Abstract
We study control synthesis under Signal Temporal Logic (STL) specifications for driving scenarios where strict rule satisfaction is not always feasible and human experts exhibit context-dependent flexibility. We represent such behavior using robustness slackness—learned rule-wise lower bounds on STL robustness—and introduce sub-goals that encode intermediate intent in the state/output space (e.g., lane-level waypoints). Prior learning-based MPC–STL methods typically infer slackness with VAE priors and plug it into MPC, but these priors can underrepresent multimodal and rare yet valid expert behaviors and do not explicitly model intermediate intent. We propose a diffusion-guided MPC–STL framework that jointly learns slackness and sub-goals from demonstrations and integrates both into STL-constrained MPC. A conditional diffusion model generates pairs of (rule-wise slackness, sub-goal) conditioned on features from the ego vehicle, surrounding traffic, and road context. At run time, a few denoising steps produce samples for the current situation; slackness values define soft STL margins, while sub-goals shape the MPC objective via a terminal (optionally stage) cost, enabling context-dependent trade-offs between rule relaxation and task completion. In closed-loop simulations on held-out highD track-driving scenarios, our method improves task success and yields more realistic lane-changing behavior compared to imitation-learning baselines and MPC–STL variants using CVAE slackness or strict rule enforcement, while remaining computationally tractable for receding-horizon MPC in our experimental setting.