Microfluidic Approach for Lead Halide Perovskite Flexible Phototransistors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu:, H.; Shin, E.S.; Liu, A.; Ji, D.; Xu, Y.; Noh, Y.Y. Printable semiconductors for backplane TFTs of flexible OLED displays. Adv. Funct. Mater. 2020, 30, 1904588. [Google Scholar] [CrossRef]
- Haneef, H.F.; Zeidell, A.M.; Jurchescu, O.D. Charge carrier traps in organic semiconductors: A review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 2020, 8, 759–787. [Google Scholar] [CrossRef]
- Petti, L.; Münzenrieder, N.; Vogt, C.; Faber, H.; Büthe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T.D.; Tröster, G. Metal oxide semiconductor thin-film transistors for flexible electronics. Appl. Phys. Rev. 2016, 3, 021303. [Google Scholar] [CrossRef] [Green Version]
- Ju, M.G.; Dai, J.; Ma, L.; Zeng, X.C. Perovskite chalcogenides with optimal bandgap and desired optical absorption for photovoltaic devices. Adv. Energy Mater. 2017, 7, 1700216. [Google Scholar] [CrossRef]
- Jiang, Y.; Juarez-Perez, E.J.; Ge, Q.; Wang, S.; Leyden, M.R.; Ono, L.K.; Raga, S.R.; Hu, J.; Qi, Y. Post-annealing of MAPbI 3 perovskite films with methylamine for efficient perovskite solar cells. Mater. Horizons 2016, 3, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Djurišić, A.; Liu, F.; Tam, H.; Wong, M.; Ng, A.; Surya, C.; Chen, W.; He, Z. Perovskite solar cells—An overview of critical issues. Prog. Quant. Electron. 2017, 53, 1–37. [Google Scholar] [CrossRef]
- Schuster, O.; Wientjes, P.; Shrestha, S.; Levchuk, I.; Sytnyk, M.; Matt, G.J.; Osvet, A.; Batentschuk, M.; Heiss, W.; Brabec, C.J. Looking beyond the surface: The band gap of bulk methylammonium lead iodide. Nano Lett. 2020, 20, 3090–3097. [Google Scholar] [CrossRef]
- Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Ava, T.T.; Al Mamun, A.; Marsillac, S.; Namkoong, G. A review: Thermal stability of methylammonium lead halide based perovskite solar cells. Appl. Sci. 2019, 9, 188. [Google Scholar] [CrossRef] [Green Version]
- Chin, X.Y.; Cortecchia, D.; Yin, J.; Bruno, A.; Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 2015, 6, 7383. [Google Scholar] [CrossRef]
- Lin, Y.H.; Pattanasattayavong, P.; Anthopoulos, T.D. Metal-Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities. Adv. Mater. 2017, 29, 1702838. [Google Scholar] [CrossRef]
- Zhou, Z.; Guo, N.; Peng, Y.; Tang, L.; Zhang, J.; Cai, H.; Ni, J.; Sun, Y.; Li, J. The Effect of Annealing Pressure on Perovskite Films and Its Thin-Film Field-Effect Transistors’ Performance. Phys. Stat. Solid. A 2019, 216, 1900434. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B. Hybrid graphene–perovskite phototransistors with ultrahigh responsivity and gain. Adv. Opt. Mater. 2015, 3, 1389–1396. [Google Scholar] [CrossRef]
- Wang, J.; Liu, F.; Wang, G.; Wang, L.; Jiang, C. Novel organic-perovskite hybrid structure forward photo field effect transistor. Organ. Electron. 2016, 38, 158–163. [Google Scholar] [CrossRef]
- Mei, Y.; Zhang, C.; Vardeny, Z.; Jurchescu, O. Electrostatic gating of hybrid halide perovskite field-effect transistors: Balanced ambipolar transport at room-temperature. MRS Commun. 2015, 5, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Lv, Q.; Wang, Z.; Dong, G.; Yan, Q. Anisotropic Carrier Transport in CH 3 NH 3 PbI 3 Single Crystal Field-Effect Transistor. IEEE Electr. Dev. Lett. 2018, 39, 1389–1392. [Google Scholar] [CrossRef]
- Li, F.; Ma, C.; Wang, H.; Hu, W.; Yu, W.; Sheikh, A.D.; Wu, T. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 2015, 6, 8238. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Cheng, H.C.; Wang, Y.; Zhao, Z.; Wang, G.; Wu, H.; He, Q.; Huang, Y.; Duan, X. The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Field-Effect Transistors. Adv. Mater. 2017, 29, 1601959. [Google Scholar] [CrossRef]
- Kagan, C.; Mitzi, D.; Dimitrakopoulos, C. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286, 945–947. [Google Scholar] [CrossRef]
- Ji, J.; Haque, F.; Hoang, N.T.T.; Mativenga, M. Ambipolar Transport in Methylammonium Lead Iodide Thin Film Transistors. Crystals 2019, 9, 539. [Google Scholar] [CrossRef] [Green Version]
- Huo, C.; Liu, X.; Song, X.; Wang, Z.; Zeng, H. Field-effect transistors based on van-der-waals-grown and dry-transferred all-inorganic perovskite ultrathin platelets. J. Phys. Chem. Lett. 2017, 8, 4785–4792. [Google Scholar] [CrossRef]
- He, B.; Li, W.; Wang, Q.; Liang, L.; Wang, H.; Xu, J.; Yang, S.; Jiang, Y.; Tang, Y.; Zou, B. Ultrasensitive all-solution-processed field-effect transistor based perovskite photodetectors with sol-gel SiO2 as the dielectric layer. J. Alloys Compd. 2017, 717, 150–155. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, Y.; Yu, Y.; Jin, L.; Li, Y.; Chen, Z.; Che, Y.; Dai, H.; Zhang, G.; Yao, J. Enhanced perovskite phototransistor by multi-step slow annealing strategy. Opt. Mater. 2018, 84, 498–503. [Google Scholar] [CrossRef]
- Canicoba, N.D.; Zagni, N.; Liu, F.; Mccuistian, G.; Fernando, K.; Bellezza, H.; Traore, B.; Rogel, R.; Tsai, H.; Le Brizoual, L. Halide Perovskite High-k Field Effect Transistors with Dynamically Reconfigurable Ambipolarity. ACS Mater. Lett. 2019, 1, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Wang, H.; Kufer, D.; Liang, L.; Yu, W.; Alarousu, E.; Ma, C.; Li, Y.; Liu, Z.; Liu, C. Ultrahigh Carrier Mobility Achieved in Photoresponsive Hybrid Perovskite Films via Coupling with Single-Walled Carbon Nanotubes. Adv. Mater. 2017, 29, 1602432. [Google Scholar] [CrossRef]
- Wang, G.; Li, D.; Cheng, H.-C.; Li, Y.; Chen, C.-Y.; Yin, A.; Zhao, Z.; Lin, Z.; Wu, H.; He, Q. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 2015, 1, e1500613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.; Liu, C.K.; Loi, H.L.; Yan, F. Perovskite-Based Phototransistors and Hybrid Photodetectors. Adv. Funct. Mater. 2019, 30, 1903907. [Google Scholar] [CrossRef]
- Park, N.-G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Kalaiselvi, C.; Muthukumarasamy, N.; Velauthapillai, D.; Kang, M.; Senthil, T. Importance of halide perovskites for next generation solar cells–a review. Mater. Lett. 2018, 219, 198–200. [Google Scholar] [CrossRef]
- Khorramshahi, F.; Ghazizadeh, N.; Kymissis, I.; Takshi, A. Laser engraving method to fabricate iodide and bromide-based perovskite photosensors. In Proceedings of Organic and Hybrid Sensors and Bioelectronics XIII; SPIE: Bellingham, WA, USA, 2020; p. 114750L. [Google Scholar]
- Khorramshahi, F.; Aljafari, B.; Kymissis, I.; Takshi, A. Laser assisted rapid fabrication of perovskite photodetector. In Proceedings of Organic and Hybrid Sensors and Bioelectronics XII; SPIE: Bellingham, WA, USA, 2019; p. 110960C. [Google Scholar]
- Khorramshahi, F.; Takshi, A. Novel fabrication of flexible perovskite photosensor using capillary motion. In Proceedings of Organic and Hybrid Sensors and Bioelectronics XI; SPIE: Bellingham, WA, USA, 2018; p. 107380R. [Google Scholar]
- Khorramshahi, F.; Takshi, A. Study of the stability of lead halide perovskite under two different fluoropolymer top coatings. MRS Adv. 2020, 5, 377–383. [Google Scholar] [CrossRef]
- Khorramshahi, F.; Okeke, O.E.; Takshi, A. Electrochemical photocurrent enhancement in a ZnO-perovskite heterojunction using piezoelectric effect. Electrochim. Acta 2018, 266, 110–117. [Google Scholar] [CrossRef]
- Khorramshahi, F.; Woughter, A.G.; Ram, M.K.; Kymissis, I.; Takshi, A. Apparent Piezo-Photocurrent Modulation in Methylammonium Lead Iodide Perovskite Photodetectors. Adv. Electron. Mater. 2019, 5, 1900518. [Google Scholar] [CrossRef]
- Chae, J.B.; Kwon, J.O.; Yang, J.S.; Kim, D.; Rhee, K.; Chung, S.K. Optimum thickness of hydrophobic layer for operating voltage reduction in EWOD systems. Sens. Actuat. A Phys. 2014, 215, 8–16. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Y.; Wang, Z.; Xu, Z.-Q.; Zheng, C.; Weber, B.; Song, J.; Wang, Y.; Lu, Y.; Zhang, Y. Two-dimensional CH3NH3PbI3 perovskite: Synthesis and optoelectronic application. ACS Nano 2016, 10, 3536–3542. [Google Scholar] [CrossRef]
- Xing, G.; Mathews, N.; Sun, S.; Lim, S.S.; Lam, Y.M.; Grätzel, M.; Mhaisalkar, S.; Sum, T.C. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 2013, 342, 344–347. [Google Scholar] [CrossRef]
- Senanayak, S.P.; Yang, B.; Thomas, T.H.; Giesbrecht, N.; Huang, W.; Gann, E.; Nair, B.; Goedel, K.; Guha, S.; Moya, X. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 2017, 3, e1601935. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Account Chem. Res. 2016, 49, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, X.; Huang, L.-Y.; Lin, H.-Q.; Lu, G. Charge transport in hybrid halide perovskites. Phys. Rev. B 2017, 96, 195203. [Google Scholar] [CrossRef] [Green Version]
- Bi, C.; Shao, Y.; Yuan, Y.; Xiao, Z.; Wang, C.; Gao, Y.; Huang, J. Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2014, 2, 18508–18514. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Xu, J.; Du, Y.; Huang, L.; Ni, J.; Cai, H.; Zhang, J. Organic–inorganic hybrid CH 3 NH 3 PbI 3 perovskite materials as channels in thin-film field-effect transistors. RSC Adv. 2016, 6, 16243–16249. [Google Scholar] [CrossRef]
- Tong, S.; Wu, H.; Zhang, C.; Li, S.; Wang, C.; Shen, J.; Xiao, S.; He, J.; Yang, J.; Sun, J. Large-area and high-performance CH3NH3PbI3 perovskite photodetectors fabricated via doctor blading in ambient condition. Organ. Electron. 2017, 49, 347–354. [Google Scholar] [CrossRef]
- Yu, H.; Cheng, Y.; Shin, D.; Tsang, S.W.; So, F. Vertical Organic–Inorganic Hybrid Perovskite Schottky Junction Transistors. Adv. Electron. Mater. 2018, 4, 1800039. [Google Scholar] [CrossRef]
- Hong, Z.; Zhao, J.; Huang, K.; Cheng, B.; Xiao, Y.; Lei, S. Controllable switching properties in an individual CH 3 NH 3 PbI 3 micro/nanowire-based transistor for gate voltage and illumination dual-driving non-volatile memory. J. Mater. Chem. C 2019, 7, 4259–4266. [Google Scholar] [CrossRef]
- Hoang, N.T.T.; Haque, F.; Ji, J.; Mativenga, M. Fast-Switching Mixed A-Cation Organic-Inorganic Hybrid Perovskite TFTs. IEEE Electron. Device Lett. 2019, 40, 917–920. [Google Scholar] [CrossRef]
- Chen, P.-A.; Guo, J.; Nouri, M.; Tao, Q.; Li, Z.; Li, Q.; Du, L.; Chen, H.; Dong, Z.; Chang, L. Microfluidic Solution-Processed Organic and Perovskite Nanowires Fabricated for Field-Effect Transistors and Photodetectors. J. Mater. Chem. C 2020, 8, 2353–2362. [Google Scholar] [CrossRef]
Year | Material | Flexibility | Fabrication Method | Carrier Transport/Operational Temperature | Ref. |
---|---|---|---|---|---|
2015 | MAPbI3 thin film | 🗴 | Two-step vapor-assisted | Ambipolar | [17] |
2015 | MAPbI3−xClx | One-step spin coating | No current modulation | [15] | |
2015 | Hybrid graphene MAPbBr2I | 🗴 | One-step spin coating | Ambipolar No current modulation | [13] |
2015 | Tetragonal MAPbI3 thin film | 🗴 | One-step spin coating | LT ** current modulation | [10] |
2016 | 2D MAPbI3 | 🗴 | Combined solution process and vapor-phase conversion | No current modulation | [37] |
2015 | MAPbI3 micro-crystals | 🗴 | Seeded growth process | [26] | |
2016 | Hybrid C8BTBT * onto MAPbI3 | 🗴 | Co-evaporating | Unipolar | [14] |
2016 | MAPbI3 | 🗴 | Modified vapor-assisted solution process | Unipolar No current modulation | [43] |
2017 | MAPbI3 thin film | 🗴 | Doctor blade | No current modulation | [44] |
2017 | MAPbI3 microplates | 🗴 | Vapor phase intercalation | LT current modulation | [18] |
2017 | Hybrid MAPbI3−xClx/CNT | 🗴 | One-step spin coating | Ambipolar | [25] |
2017 | MAPbI3 thin film | 🗴 | Two-step spin coating | No transfer characteristic | [22] |
2017 | MAPbI3 thin film | 🗴 | One-step spin coating | Unipolar at HT *** | [39] |
2018 | MAPbIxCl3−x | 🗴 | Multi-step annealing process | No Saturation Regime | [23] |
2018 | MAPbI3 thin film | 🗴 | One-step spin coating | Vertical structure with ITO contact | [45] |
2019 | MAPbI3 thin film | 🗴 | One-step spin coating | Ambipolar | [20] |
2019 | MAPbI3 micro/nanowire | 🗴 | Unipolar/P-type | [46] | |
2019 | MAPbI3 | 🗴 | One-step spin coating | Ambipolar | [47] |
2019 | MAPbI3 thin film | 🗴 | Hot-casting method | Unipolar/P-type | [24] |
2019 | MAPbIxCl3−x | 🗴 | One-step spin coating | Ambipolar | [12] |
2020 | MAPbI3/PDVT-10 and MAPbI3/N2200 | 🗴 | Cast and mold cleanroom microfluidic fabrication | Ambipolar | [48] |
2020 | MAPbI3 | ✓ | Laser engraving + Capillary on Flexible substrate | Unipolar/P-type | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khorramshahi, F.; Takshi, A. Microfluidic Approach for Lead Halide Perovskite Flexible Phototransistors. Electronics 2020, 9, 1852. https://doi.org/10.3390/electronics9111852
Khorramshahi F, Takshi A. Microfluidic Approach for Lead Halide Perovskite Flexible Phototransistors. Electronics. 2020; 9(11):1852. https://doi.org/10.3390/electronics9111852
Chicago/Turabian StyleKhorramshahi, Fatemeh, and Arash Takshi. 2020. "Microfluidic Approach for Lead Halide Perovskite Flexible Phototransistors" Electronics 9, no. 11: 1852. https://doi.org/10.3390/electronics9111852
APA StyleKhorramshahi, F., & Takshi, A. (2020). Microfluidic Approach for Lead Halide Perovskite Flexible Phototransistors. Electronics, 9(11), 1852. https://doi.org/10.3390/electronics9111852