You are currently on the new version of our website. Access the old version .
ElectronicsElectronics
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

10 January 2026

Two-Stage Combining and Beamforming Scheme for Multi-Pair Users FDD Massive MIMO Relay Systems

,
,
and
College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
*
Author to whom correspondence should be addressed.
Electronics2026, 15(2), 310;https://doi.org/10.3390/electronics15020310 
(registering DOI)
This article belongs to the Special Issue Antennas and Arrays in Wireless Communication Systems

Abstract

In this study, we consider multi-pair user frequency division duplexing massive MIMO relay systems and design a two-stage combining and beamforming (TSCB) scheme based on statistical channel state information (S-CSI). By leveraging S-CSI to co-design the pre-combining matrix and the pre-beamforming matrix, the scheme reduces the equivalent channel matrix dimensions, thereby cutting the pilot overhead. In the first stage, the two matrices are constructed through a selection of beams from a discrete Fourier transform codebook and mathematically cast as a multivariate optimization problem. An alternative optimization algorithm is proposed by splitting it into three sub-problems. The first two are 0–1 integer programming problems solved by iterative beam selection, while the third is a convex problem that is solved using a convex optimization algorithm. In the second stage, the reduced-dimension equivalent matrices are then estimated with low overhead, and a digital precoding matrix is then designed using zero-forcing algorithms. Simulations confirm the TSCB scheme’s superior ESE performance over that of existing methods.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.