You are currently viewing a new version of our website. To view the old version click .
Electronics
  • Article
  • Open Access

2 September 2019

Multi-Point Collaborative Authentication Method Based on User Image Intelligent Collection in the Internet of Things

,
and
1
Key Laboratory of Complex Systems Modeling and Simulation, School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
2
Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue State-of-the-Art of Cyber Security

Abstract

With the increasing demand for intelligent services of the Internet of Things (IoT), its security issues have attracted widespread attention recently. Since most of the existing identity authentication policies are based on a single authentication mode, they are highly likely to cause problems such as illegal operation and stealing of sensor information. In order to meet the needs of increasing IoT users for the security management of intelligent services, a multi-point collaborative authentication method based on user image intelligent collection for the security problems faced by IoT in identity authentication is proposed in the paper. This method firstly collects the identity of the legal user through the intelligent collection technology and then realizes the identity authentication of the unidentified user through the collaborative authentication between the local domain management machine, the back-end image management machine, and the cloud server. Compared with the traditional single identity authentication method, our method uses three-party collaborative authentication to avoid the problem of sensor information stealing easily caused by a single authentication method, which makes the user’s identity authentication more secure and effective. The security analysis shows that the method is able to resist multiple attacks and prevent the sensor information from being illegally operated and stolen, protecting the security of the sensor information.

1. Introduction

With the continuous development of technology, the development of the Internet of Things (IoT) has shown an exponential growth. Combining sensor technology, Internet technology, and wireless technology, IoT realizes real-time interaction between the virtual network and the real world. It senses and collects data in real time through a large number of sensors and transmits data to the server for data calculation and processing. In addition, the processed information is transmitted to the user. IoT has unlimited application prospects and is currently widely used in smart homes, wearable devices, implantable devices, medical devices, connected cars, and transportation systems. Therefore, the Internet of Everything has become an inevitable trend in technology development and industrial application. Although IoT has greatly improved the level of intelligence and automation of society, the information transmitted wirelessly and exposed to the public is highly likely to be tampered with, stolen, and interfered. Therefore, the security of the IoT system has been greatly threatened. Incidents caused by IoT security occur frequently in the real world, and their influence and destructive power are extremely great, so that IoT security has already become a topic of global concern. The issue of IoT security is the primary problem solved by the development of IoT. With the increasing attention paid to IoT data security, a secure and effective identity authentication protocol has become an important requirement for the rapid development of IoT.
IoT identity authentication is threatened by the following major aspects in terms of security. (1) Denial of service (DoS) attacks: When the data are transmitted, the data transmission of a large number of machines may cause network congestion, because IoT has a large number of nodes and exists in a cluster. The attacker may broadcast invalid information to perform a consumptive attack on the network bandwidth, so that the request of the legal user cannot be executed. (2) Node attack: There is a large number of sensing nodes in the IoT application, most of which are deployed in unattended scenarios. Attackers can easily destroy these nodes and impersonate legitimate nodes. Therefore, there will be a large number of damaged nodes and malicious nodes in the IoT. (3) Replay attack: The attacker can deceive the IoT system to obtain an authenticated identity by sending a packet when the destination host has accepted. (4) Eavesdropping and camouflage attacks: The attacker steals security information from a common channel and falsifies other users’ information through known security information. In order to solve these problems and protect the security of identity authentication, this paper proposes a multi-point collaborative authentication method based on user image intelligent collection in the IoT. Firstly, the intelligent collection technology is used to realize the image identity collection of legal users, that is the image information of the legal user is collected by the camera and stored in the database of the local domain management machine, the back-end image management machine, and the cloud server. Secondly, the camera is used to collect the unidentified user image information, which was transmitted to the three databases, as well. Thirdly, the legal user image information and the unidentified user image information in the three databases are compared to realize the identity authentication of the unidentified user, respectively. Not covering the field of imagery, the limitation of our method is that it just compares the image of the legal user with the that of the unidentified user, so there is no algorithm for the image in our method. The security analysis shows that the method is able to resist multiple attacks and prevent the sensor information from being illegally operated and stolen, protecting the security of the sensor information.

3. Multi-Point Collaborative Authentication

This section proposes a multi-point collaborative authentication method based on user image intelligent collection in the IoT. The method mainly includes four phases: (1) the system establishment phase of user image intelligent multi-point collaborative authentication; (2) the authentication phase of the local domain management machine and the back-end image management machine; (3) the authentication phase of the local domain management machine and the cloud server; (4) the authentication phase of the back-end image management machine and the cloud server. Through these four phases, it is possible to realize the security of user image intelligent collection and its service intelligent control.
In these phases, the information transmission between the local domain management machine, the back-end image management machine, and the cloud server follows the SSL (secure socket layer) or TLS (transport later security) protocol. Its architecture diagram is shown in Figure 1. The symbols and definitions used in this paper are shown in Table 1.
Figure 1. Architecture diagram of the multi-point collaborative authentication method based on user image intelligent collection in the IoT.
Table 1. Symbols and definitions.

3.1. The System Establishment Phase of User Image Intelligent Multi-Point Collaborative Authentication

At this phase, the back-end image intelligent collector intelligently collects the image of the legal user and transmits it to the back-end image management machine. Then, the back-end image management machine requests the back-end manager to input the identity information and uses a secure encryption algorithm to transmit it to the local domain management machine and the cloud server through the secure channel. Finally, they establish their own image information database in the back-end image management machine, local domain management machine, and cloud server to complete the system establishment. The brief process diagram is shown in Figure 2. The algorithm is shown in Algorithm 1.
Figure 2. The system establishment phase’s brief process diagram.
Algorithm 1: The System Establishment Phase of User Image Intelligent Multi-Point Collaborative Authentication
  • B I I C j | P ( U i ) , ( B I I C j P ( U i ) ) B I M M j .
  • B I M M j ( B I I C j P ( U i ) ) , B I M M j I D ( B I M M j ) , B I M M j I D ( U i ) .
  • B I M M j D B ( U i | | P ( U i ) | | I D ( U i ) | | B I M M j | | I D ( B I M M j ) ) .
  • P K 1 ( B I M M j ) , S K 1 ( B I M M j ) , E ( P ( U i ) | | I D ( B I M M j ) ) P K 1 ( B I M M j ) , ( B I M M j E ( P ( U i ) | | I D ( B I M M j ) ) P K 1 ( B I M M j ) ) L D M M j .
  • L D M M j ( B I M M j E ( P ( U i ) | | I D ( B I M M j ) ) P K 1 ( B I M M j ) ) , ( L D M M j Φ ( S K 1 ( B I M M j ) ) ) B I M M j .
  • B I M M j ( L D M M j Φ ( S K 1 ( B I M M j ) ) ) , ( B I M M j S K 1 ( B I M M j ) ) L D M M j .
  • L D M M j ( B I M M j S K 1 ( B I M M j ) ) , D ( E ( P ( U i ) | | I D ( B I M M j ) ) P K 1 ( B I M M j ) ) S K 1 ( B I M M j ) .
  • L D M M j D B ( P ( U i ) | | B I M M j | | I D ( B I M M j ) ) .
  • L D M M j ( ( L D M M j D B ( P ( U i ) | | B I M M j | | I D ( B I M M j ) ) ) = ? 1 ) , if it is not one, then go to (8), else ( L D M M j A C K ) B I M M j .
  • B I M M j ( L D M M j A C K ) , P K 2 ( B I M M j ) , S K 2 ( B I M M j ) .
  • E ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) P K 2 ( B I M M j ) , ( B I M M j E ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) P K 2 ( B I M M j ) ) C S .
  • C S ( B I M M j ( E ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) P K 2 ( B I M M j ) ) ,
    ( C S Φ ( S K 2 ( B I M M j ) ) ) B I M M j .
  • B I M M j ( C S Φ ( S K 2 ( B I M M j ) ) ) , ( B I M M j S K 2 ( B I M M j ) ) C S .
  • C S ( B I M M j S K 2 ( B I M M j ) ) , D ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) P K 2 ( B I M M j ) ) S K 2 ( B I M M j ) .
  • C S D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) .
  • C S ( D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) = ? 1 ) , if it is not one, then go to (15), else ( C S A C K ) B I M M j .
  • B I M M j ( C S A C K ) , B I M M j ( ( U i | | P ( U i ) | | I D ( U i ) ) = ? 1 ) , if it is one, then go to (1),else go to (18).
  • End.
The specific process execution is described as follows:
Step 1: The back-end image intelligent collector B I I C j (j = 1, 2, 3, ⋯, n) intelligently collects the image P ( U i ) of the legal user U i (i = 1, 2, 3, ⋯, n) according to the requirements of the back-end manager. The legal user image P ( U i ) is transmitted to the corresponding back-end image management machine B I M M j via the secret network.
Step 2: After receiving the legal user image P ( U i ) transmitted by the back-end image intelligent collector, the back-end image management machine B I M M j requests the back-end manager to input the identity information I D ( B I M M j ) of the back-end image management machine B I M M j and the identity information I D ( U i ) of this legal user.
Step 3: After receiving the identity information I D ( U i ) of the input legal user, the back-end image management machine B I M M j constructs a corresponding back-end image management information database D B ( U i | | P ( U i ) | | I D ( U i ) | | B I M M j | | I D ( B I M M j ) ) . This database contains the identity information I D ( B I M M j ) of the back-end image management machine, the legal user name U i , the identity information I D ( U i ) of the legal user, and the image information P ( U i ) of the legal user.
Step 4: After constructing the database D B ( U i | | P ( U i ) | | I D ( U i ) | | B I M M j | | I D ( B I M M j ) ) , the back-end image management machine B I M M j first generates a public key P K 1 ( B I M M j ) and a corresponding private key S K 1 ( B I M M j ) based on the elliptic curve encryption method. On this basis, the back-end image management machine B I M M j encrypts the image P ( U i ) of the legal user and its own identity information I D ( B I M M j ) using the public key P K 1 ( B I M M j ) based on the elliptic curve encryption method. The encrypted file is sent to the local domain management machine via SSL or TLS.
Step 5: After receiving the encrypted file ( P ( U i ) | | I D ( B I M M j ) ) P K 1 ( B I M M j ) , the local domain management machine applies it to the back-end image management machine B I M M j for the private key S K 1 ( B I M M j ) .
Step 6: After receiving the private key application of the local domain management machine, the back-end image management machine B I M M j sends the private key S K 1 ( B I M M j ) to the local domain management machine via SSL or TLS.
Step 7: After receiving the private key S K 1 ( B I M M j ) sent by the back-end image management machine B I M M j , the local domain management machine decrypts the received encrypted file ( P ( U i ) | | I D ( B I M M j ) ) P K 1 ( B I M M j ) .
Step 8: After decrypting the encrypted file ( P ( U i ) | | I D ( B I M M j ) ) P K 1 ( B I M M j ) , the local domain management machine construct a corresponding local domain management image information database D B ( P ( U i ) | B I M M j | | I D ( B I M M j ) ) . This database contains image information P ( U i ) of the legal user, the back-end image management machine name B I M M j , and the identity information I D ( B I M M j ) of the back-end image management machine B I M M j .
Step 9: The local domain management machine determines whether the local domain management image information database D B ( P ( U i ) | | B I M M j | | I D ( B I M M j ) ) is constructed. If not, go the Step 8; otherwise, send confirmation message to the back-end image management machine B I M M j .
Step 10: After receiving the confirmation message sent by the local domain management machine, the back-end image management machine B I M M j generates a public key P K 2 ( B I M M j ) and a corresponding private key S K 2 ( B I M M j ) according to the elliptic curve encryption method.
Step 11: The back-end image management machine B I M M j uses the public key P K 2 ( B I M M j ) to encrypt image P ( U i ) of the legal user, the identity information I D ( U i ) of the user image, and its own identity information I D ( B I M M j ) according to the elliptic curve encryption method, then sends its encrypted file ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) P K 2 ( B I M M j ) to the cloud server via SSL or TLS.
Step 12: After receiving the encrypted file ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) P K 2 ( B I M M j ) , the cloud server applies it to the back-end image management machine B I M M j for the private key S K 2 ( B I M M j ) .
Step 13: After receiving the private key application of the cloud server, the back-end image management machine B I M M j sends the private key S K 2 ( B I M M j ) to the cloud server via SSL or TLS.
Step 14: After receiving the private key S K 2 ( B I M M j ) sent by the back-end image management machine B I M M j , the cloud server decrypts the received encrypted file ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) P K 2 ( B I M M j ) .
Step 15: After decrypting the encrypted file ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) P K 2 ( B I M M j ) , the cloud server constructs a corresponding cloud server image information database D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) . This database contains the image information P ( U i ) of the legal user, the identity information I D ( U i ) of the legal user, and the identity information I D ( B I M M j ) of the back-end image management machine B I M M j .
Step 16: The cloud server determines whether the cloud server image information database D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) is constructed. If not, go to Step 15; otherwise, send a confirmation message to the back-end image management machine B I M M j .
Step 17: After receiving the confirmation message sent by the cloud server, the back-end image management machine B I M M j determines whether the back-end manager needs the back-end image intelligent collector B I I C j to collect the legal user image, and if necessary, then go to the Step 1; otherwise, go to Step 18.
Step 18: End of system construction.

3.2. The Authentication Phase of the Local Domain Management Machine and the Back-End Image Management Machine

At this phase, the front-end image intelligent collector collects the unidentified user image information and transmits it to the local domain management machine via the secret network. The local domain management machine applies for authentication to the back-end image management machine in the form of a digital signature. Then, the local domain management machine encrypts the unidentified user image information and transmits it to the back-end image management machine through the encryption algorithm. Next, query the image information of all legal users in the local domain management image information database and the back-end image management image information database and respectively compare the legal user image information in these two databases with the image information of the unidentified user. Finally, complete mutual authentication between the local domain management machine and the back-end image management machine. The brief process diagram is shown in Figure 3. The algorithm is shown in Algorithm 2.
Figure 3. The authentication phase of the local domain management machine and the back-end image management machine brief process diagram.
Algorithm 2: The Authentication Phase of the Local Domain Management Machine and the Back-End Image Management Machine
  • F I I C k ( ( U * | | P ( U * ) ) = ? 1 ) , if it is one, then go to (3), else go to (2).
  • F I I C k wait 3 s, then go to (1).
  • F I I C k | P ( U n * ) , F I I C k T i , ( F I I C k ( P ( U n * ) | | T i ) L D M M j .
  • L D M M j ( F I I C k ( P ( U n * ) | | T i ) , L D M M j T S i , L D M M j ( ( ( T i T S i ) Δ t ) = ? 1 ) , if it is one, L D M M j delete P ( U n * ) , then go to (2), else
    L D M M j ( P ( U i ) ( D B ( P ( U i ) | | B I M M j | | I D ( B I M M j ) ) ) , L D M M j ( P ( U i ) = ? P ( U n * ) ) , if P ( U i ) ( D B ( P ( U i ) | | B I M M j | | I D ( B I M M j ) ) ) and P ( U i ) = P ( U n * ) , then go to (5), else delete P ( U n * ) , and go to (2).
  • m e s s a g e 1 = (Apply for authentication), S ( m e s s a g e 1 ) S K ( L D M M j ) , ( L D M M j S ( m e s s a g e 1 ) S K ( L D M M j ) ) B I M M j .
  • B I M M j ( L D M M j S ( m e s s a g e 1 ) S K ( L D M M j ) ) , V ( S ( m e s s a g e 1 ) S K ( L D M M j ) ) P K ( L D M M j ) = ? 1 , if it is one, then go to (7), else show “Apply for authentication failure”, and go to (3).
  • message = (The authentication was successful, please transmit the image of the unidentified user) ( B I M M j E ( m e s s a g e ) P K 1 ( B I M M j ) ) L D M M j .
  • L D M M j ( B I M M j E ( m e s s a g e ) P K 1 ( B I M M j ) ) , D ( E ( m e s s a g e ) P K 1 ( B I M M j ) ) S K 1 ( B I M M j ) .
  • S P ( U n * ) S K ( L D M M j ) , ( L D M M j S P ( U n * ) S K ( L D M M j ) ) B I M M j .
  • B I M M j ( L D M M j S P ( U n * ) S K ( L D M M j ) ) , V ( S P ( U n * ) S K ( L D M M j ) ) P K ( L D M M j ) = ? 1 , if it is one, then go to (11), else show “The verification of the image of the unidentified user failed”, and go to (3).
  • B I M M j ( F I I C k P ( U n * ) ) .
  • B I M M j ( P ( U i ) D B ( U i | | P ( U i ) | | I D ( U i ) | | B I M M j | | I D ( B I M M j ) ) ,
  • B I M M j ( P ( U i ) = ? P ( U n * ) ) , if P ( U i ) ( D B ( U i | | P ( U i ) | | I D ( U i ) | | B I M M j | | I D ( B I M M j ) ) ) and P ( U i ) = P ( U n * ) , then show “The verification is success between the local domain management machine and the back-end image management machine”, and go to (13), else show “The verification failed between the local domain management machine and the back-end image management machine”, and go to (15).
  • message = (The verification was successful between the local domain management machine and the back-end image management machine), ( B I M M j E ( m e s s a g e ) P K ( B I M M j ) ) L D M M j .
  • B I M M j the transmission of the message is over . If it is over, then go to (15), else go to (13).
  • End.
The specific process execution is described as follows:
Step 1: The front-end image intelligent collector F I I C k intelligently judges whether there is an unidentified user who needs image collection according to the surrounding scenes. If needed, then go to Step 3, otherwise, go to Step 2.
Step 2: The front-end image intelligent collector F I I C k waits for three seconds and then goes to Step 1.
Step 3: The front-end image intelligent collector F I I C k intelligently collects the image P ( U n * ) of the unidentified user according to the surrounding scene and generates a timestamp value T i . Then, the image of the unidentified user and the current timestamp value ( P ( U n * ) | | T i ) are sent to the local domain management machine through the secret network.
Step 4: After receiving the image of the unidentified user and the current timestamp value ( P ( U n * ) | | T i ) sent by the front-end image intelligent collector F I I C k , the local domain management machine generates a timestamp value T S i . Firstly, check if the session delay T i T S i is within the allowable time interval Δ t. If ( T i T S i ) Δ t , the session times out, and delete the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k , then go to Step 2. Then, query the image information P ( U i ) of all legal users in the local domain management image information database D B ( P ( U i ) | | B I M M j | | I D ( B I M M j ) ) , and compare the legal user image information P ( U i ) in the database D B ( P ( U i ) | | B I M M j | | I D ( B I M M j ) ) with the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k . If the image information P ( U i ) of a certain legal user exists in the local domain management image information database D B ( P ( U i ) | | B I M M j | | I D ( B I M M j ) ) and the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k is the same (i.e., P ( U n * ) = P ( U i ) ), go to Step 5; otherwise, delete the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k , then go to Step 2.
Step 5: According to the back-end image management machine B I M M j corresponding to the image information P ( U i ) of the legal user in the database D B ( P ( U i ) | | B I M M j | | I D ( B I M M j ) ) , the local domain management machine first uses the private key S K ( L D M M j ) and signs the “Apply for authentication” message, i.e., (“Apply for authentication”) S K ( L D M M j ) . Then, it sends the signed message to the back-end image management machine B I M M j .
Step 6: After receiving the signature message (“Apply for authentication”)) S K ( L D M M j ) sent by the local domain management machine, the back-end image management machine B I M M j authenticates the signature message by using the public key of the local domain management machine. If the authentication is successful, go to Step 7. Otherwise, display “Apply for authentication failure”, and go to Step 3.
Step 7: The back-end image management machine B I M M j encrypts the “The authentication is successful, please transmit the image of the unidentified user” message using the public key P K 1 ( B I M M j ) , according to the elliptic curve encryption method, and then sends the encrypted message (“The authentication is successful, please transmit the image of the unidentified user”) P K 1 ( B I M M j ) to the local domain management machine via SSL or TLS.
Step 8: After receiving the encrypted message (“The authentication is successful, please transmit the image of the unidentified user”) P K 1 ( B I M M j ) , the local domain management machine uses private key S K 1 ( B I M M j ) to decrypt.
Step 9: According to the decrypted message, the local domain management machine first uses the private key S K ( L D M M j ) to sign the image P ( U n * ) message of the unidentified user collected by the front-end image intelligent collector F I I C k , i.e., ( P ( U n * ) ) S K ( L D M M j ) . Then, the signed message is sent to the back-end image management machine B I M M j .
Step 10: After receiving the signature message ( P ( U n * ) ) S K ( L D M M j ) sent by the local domain management machine, the back-end image management machine B I M M j authenticates the signature message by using the public key of the local domain management machine. If the authentication is successful, go to Step 11. Otherwise, display “The verification of the image of the unidentified user failed”, and go to Step 3.
Step 11: The back-end image management machine B I M M j receives the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k .
Step 12: The back-end image management machine B I M M j first queries the image information P ( U i ) of all legal users in its database D B ( U i | | P ( U i ) | | I D ( U i ) | | B I M M j | | I D ( B I M M j ) ) and compares the legal user image information P ( U i ) in the database D B ( U i | | P ( U i ) | | I D ( U i ) | | B I M M j | | I D ( B I M M j ) ) with the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k . If the image information P ( U i ) of a certain legal user exists in the back-end image management information database D B ( U i | | P ( U i ) | | I D ( U i ) | | B I M M j | | I D ( B I M M j ) ) and the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k are the same (i.e., P ( U n * ) = P ( U i ) ), the back-end image management machine B I M M j displays “The verification is successful between the local domain management machine and the back-end image management machine”. Otherwise, the back-end image management machine B I M M j displays “The verification failed between the local domain management machine and the back-end image management machine” and goes to Step 15.
Step 13: The back-end image management machine B I M M j encrypts the image authentication result message “The verification is successful between the local domain management machine and the back-end image management machine” and then sends its encrypted message to the local domain management machine via SSL or TLS.
Step 14: The back-end image management machine B I M M j determines whether the image authentication result message is sent. If sent, go to Step 15; otherwise, go to Step 13.
Step 15: End.

3.3. The Authentication Phase of the Local Domain Management Machine and Cloud Server

In this phase, the local domain management machine applies for authentication to the cloud server in the form of a digital signature. Then, the local domain management machine encrypts the unidentified user image information and transmits it to the cloud server through the encryption algorithm. Then, query the image information of all legal users in the cloud server image information database, and compare the legal user image information in the database with the image information of the unidentified user. Finally, complete mutual authentication between the local domain management machine and the cloud server. The brief process diagram is shown in Figure 4. The algorithm is shown in Algorithm 3.
Figure 4. The authentication phase of the local domain management machine and cloud server brief process diagram.
Algorithm 3: The Authentication Phase of the Local Domain Management Machine and Cloud Server
  • L D M M j ( B I M M j E ( m e s s a g e ) P K ( B I M M j ) ) , D ( E ( m e s s a g e ) P K ( B I M M j ) ) S K ( B I M M j ) .
  • L D M M j The verification of the message is successful , if the verification is successful, then go to (3), else go to (13).
  • m e s s a g e 1 = (Apply for authentication), S ( m e s s a g e 1 ) S K ( L D M M j ) , ( L D M M j S ( m e s s a g e 1 ) S K ( L D M M j ) ) C S .
  • C S ( L D M M j S ( m e s s a g e 1 ) S K ( L D M M j ) ) , V ( S ( m e s s a g e 1 ) S K ( L D M M j ) ) P K ( L D M M j ) = ? 1 , if it is one, then go to (5), else show “Apply for authentication failure” and go to (13).
  • m e s s a g e 2 = (The authentication is successful, please transmit the image of the unidentified user), ( C S E ( m e s s a g e 2 ) P K 1 ( B I M M j ) ) L D M M j .
  • L D M M j ( C S E ( m e s s a g e 2 ) P K 1 ( B I M M j ) ) , D ( E ( m e s s a g e 2 ) P K 1 ( B I M M j ) ) S K 1 ( B I M M j ) .
  • S P ( U n * ) S K ( L D M M j ) , ( L D M M j S P ( U n * ) S K ( L D M M j ) ) C S .
  • C S ( L D M M j S P ( U n * ) S K ( L D M M j ) ) , V ( S P ( U n * ) S K ( L D M M j ) ) P K ( L D M M j ) = ? 1 . If it is one, then go to (9), else show “The authentication of the image of the unidentified user failed”, and go to (13).
  • C S ( F I I C k P ( U n * ) ) .
  • C S ( P ( U i ) D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) , C S ( P ( U i ) = ? P ( U n * ) ) , if P ( U i ) ( D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) ) and P ( U i ) = P ( U n * ) , then the cloud server shows “The verification is successful between the local domain management machine and the cloud server”, and go to (11), else the cloud server shows “The verification failed between the local domain management machine and the cloud server”, and go to (13).
  • m e s s a g e 3 = (The verification is successful between the local domain management machine and the cloud server), ( C S E ( m e s s a g e 3 ) P K ( B I M M j ) ) L D M M j , ( C S E ( m e s s a g e 3 ) P K ( B I M M j ) ) B I M M j .
  • C S the transmission of the message is over . If it is over, then go to (13), else go to (11).
  • End.
The specific process execution is described as follows:
Step 1: The local domain management machine receives the image authentication result message sent by the back-end image management machine B I M M j and decrypts the message.
Step 2: The local domain management machine determines the decrypted image authentication result message. If the authentication with the local domain management machine is successful, the process goes to Step 3. Otherwise, the process goes to Step 13.
Step 3: The local domain management machine first signs the “Apply for authentication” message using the private key S K ( L D M M j ) , i.e. (“Apply for authentication”)) S K ( L D M M j ) , then sends the signed message (“Apply for authentication”)) S K ( L D M M j ) to the cloud server.
Step 4: After receiving the signature message (“Apply for authentication”)) S K ( L D M M j ) sent by the local domain management machine, the cloud server authenticates the signature message (“Apply for authentication”)) S K ( L D M M j ) by using the public key of the local domain management machine. If the authentication is successful, go to Step 5. Otherwise, display “Apply for authentication failure”, and go to Step 13.
Step 5: According to the elliptic curve encryption method, the cloud server encrypts the “The authentication is successful, please transmit the image of the unidentified user” message using the public key P K 1 ( B I M M j ) and then sends the encrypted message (“The authentication is successful, please transmit the image of the unidentified user”) P K 1 ( B I M M j ) to the local domain management machine via SSL or TLS.
Step 6: After receiving the encrypted message (“The authentication is successful, please transmit the image of the unidentified user”) P K 1 ( B I M M j ) , the local domain management machine uses the private key S K 1 ( B I M M j ) to decrypt the message.
Step 7: According to the decrypted message, the local domain management machine first uses the private key S K ( L D M M j ) to sign the collected image P ( U n * ) of the unidentified user, i.e., P ( U n * ) ) S K ( L D M M j ) , then sends the signature message ( U n * ) ) S K ( L D M M j ) to the cloud server.
Step 8: After receiving the signature message P ( U n * ) ) S K ( L D M M j ) sent by the local domain management machine, the cloud server authenticates the signature message P ( U n * ) ) S K ( L D M M j ) by using the public key of the local domain management machine. If the authentication is successful, go the Step 9. Otherwise, display “The authentication of the image of the unidentified user failed” and go to Step 13.
Step 9: The cloud server receives the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k .
Step 10: The cloud server first queries the image information P ( U i ) of all legal users in its database D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) and compares the legal user image information P ( U i ) in the database D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) with the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k . If the image information P ( U i ) of a certain legal user exists in the cloud server database D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) and the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k are the same (i.e., P ( U n * ) = P ( U i ) ), the cloud server displays “The verification is successful between the local domain management machine and the cloud server”. Otherwise, the cloud server displays “The verification failed between the local domain management machine and the cloud server” and goes to Step 13.
Step 11: The cloud server encrypts the image authentication result message “The verification is successful between the local domain management machine and the cloud server” and then sends the encrypted message to the local domain management machine and the corresponding back-end image management machine B I M M j via SSL or TLS.
Step 12: The cloud server determines whether the image authentication result message is sent. If sent, go to Step 13; otherwise, go to Step 11.
Step 13: End.

3.4. The Authentication Phase of the Back-End Image Management Machine and Cloud Server

In this phase, the back-end image management machine applies for authentication to the cloud server in the form of a digital signature. Secondly, the back-end image management machine encrypts the information such as the unidentified user image information and transmits it to the cloud server through the encryption algorithm. Then, query the image information of all legal users in the cloud server image information database. Next, compare the image information and the identity information with the image of the unidentified user, which has been authenticated by the signature and the identity information of the unidentified user. Finally, complete mutual authentication between the back-end image management machine and the cloud server. The brief process diagram is shown in Figure 5. The algorithm is shown in Algorithm 4.
Figure 5. The authentication phase of the back-end image management machine and cloud server brief process diagram.
Algorithm 4: The Authentication Phase of the Back-End Image Management Machine and Cloud Server
  • B I M M j ( C S E ( m e s s a g e 3 ) P K ( B I M M j ) ) , D ( E ( m e s s a g e 3 ) P K ( B I M M j ) ) S K ( B I M M j ) .
  • B I M M j The verification of the message is success . If the verification is success, then go to (3), else go to (14).
  • m e s s a g e 1 = (Apply for authentication), S ( m e s s a g e 1 ) S K ( B I M M j ) , ( B I M M j S ( m e s s a g e 1 ) S K ( B I M M j ) ) C S .
  • C S ( B I M M j S ( m e s s a g e 1 ) S K ( B I M M j ) ) , V ( S ( m e s s a g e 1 ) S K ( B I M M j ) ) P K ( B I M M j ) = ? 1 , if it is one, then go to (5), else show “Apply for authentication failure”, and go to (13).
  • m e s s a g e 2 = (The authentication is successful, please transmit the image of the unidentified user), ( C S E ( m e s s a g e 2 ) P K 1 ( B I M M j ) ) B I M M j .
  • B I M M j ( C S E ( m e s s a g e 2 ) P K 1 ( B I M M j ) ) , D ( E ( m e s s a g e 2 ) P K 1 ( B I M M j ) ) S K 1 ( B I M M j ) .
  • S P ( U n * ) | | I D ( U n * ) | | I D ( B I M M j ) S K ( B I M M j ) ,
    ( B I M M j S P ( U n * ) | | I D ( U n * ) | | I D ( B I M M j ) S K ( B I M M j ) ) C S .
  • C S ( B I M M j S P ( U n * ) | | I D ( U n * ) | | I D ( B I M M j ) S K ( B I M M j ) ) , V ( S P ( U n * ) | | I D ( U n * ) | | I D ( B I M M j ) S K ( B I M M j ) ) P K ( B I M M j ) = ? 1 . If it is one, then go to (9), else show “The authentication of the image of the unidentified user failed between the cloud server and the back-end image management machine”, and go to (13).
  • C S ( P ( U n * ) | | I D ( U n * ) | | I D ( B I M M j ) ) .
  • C S ( P ( U i ) D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) , C S ( P ( U i ) = ? P ( U n * ) I D ( U i ) = ? I D ( U n * ) ) , if P ( U i ) ( D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) ) and P ( U i ) = P ( U n * ) I D ( U i ) = I D ( U n * ) , then the cloud server shows “The verification is successful between the back-end image management machine and the cloud server”, and go to (11), else the cloud server shows “The verification failed between the back-end image management machine and the cloud server”, and go to (13).
  • m e s s a g e 3 = (The verification is successful between the back-end image management machine and the cloud server), ( C S E ( m e s s a g e 3 ) P K ( B I M M j ) ) L D M M j , ( C S E ( m e s s a g e 3 ) P K ( B I M M j ) ) B I M M j .
  • C S the transmission of the message is over . If it is over, then go to (13), else go to (11).
  • End.
The specific process execution is described as follows:
Step 1: The back-end image management machine B I M M j receives the image authentication result message sent by the cloud server and decrypts the message.
Step 2: The back-end image management machine B I M M j determines the decrypted image authentication result message, and if it is “The verification is successful between the local domain management machine and the cloud server”, go to Step 3; otherwise, go to Step 14.
Step 3: The back-end image management machine B I M M j first signs the “Apply for authentication” message using the private key S K ( B I M M j ) , i.e., (“Apply for authentication”) S K ( B I M M j ) , then sends the signed message (“Apply for authentication”) S K ( B I M M j ) to the cloud server.
Step 4: After receiving the signature message (“Apply for authentication”) S K ( B I M M j ) sent by the back-end image management machine B I M M j , the cloud server authenticates the signature message (“Apply for authentication”) S K ( B I M M j ) by using the public key of the back-end image management machine B I M M j . If the authentication is successful, go to Step 5. Otherwise, display “Apply for authentication failure”, and go to Step 13.
Step 5: The cloud server encrypts the “The authentication is successful, please transmit the image of the unidentified user” message according to the elliptic curve encryption method using the public key P K 1 ( B I M M j ) and then sends the encrypted message (“The authentication is successful, please transmit the image of the unidentified user”) P K 1 ( B I M M j ) to the back-end image management machine B I M M j via SSL or TLS.
Step 6: After receiving the encrypted message, the back-end image management machine B I M M j decrypts the message by the private key S K 1 ( B I M M j ) .
Step 7: According to the decrypted message, the back-end image management machine B I M M j first uses the private key S K ( B I M M j ) to sign the image P ( U n * ) of the unidentified user sent by the local domain management machine. Then, sign its corresponding user identity information, which is initially compared successfully by the local domain management machine and the back-end image management machine B I M M j . Finally, sign its own identity information I D ( B I M M j ) , i.e., ( ( P ( U n * ) | | ( I D ( U n * ) | | I D ( B I M M j ) ) S K ( B I M M j ) , then send the signature message ( ( P ( U n * ) | | ( I D ( U n * ) | | I D ( B I M M j ) ) S K ( B I M M j ) to the cloud server.
Step 8: After receiving the signature message ( ( P ( U n * ) | | ( I D ( U n * ) | | I D ( B I M M j ) ) S K ( B I M M j ) sent by the back-end image management machine B I M M j , the cloud server authenticates the signature message by using the public key of the back-end image management machine B I M M j . If the signature authentication is successful, go to Step 9, otherwise, display “The authentication of the image of the unidentified user failed between the cloud server and the back-end image management machine”, and go to Step 13.
Step 9: The cloud server stores the image P ( U n * ) of the unidentified user, which has been authenticated by the signature, its corresponding user identity information I D ( U n * ) , and identity information I D ( B I M M j ) of the back-end image management machine B I M M j .
Step 10: The cloud server first queries the image information P ( U i ) of all legal users, the identity information I D ( U i ) of the legal user, and the identity information I D ( B I M M j ) of the back-end image management machine B I M M j in the cloud server image information database D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) . Then, it respectively compares the image P ( U n * ) of the unidentified user, which has been authenticated by the signature and the identity information I D ( U n * ) of the unidentified user image with the image information P ( U i ) of all legal users and the identity information I D ( U i ) of the legal user in the cloud server image information database D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) . If there is image information P ( U i ) of a legal user and identity information I D ( U i ) of a legal user in the cloud server image information database D B ( P ( U i ) | | I D ( U i ) | | I D ( B I M M j ) ) , this image information P ( U i ) and identity information I D ( U i ) are respectively the same as the image P ( U n * ) of the unidentified user, which has been authenticated by the signature and the identity information I D ( U n * ) of the unidentified user image, i.e., ( P ( U n * ) = P ( U i ), I D ( U n * ) = I D ( U i ) ), and the cloud server displays “The verification is successful between the back-end image management machine and the cloud server”. Otherwise, the cloud server displays “The verification failed between the back-end image management machine and the cloud server”, and it goes to Step 13.
Step 11: The cloud server encrypts the image authentication result message “The verification is successful between the back-end image management machine and the cloud server” and then sends the encrypted message to the local domain management machine and the corresponding back-end image management machine B I M M j via SSL or TLS.
Step 12: The cloud server determines whether the image authentication result message is sent. If sent, go to Step 13; otherwise, go to Step 11.
Step 13: End.

4. Security and Cost Analysis

In this section, firstly, we analyze the security of the multi-point collaborative authentication method based on user image intelligent collection and compare our method with Tai’s method [5] and Kalra’s method [15]. Secondly, we analyze the cost of our method, and the specific description is as follows. The analysis of safety functions is shown in Table 2.
Table 2. Analysis of safety functions.

4.1. Security Analysis

4.1.1. Resist Replay Attack and Denial of Service Attack

In this method, in the authentication phase of the local domain management machine and the back-end image management machine, the front-end image collector F I I C k uses the timestamp value T i when collecting the image information of the unidentified user, and after the local domain management machine receives the image of the unidentified user sent by the front-end image intelligent collector F I I C k and the current timestamp value ( P ( U n * ) | | T i ) , another timestamp value T S i is generated. The local domain management machine first checks the freshness of the time stamp value, that is whether T i T S i is within the allowable time interval Δ t. If ( T i T S i ) Δ t , the session times out, and the image P ( U n * ) of the unidentified user sent by the front-end image intelligent collector F I I C k is deleted. Assuming that the attacker replays the image information P ( U n * ) and the timestamp value T i that have been verified by the local domain management machine, the local domain management machine can judge the freshness of the generated different timestamp values T S i , ignoring the duplicated information, against these replay attacks. It can also reduce the consumption of network bandwidth and resist denial of service attacks.

4.1.2. Resist Server Camouflage Attack and Counterfeit Attack

In this method, a malicious attacker cannot masquerade as the local domain management machine to send the image P ( U n * ) of the unidentified user to the back-end image management machine for authentication and cannot send fake P ( U n * ) information to defraud authentication. Before sending the P ( U n * ) to the back-end image management machine, the local domain management machine first signs the “Apply for authentication” with the private key S K ( L D M M j ) and sends it to the back-end image management machine. The back-end image management machine uses the public key P K ( L D M M j ) to decrypt the information. Then, it determines whether the application is sent by the local domain management machine. It can prevent the attacker from disguising the local domain management machine to destroy the authentication and resist the server camouflage attack. After the message is successfully authenticated, the back-end image management machine uses the ellipse encryption algorithm to encrypt the “The authentication is successful, please transmit the image of unidentified user” message and sends it to the local domain management machine. Finally, the local domain management machine uses the private key S K ( L D M M j ) to sign the P ( U n * ) and sends it to the back-end image management machine. The back-end image management machine determines whether the P ( U n * ) is sent by the local domain management machine by decrypting the information with the public key P K ( L D M M j ) . It can prevent the attacker from impersonating P ( U n * ) information to destroy the authentication and resist the counterfeit attack. Similarly, the authentication phase of the local domain management machine and the cloud server and the authentication phase of the back-end image management machine and the cloud server need to be authenticated in this form. It can also resist server camouflage attack and counterfeit attack. In Tai’s method, the sensor node is exposed in public. If a malicious attacker destroys any node, then he/she can pretend that the user is logged into the normal legal sensor node and launch a counterfeit attack on other sensor nodes.

4.1.3. Resist Eavesdropping Attack and Password Guessing

This method does not use passwords for identity authentication. The only identity information is legal user image information P ( U i ) . During the system establishment phase, the malicious attacker cannot steal the legal user image information P ( U i ) sent by the back-end image management machine B I M M j to the local domain management machine and the cloud server from the common channel. Because the legal user image information P ( U i ) is encrypted by the ellipse encryption algorithm in the common channel, the attacker cannot calculate the P ( U i ) information in polynomial time. In Tai’s method, the user’s password is stored in the smart card. Once the smart card is stolen by an authorized malicious attacker, he/she can guess and calculate the actual password of the smart card owner. In Kalra’s method, a malicious attacker first guesses the password and calculates it to verify that the password is the correct one. If not, repeat the guess. The attacker can guess the correct password in a brute force way.

4.1.4. Resist Smart Card Attacks

In this method, image intelligent collection technology is used for identity authentication. Compared with the traditional smart card authentication method, the image intelligent collection method is less expensive and has better security and portability. There is no risk of lost, stolen, or duplicated smart cards, and there is no need to defend against attackers’ attacks on smart card data. In Tai’s method, user information is stored in a smart card. Once a smart card is stolen or lost, a malicious attacker can extract all the private information stored in the smart card.

4.1.5. Multi-Point Collaborative Authentication

This method uses a method of mutual authentication between the local domain management machine and the back-end image management machine, the local domain management machine and the cloud server, and the back-end image management machine and the cloud server. First, in the authentication phase of the local domain management machine and the back-end image management machine, the local domain management machine needs to compare the unidentified user image P ( U n * ) sent by the front-end image collector with the legal user image P ( U i ) in the database constructed in the system establishment phase. If the same (i.e., P ( U n * ) = P ( U i ) ), the local domain management machine encrypts the unidentified user image P ( U n * ) and transmits it to the back-end image management machine. Finally, compare it with the legal user image P ( U i ) in the database built internally to complete the phase authentication. The principle of the authentication phase of the local management machine and the cloud server and the principle of the authentication phase of the back-end image management machine and the cloud server are similar. If a privileged attacker steals or modifies the database information in some way and destroys the authentication at a certain phase, it cannot pass the collaborative identity authentication. In Tai’s method, the sensor nodes, gateway nodes, and users provided by the company cannot authenticate each other. In Kalra’s method, the embedded devices and cloud servers provided by them cannot mutually confirm the legitimacy of each other. Therefore, their methods are more vulnerable to spoofing attacks.

4.2. Cost Analysis

The method uses the symmetric encryption algorithm and the asymmetric encryption algorithm. The characteristics of the symmetric encryption algorithm and the asymmetric encryption algorithm show that the symmetric encryption algorithm uses the same key for encryption and decryption, and the operation is fast, but easy to crack. The asymmetric encryption algorithm uses public key encryption and private key decryption, which is slow, but not easy to crack. The calculation of the operation of an asymmetric encryption algorithm (A) is equivalent to a point operation and is also equal to 1000 symmetric encryption algorithm operations (S). Therefore, assuming that the calculation cost of the asymmetric encryption algorithm operation (A) is one, the calculation cost of the symmetric encryption algorithm operation (S) is 0.001. The results of the cost analysis at different phases are shown in Table 3.
Table 3. Method costs. S, symmetric; A, asymmetric.

5. Conclusions and Future Work

This paper proposed a multi-point collaborative authentication method based on user image intelligent collection in IoT. The method mainly consisted of four phases, namely the system establishment phase of user image intelligent multi-point collaborative authentication, the authentication phase of the local domain management machine and back-end image management machine, the authentication phase of local domain management machine and cloud server, and the authentication phase of the back-end image management machine and cloud server. To demonstrate the validity of the method for identity authentication, a series of security analyses was conducted. Compared with the traditional single identity authentication method, our method used three-party collaborative authentication to avoid the problem of sensor information stealing easily caused by a single authentication method, which makes the user’s identity authentication more secure and effective. The analysis results showed that the method was able to resist multiple types of attacks to meet the security requirements, attacks such as replay attacks, denial of service attacks, and server camouflage attacks. In addition, the results also indicated that the method was suitable for identity authentication in the IoT environment.
This paper did not cover the field of image acquisition and authentication, but only compared the user’s image information. Therefore, it is not yet possible to estimate the impact of image acquisition and authentication on the cost, efficiency, and security of the method. In addition, image acquisition and authentication are also affected by many factors, such as ambient lighting, which result in a reduction in the recognition rate and performance. Therefore, the future work is to optimize the algorithms for image acquisition and authentication and consider adding biometrics such as fingerprint recognition to protect the identity authentication and improve the accuracy of identity authentication.

Author Contributions

Conceptualization, Y.L. and Y.T.; formal analysis, Y.T.; funding acquisition, Y.L.; methodology, Y.L. and Y.T.; resources, Y.L.; supervision, Y.L. and J.L.; visualization, Y.T.; writing—original draft, Y.T. and J.L.; writing—review and editing, Y.T. and J.L.

Funding

This research was funded by the Zhejiang Provincial Natural Science Foundation of China Grant Number Y20F020088.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Tai, W.-L.; Chang, Y.-F.; Li, W.-H. An IoT notion–based authentication and key agreement scheme ensuring user anonymity for heterogeneous ad hoc wireless sensor networks. J. Inf. Secur. Appl. 2017, 34, 133–141. [Google Scholar] [CrossRef]
  2. Challa, S.; Wazid, M.; Das, A.K.; Kumar, N.; Reddy, A.G.; Yoon, E.J.; Yoo, K.Y. Secure Signature-Based Authenticated Key Establishment Scheme for Future IoT Applications. IEEE Access 2017, 5, 3028–3043. [Google Scholar] [CrossRef]
  3. Hu, P.; Ning, H.; Qiu, T.; Song, H.; Wang, Y.; Yao, X. Security and Privacy Preservation Scheme of Face Identification and Resolution Framework Using Fog Computing in Internet of Things. IEEE Internet Things J. 2017, 4, 1143–1155. [Google Scholar] [CrossRef]
  4. Dhillon, P.K.; Kalra, S. Secure and efficient ECC based SIP authentication scheme for VoIP communications in internet of things. Multimed. Tools Appl. 2019, 5, 1–24. [Google Scholar] [CrossRef]
  5. Zhang, M.; Ma, Z.; Zhang, Y.; Wang, Y. An identity authentication scheme based on cloud computing environment. Multimediea Tools Appl. 2018, 77, 4283–4294. [Google Scholar] [CrossRef]
  6. Al-Turjman, F.; Ever, Y.K.; Ever, E.; Nguyen, H.X.; David, D.B. Seamless Key Agreement Framework for Mobile-Sink in IoT Based Cloud-Centric Secured Public Safety Sensor Networks. IEEE Access 2017, 5, 24617–24631. [Google Scholar] [CrossRef]
  7. Kalra, S.; Sood, S.K. Secure authentication scheme for IoT and cloud servers. Pervasive Mob. Comput. 2015, 24, 210–223. [Google Scholar] [CrossRef]
  8. Mo, J.; Hu, Z.; Lin, Y. Remote user authentication and key agreement for mobile client–server environments on elliptic curve cryptography. J. Supercomput. 2018, 74, 5927–5943. [Google Scholar] [CrossRef]
  9. Jiang, Q.; Zeadally, S.; Ma, J.; He, D. Lightweight Three-Factor Authentication and Key Agreement Protocol for Internet-Integrated Wireless Sensor Networks. IEEE Access 2017, 5, 3376–3392. [Google Scholar] [CrossRef]
  10. Wazid, M.; Das, A.K.; Odelu, V.; Kumar, N.; Conti, M.; Jo, M. Design of Secure User Authenticated Key Management Protocol for Generic IoT Networks. IEEE Internet Things J. 2017, 5, 269–282. [Google Scholar] [CrossRef]
  11. Xu, L.; Wu, F. A Lightweight Authentication Scheme for Multi-gateway Wireless Sensor Networks Under IoT Conception. Arab. J. Sci. Eng. 2019, 44, 3977–3993. [Google Scholar] [CrossRef]
  12. Gong, B.; Wang, Y.; Liu, X.; Qi, F.; Sun, Z. A Trusted Attestation Mechanism for the Sensing Nodes of Internet of Things Based on Dynamic Trusted Measurement. China Commun. 2018, 15, 100–121. [Google Scholar] [CrossRef]
  13. Zhang, Q.; Xu, D. Security authentication technology based on dynamic Bayesian network in Internet of Things. J. Ambient Intell. Humaniz. Comput. 2018, 1–8. [Google Scholar] [CrossRef]
  14. Xie, R.; He, C.; Xu, C.; Gao, C. Lattice-based dynamic group signature for anonymous authentication in IoT. Ann. Telecommun. 2019, 74, 531–542. [Google Scholar] [CrossRef]
  15. Shen, H.; Shen, J.; Khan, M.K.; Lee, J.H. Efficient RFID Authentication Using Elliptic Curve Cryptography for the Internet of Things. Wirel. Pers. Commun. 2017, 96, 5253–5266. [Google Scholar] [CrossRef]
  16. Fan, K.; Ge, N.; Gong, Y.; Li, H.; Su, R.; Yang, Y. An ultra-lightweight RFID authentication scheme for mobile commerce. Peer Peer Netw. Appl. 2017, 10, 368–376. [Google Scholar] [CrossRef]
  17. Aghili, S.F.; Ashouri-Talouki, M.; Mala, H. DoS, impersonation and de-synchronization attacks against an ultra-lightweight RFID mutual authentication protocol for IoT. J. Supercomput. 2018, 74, 509–525. [Google Scholar] [CrossRef]

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.