without DN
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Abbreviation | Full Form |
| 25(OH)D | 25-Hydroxyvitamin D |
| ADA | American Diabetes Association |
| ACR | Albumin-to-Creatinine Ratio |
| ALP | Alkaline Phosphatase |
| ALT/SGPT | Serum Glutamic Pyruvic Transaminase |
| AST/SGOT | Serum Glutamic Oxaloacetic Transaminase |
| BMI | Body Mass Index |
| BP | Blood Pressure |
| CKD | Chronic Kidney Disease |
| CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
| DN | Diabetic Nephropathy |
| DM | Diabetes Mellitus |
| eGFR | Estimated Glomerular Filtration Rate |
| ESRD | End-Stage Renal Disease |
| FBS | Fasting Blood Sugar |
| HbA1c | Glycated Hemoglobin |
| HDL | High-Density Lipoprotein |
| KDIGO | Kidney Disease: Improving Global Outcomes |
| LDL | Low-Density Lipoprotein |
| Na | Sodium |
| K | Potassium |
| PTH | Parathyroid Hormone |
| RAAS | Renin–Angiotensin–Aldosterone System |
| RRR | Relative Risk Ratio |
| SD | Standard Deviation |
| STATA 18 | Statistical Analysis Software |
| T2DM | Type 2 Diabetes Mellitus |
| TG | Triglycerides |
| UACR | Urine Albumin-to-Creatinine Ratio |
| VDR | Vitamin D Receptor |
References
- Jha, R.; Lopez-Trevino, S.; Kankanamalage, H.R.; Jha, J.C. Diabetes and Renal Complications: An Overview on Pathophysiology, Biomarkers and Therapeutic Interventions. Biomedicines 2024, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Ratan, Y.; Rajput, A.; Pareek, A.; Pareek, A.; Singh, G. Comprehending the Role of Metabolic and Hemodynamic Factors Alongside Different Signaling Pathways in the Pathogenesis of Diabetic Nephropathy. Int. J. Mol. Sci. 2025, 26, 3330. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, S.; Zhou, Q.; Zhang, H.; Yi, B. Effects of Vitamin D Supplementation on Renal Function, Inflammation and Glycemic Control in Patients with Diabetic Nephropathy: A Systematic Review and Meta-Analysis. Kidney Blood Press. Res. 2019, 44, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Joergensen, C.; Tarnow, L.; Goetze, J.P.; Rossing, P. Vitamin D analogue therapy, cardiovascular risk and kidney function in people with Type 1 diabetes mellitus and diabetic nephropathy: A randomized trial. Diabet. Med. 2015, 32, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kong, J.; Deb, D.K.; Chang, A.; Li, Y.C. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J. Am. Soc. Nephrol. 2010, 21, 966–973. [Google Scholar] [CrossRef]
- Secondulfo, C.; Visco, V.; Virtuoso, N.; Fortunato, M.; Migliarino, S.; Rispoli, A.; La Mura, L.; Stellato, A.; Caliendo, G.; Settembre, E.; et al. Vitamin D: A Bridge between Kidney and Heart. Life 2024, 14, 617. [Google Scholar] [CrossRef]
- Lai, Y.-H.; Fang, T.-C. The Pleiotropic Effect of Vitamin D. Int. Sch. Res. Not. 2013, 2013, 898125. [Google Scholar] [CrossRef]
- Zomorodian, S.A.; Shafiee, M.; Karimi, Z.; Masjedi, F.; Roshanshad, A. Assessment of the relationship between 25-hydroxyvitamin D and albuminuria in type 2 diabetes mellitus. BMC Endocr. Disord. 2022, 22, 171. [Google Scholar] [CrossRef]
- Trohatou, O.; Tsilibary, E.F.; Charonis, A.; Iatrou, C.; Drossopoulou, G. Vitamin D3 ameliorates podocyte injury through the nephrin signalling pathway. J. Cell. Mol. Med. 2017, 21, 2599–2609. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, T.; Wu, W.; Ou, S. Vitamin D and chronic kidney disease: Mechanisms, clinical implications, and future perspectives. Front. Med. 2025, 12, 1643415. [Google Scholar] [CrossRef]
- Duan, S.; Lu, F.; Wu, B.; Zhang, C.; Nie, G.; Sun, L.; Huang, Z.; Guo, H.; Zhang, B.; Xing, C.; et al. Association of Serum 25 (OH) Vitamin D With Chronic Kidney Disease Progression in Type 2 Diabetes. Front. Endocrinol. 2022, 13, 929598. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Kim, G.S.; Lee, J.H.; Moon, A.E.; Yoon, H. The relationship between vitamin D and estimated glomerular filtration rate and urine microalbumin/creatinine ratio in Korean adults. J. Clin. Biochem. Nutr. 2018, 62, 94–99. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Sachs, M.C.; Chonchol, M.; Himmelfarb, J.; Hoofnagle, A.N.; Ix, J.H.; Kremsdorf, R.A.; Lin, Y.S.; Mehrotra, R.; Robinson-Cohen, C.; et al. Estimated GFR and circulating 24,25-dihydroxyvitamin D3 concentration: A participant-level analysis of 5 cohort studies and clinical trials. Am. J. Kidney Dis. 2014, 64, 187–197. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef]
- Delgado, C.; Baweja, M.; Crews, D.C.; Eneanya, N.D.; Gadegbeku, C.A.; Inker, L.A.; Mendu, M.L.; Miller, W.G.; Moxey, M.M.; Roberts, G.V.; et al. A Unifying Approach for GFR Estimation: Recommendations of the NKF-ASN Task Force on Reassessing the Inclusion of Race in Diagnosing Kidney Disease. Am. J. Kidney Dis. 2022, 79, 268–288.e1. [Google Scholar] [CrossRef]
- Zoppini, G.; Galletti, A.; Targher, G.; Brangani, C.; Pichiri, I.; Trombetta, M.; Negri, C.; De Santi, F.; Stoico, V.; Cacciatori, V.; et al. Lower levels of 25-hydroxyvitamin D3 are associated with a higher prevalence of microvascular complications in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2015, 3, e000058. [Google Scholar] [CrossRef]
- Diaz, V.A.; Mainous, A.G., 3rd; Carek, P.J.; Wessell, A.M.; Everett, C.J. The association of vitamin D deficiency and insufficiency with diabetic nephropathy: Implications for health disparities. J. Am. Board Fam. Med. 2009, 22, 521–527. [Google Scholar] [CrossRef]
- Hong, S.H.; Kim, Y.B.; Choi, H.S.; Jeong, T.D.; Kim, J.T.; Sung, Y.A. Association of Vitamin D Deficiency with Diabetic Nephropathy. Endocrinol. Metab. 2021, 36, 106–113. [Google Scholar] [CrossRef]
- Chalcraft, J.R.; Cardinal, L.M.; Wechsler, P.J.; Hollis, B.W.; Gerow, K.G.; Alexander, B.M.; Keith, J.F.; Larson, D.E. Vitamin D Synthesis Following a Single Bout of Sun Exposure in Older and Younger Men and Women. Nutrients 2020, 12, 2237. [Google Scholar] [CrossRef]
- Giustina, A.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Lazaretti-Castro, M.; Lips, P.; Marcocci, C.; Bilezikian, J.P. Vitamin D in the older population: A consensus statement. Endocrine 2023, 79, 31–44. [Google Scholar] [CrossRef]
- Chiu, K.C.; Chu, A.; Go, V.L.; Saad, M.F. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am. J. Clin. Nutr. 2004, 79, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Dean, Y.E.; Elawady, S.S.; Shi, W.; Salem, A.A.; Chotwatanapong, A.; Ashraf, H.; Reddi, T.; Dundi, P.O.R.; Habash, W.Y.; Habash, M.Y.; et al. Progression of diabetic nephropathy and vitamin D serum levels: A pooled analysis of 7722 patients. Endocrinol. Diabetes Metab. 2023, 6, e453. [Google Scholar] [CrossRef]
- Huish, S.A.; Jenkinson, C.; Dunn, J.A.; Meredith, D.J.; Bland, R.; Hewison, M. Low serum 1,25(OH)2D3 in end-stage renal disease: Is reduced 1α-hydroxylase the only problem? Endocr. Connect. 2021, 10, 1291–1298. [Google Scholar] [CrossRef]
- Ucak, S.; Sevim, E.; Ersoy, D.; Sivritepe, R.; Basat, O.; Atay, S. Evaluation of the relationship between microalbuminuria and 25-(OH) vitamin D levels in patients with type 2 diabetes mellitus. Aging Male 2019, 22, 116–120. [Google Scholar] [CrossRef]
- Zhao, W.J.; Xia, X.Y.; Yin, J. Relationship of serum vitamin D levels with diabetic microvascular complications in patients with type 2 diabetes mellitus. Chin. Med. J. 2021, 134, 814–820. [Google Scholar] [CrossRef]
- Zhou, T.; Shen, L.; Li, Z.; Jia, J.; Xing, H.; Wang, N.; Jiao, Q.; Fan, Y. Severe 25-Hydroxyvitamin D Deficiency May Predict Poor Renal Outcomes in Patients with Biopsy-Proven Diabetic Nephropathy. Front. Endocrinol. 2022, 13, 871571. [Google Scholar] [CrossRef] [PubMed]

| Variable | Category | Total (n = 399) | Diabetic Nephropathy (n = 299) | T2DM Without Nephropathy (n = 100) | p-Value |
|---|---|---|---|---|---|
| Age | Adults | 258 (64.7) | 176 (58.9) | 82 (82.0) | <0.001 |
| Elderly | 141 (35.3) | 123 (41.1) | 18 (18.0) | ||
| Gender | Female | 271 (67.9) | 204 (68.2) | 67 (67.0) | 0.820 |
| Male | 128 (32.1) | 95 (31.8) | 33 (33.0) | ||
| BMI | Low/Normal | 246 (61.7) | 176 (58.9) | 70 (70.0) | 0.047 |
| Obese/Overweight | 153 (38.3) | 123 (41.1) | 30 (30.0) | ||
| Residence Status | Rural | 244 (61.2) | 183 (61.6) | 61 (61.0) | 0.913 |
| Urban | 153 (38.4) | 114 (38.4) | 39 (39.0) | ||
| Exercise Status | Daily | 183 (46.5) | 128 (43.5) | 55 (55.0) | 0.082 |
| Never | 79 (20.0) | 59 (20.1) | 20 (20.0) | ||
| Rarely | 132 (33.5) | 107 (36.4) | 25 (25.0) | ||
| Smoking Status | Current smoker | 43 (10.8) | 35 (11.7) | 8 (8.0) | 0.356 |
| No | 335 (84.0) | 247 (82.6) | 88 (88.0) | ||
| Past smoker | 21 (5.3) | 17 (5.7) | 4 (4.0) | ||
| Income Source | No regular income | 255 (63.9) | 189 (63.2) | 66 (66.0) | 0.615 |
| Regular income | 144 (36.1) | 110 (36.8) | 34 (34.0) | ||
| CKD Stage | 1 | 90 (22.6) | 10 (3.3) | 80 (80.0) | <0.001 |
| 2 | 163 (40.9) | 143 (47.8) | 20 (20.0) | ||
| 3a | 70 (17.5) | 70 (23.4) | 0 (0.0) | ||
| 3b | 40 (10.0) | 40 (13.4) | 0 (0.0) | ||
| 4 | 31 (7.8) | 31 (10.4) | 0 (0.0) | ||
| 5 | 5 (1.3) | 5 (1.7) | 0 (0.0) | ||
| ACR Stage | Missing | 36 (9.0) | 4 (1.3) | 32 (32.0) | <0.001 |
| Normal (<30 mg/g) | 49 (12.3) | 0 (0.0) | 49 (49.0) | ||
| Mod. Microalbuminuria (30–299 mg/g) | 259 (64.9) | 240 (80.3) | 19 (19.0) | ||
| Severe Macroalbuminuria (≥300 mg/g) | 55 (13.8) | 55 (18.4) | 0 (0.0) | ||
| Duration of T2DM | Short (≤5 years) | 124 (31.1) | 59 (19.7) | 65 (65.0) | <0.001 |
| Long (>5 years) | 275 (68.9) | 240 (80.3) | 35 (35.0) | ||
| Family history of T2DM | No | 199 (49.9) | 139 (46.4) | 60 (60.0) | 0.018 |
| Yes | 200 (50.1) | 160 (53.6) | 40 (40.0) |
| Variable | Total (n = 399) | DN (n = 299) | T2DM Without DN (n = 100) | p-Value (Mann–Whitney U) |
|---|---|---|---|---|
| Age (years) | 56 [50–63] | 58 [51–63] | 51 [46–57] | <0.001 |
| HbA1c (%) | 7.9 [7.3–8.9] | 8.2 [7.5–9.0] | 7.3 [6.8–7.7] | <0.001 |
| FBS (mg/dL) | 146 [134–161] | 149 [135–162] | 142 [130–155] | 0.0005 |
| Urea (mg/dL) | 27 [21–34] | 31 [24–38] | 22 [18–27] | <0.001 |
| Creatinine (mg/dL) | 1.2 [0.9–1.6] | 1.35 [1.0–1.7] | 0.82 [0.7–0.9] | <0.001 |
| Serum Albumin (g/dL) | 4.1 [3.8–4.4] | 4.0 [3.7–4.3] | 4.48 [4.3–4.6] | <0.001 |
| Hemoglobin (g/dL) | 12.6 [11.5–13.7] | 12.6 [11.5–13.7] | 12.7 [11.8–13.6] | 0.466 |
| HDL (mg/dL) | 44 [39–48] | 42 [37–47] | 48 [44–52] | <0.001 |
| LDL (mg/dL) | 89 [75–105] | 90 [74–110] | 86 [77–98] | 0.431 |
| Triglycerides (mg/dL) | 162 [110–210] | 176 [120–220] | 134 [100–170] | <0.001 |
| SGPT (U/L) | 25 [18–32] | 30 [22–36] | 18 [15–22] | <0.001 |
| SGOT (U/L) | 24 [18–29] | 25 [19–31] | 21 [16–25] | 0.0128 |
| ALP (U/L) | 82 [65–102] | 85 [66–105] | 75 [62–90] | 0.164 |
| Na (mmol/L) | 138 [136–141] | 138 [136–141] | 140 [138–141] | 0.0848 |
| K (mmol/L) | 4.1 [3.7–4.5] | 4.0 [3.6–4.4] | 4.1 [3.9–4.5] | 0.0393 |
| Uric Acid (mg/dL) | 5.2 [4.2–6.2] | 5.7 [4.8–6.6] | 4.4 [3.8–5.0] | 0.0061 |
| TG/HDL ratio | 4.1 [2.7–5.6] | 4.4 [2.9–6.0] | 2.9 [2.0–3.5] | <0.001 |
| Subgroups | n (399) | Vitamin D Deficient (n, %) | Vitamin D Insufficient n, %) | Vitamin D Sufficient (n, %) | p Value |
|---|---|---|---|---|---|
| Gender | 0.710 | ||||
| Female | 271 | 78 (28.78%) | 66 (24.35%) | 127 (46.86%) | |
| Male | 128 | 42 (32.81%) | 30 (23.44%) | 56 (43.75%) | |
| Age Category | 0.009 | ||||
| Adults | 258 | 76 (29.46%) | 51 (19.77%) | 131 (50.78%) | |
| Elderly | 141 | 44 (31.21%) | 45 (31.91%) | 52 (36.88%) | |
| BMI Category | 0.218 | ||||
| Low/Normal | 246 | 76 (30.89%) | 65 (26.42%) | 105 (42.68%) | |
| Overweight/Obese | 153 | 44 (28.76%) | 31 (20.26%) | 78 (50.98%) | |
| Disease Duration | 0.013 | ||||
| (≤5 years DM) | 124 | 35 (28.23%) | 20 (16.13%) | 69 (55.65%) | |
| (>5 years DM) | 275 | 85 (30.91%) | 76 (27.64%) | 114 (41.45%) |
| Vitamin D Category | Relative Risk Ratio (Unadjusted RRR 95% CI) | p-Value | Relative Risk Ratio (Adjusted * RRR 95% CI) | p-Value |
|---|---|---|---|---|
| Deficient (<20 ng/mL) | 0.09 (0.04–0.19) | <0.001 | 0.04 (0.01–0.16) | <0.001 |
| Insufficient (20–29.9 ng/mL) | 0.13 (0.06–0.26) | <0.001 | 0.56 (0.18–1.71) | =0.310 |
| Sufficient (≥30 ng/mL) | Reference | – | Reference | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, S.; Ishaq, G.M.; Mushtaq, I.; Ganie, M.A.; Wani, I.; Alanazi, M.; Asiri, I.; Hussain, A.; Khan, K.U.; Anwar, S. Association of Vitamin D Deficiency with Diabetic Nephropathy in Type 2 Diabetes: A Hospital-Based Cross-Sectional Study. Diseases 2025, 13, 405. https://doi.org/10.3390/diseases13120405
Bashir S, Ishaq GM, Mushtaq I, Ganie MA, Wani I, Alanazi M, Asiri I, Hussain A, Khan KU, Anwar S. Association of Vitamin D Deficiency with Diabetic Nephropathy in Type 2 Diabetes: A Hospital-Based Cross-Sectional Study. Diseases. 2025; 13(12):405. https://doi.org/10.3390/diseases13120405
Chicago/Turabian StyleBashir, Shafia, Geer Mohammad Ishaq, Insha Mushtaq, Mohammad Ashraf Ganie, Imtiyaz Wani, Muteb Alanazi, Ibrahim Asiri, Arshad Hussain, Kashif Ullah Khan, and Sirajudheen Anwar. 2025. "Association of Vitamin D Deficiency with Diabetic Nephropathy in Type 2 Diabetes: A Hospital-Based Cross-Sectional Study" Diseases 13, no. 12: 405. https://doi.org/10.3390/diseases13120405
APA StyleBashir, S., Ishaq, G. M., Mushtaq, I., Ganie, M. A., Wani, I., Alanazi, M., Asiri, I., Hussain, A., Khan, K. U., & Anwar, S. (2025). Association of Vitamin D Deficiency with Diabetic Nephropathy in Type 2 Diabetes: A Hospital-Based Cross-Sectional Study. Diseases, 13(12), 405. https://doi.org/10.3390/diseases13120405

