An Improved Comprehensive Learning Jaya Algorithm with Lévy Flight for Engineering Design Optimization Problems
Abstract
1. Introduction
- Integration of Lévy Flights into the CLJAYA Framework Lévy Flights are seamlessly incorporated into the CLJAYA framework. This integration effectively enriches the diversity of particles and significantly boosts both the exploration and exploitation capabilities of the algorithm.
- Enhanced global exploration: Using the large-step movement strategy of Lévy Flights, the CLJAYA-LF algorithm empowers particles to break free from local optima. Consequently, it substantially enhances the algorithm’s global exploration ability and effectively averts premature convergence towards suboptimal solutions.
- Improved Local Exploitation: The algorithm synergistically combines the small-step random movement strategy of Lévy Flights to strengthen local exploitation. This combination effectively tackles the problem where particles face a restricted search area when approaching the optimal and worst solutions.
- Superior Performance Evaluation: Through rigorous testing with the CEC 2017 benchmark suite, CLJAYA-LF demonstrates exceptional performance, surpassing existing advanced optimization methods. The results validate its effectiveness and robustness in both low- and high-dimensional optimization tasks.
2. Related Works
2.1. CLJAYA Algorithm
2.2. Lévy Flight
3. The Proposed CLJAYA-LF
- When a particle is near the worst point , since , the update step is mainly determined by . If is small, the particle cannot effectively move away from the worst point, limiting global exploration.
- When a particle is near the best point , since , the update step is primarily governed by . If is small, the particle struggles to escape the local optimum, and its updated position may remain confined within a local region.
Algorithm 1 The CLJAYA-LF Algorithm |
|
4. Applications of CLJAYA-LF on Numerical Optimization
5. Applications of CLJAYA on Engineering Optimization
5.1. Step-Cone Pulley Problem
5.2. Gear Train Design Problem
5.3. Planetary Gear Train Design Problem
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diwekar, U.M. Introduction to Applied Optimization; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 22. [Google Scholar]
- Dantzig, G.B. Linear Programming and Extensions; Princeton University Press: Princeton, NJ, USA, 1963. [Google Scholar] [CrossRef]
- Pérez, L.V.; Bossio, G.R.; Moitre, D.; García, G.O. Optimization of power management in an hybrid electric vehicle using dynamic programming. Math. Comput. Simul. 2006, 73, 244–254. [Google Scholar] [CrossRef]
- Sebastian, R. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Korani, W.; Mouhoub, M. Review on nature-inspired algorithms. SN Oper. Res. Forum 2021, 2, 36. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.; Arnold, D.V.; Auger, A. Evolution strategies. In Handbook of Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2015; pp. 871–898. [Google Scholar]
- Price, K.V. Differential evolution. In Handbook of Optimization: From Classical to Modern Approach; Springer: Berlin/Heidelberg, Germany, 2013; pp. 187–214. [Google Scholar]
- Chen, H.; Li, X.; Li, S.; Zhao, Y.; Dong, J. Improved Slime Mould Algorithm Hybridizing Chaotic Maps and Differential Evolution Strategy for Global Optimization. IEEE Access 2022, 10, 66811–66830. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Q. Alpha evolution: An efficient evolutionary algorithm with evolution path adaptation and matrix generation. Eng. Appl. Artif. Intell. 2024, 137, 109202. [Google Scholar] [CrossRef]
- Stergiou, K.; Karakasidis, T. Optimizing Renewable Energy Systems Placement Through Advanced Deep Learning and Evolutionary Algorithms. Appl. Sci. 2024, 14, 10795. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S. BAS: Beetle Antennae Search Algorithm for Optimization Problems. arXiv 2017, arXiv:1710.10724. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. Particle swarm optimization. In Proceedings of the IEEE International Conference on NEURAL Networks, Perth, WA, Australia, 27 November–1 December 1995; Citeseer: Princeton, NJ, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Yue, F.; Sha, Z.; Sun, H.; Chen, D.; Liu, J. Research on the Optimization of TP2 Copper Tube Drawing Process Parameters Based on Particle Swarm Algorithm and Radial Basis Neural Network. Appl. Sci. 2024, 14, 11203. [Google Scholar] [CrossRef]
- Kumar De, S.; Banerjee, A.; Majumder, K.; Kotecha, K.; Abraham, A. Coverage Area Maximization Using MOFAC-GA-PSO Hybrid Algorithm in Energy Efficient WSN Design. IEEE Access 2023, 11, 99901–99917. [Google Scholar] [CrossRef]
- Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: Artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 2014, 42, 21–57. [Google Scholar] [CrossRef]
- Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput. Appl. 2018, 30, 413–435. [Google Scholar] [CrossRef]
- Alabool, H.M.; Alarabiat, D.; Abualigah, L.; Heidari, A.A. Harris hawks optimization: A comprehensive review of recent variants and applications. Neural Comput. Appl. 2021, 33, 8939–8980. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf mongoose optimization algorithm. Comput. Methods Appl. Mech. Eng. 2022, 391, 114570. [Google Scholar] [CrossRef]
- Chen, Z.; Francis, A.; Li, S.; Liao, B.; Xiao, D.; Ha, T.T.; Li, J.; Ding, L.; Cao, X. Egret Swarm Optimization Algorithm: An Evolutionary Computation Approach for Model Free Optimization. Biomimetics 2022, 7, 144. [Google Scholar] [CrossRef]
- Lian, J.; Hui, G. Human evolutionary optimization algorithm. Expert Syst. Appl. 2024, 241, 122638. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, Y.; Deng, W.; Yin, S.; Zhang, Y. Advances in teaching–learning-based optimization algorithm: A comprehensive survey(ICIC2022). Neurocomputing 2023, 561, 126898. [Google Scholar] [CrossRef]
- Al-Masri, O.; Al-Sorori, W.A. Object-Oriented Test Case Generation Using Teaching Learning-Based Optimization (TLBO) Algorithm. IEEE Access 2022, 10, 110879–110888. [Google Scholar] [CrossRef]
- Oladejo, S.O.; Ekwe, S.O.; Mirjalili, S. The Hiking Optimization Algorithm: A novel human-based metaheuristic approach. Knowl.-Based Syst. 2024, 296, 111880. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Khan, A.T.; Mirjalili, S. Competition of tribes and cooperation of members algorithm: An evolutionary computation approach for model free optimization. Expert Syst. Appl. 2025, 265, 125908. [Google Scholar] [CrossRef]
- Rutenbar, R.A. Simulated annealing algorithms: An overview. IEEE Circuits Devices Mag. 1989, 5, 19–26. [Google Scholar] [CrossRef]
- Luo, K. Water flow optimizer: A nature-inspired evolutionary algorithm for global optimization. IEEE Trans. Cybern. 2021, 52, 7753–7764. [Google Scholar] [CrossRef]
- Hashim, F.A.; Mostafa, R.R.; Hussien, A.G.; Mirjalili, S.; Sallam, K.M. Fick’s Law Algorithm: A physical law-based algorithm for numerical optimization. Knowl.-Based Syst. 2023, 260, 110146. [Google Scholar] [CrossRef]
- Trojovskỳ, P.; Dehghani, M. Subtraction-average-based optimizer: A new swarm-inspired metaheuristic algorithm for solving optimization problems. Biomimetics 2023, 8, 149. [Google Scholar] [CrossRef]
- Rao, R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 2016, 7, 19–34. [Google Scholar] [CrossRef]
- Teng, Z.; Li, M.; Yu, L.; Gu, J.; Li, M. Sinkhole Attack Defense Strategy Integrating SPA and Jaya Algorithms in Wireless Sensor Networks. Sensors 2023, 23, 9709. [Google Scholar] [CrossRef]
- Iacca, G.; dos Santos Junior, V.C.; de Melo, V.V. An improved Jaya optimization algorithm with Lévy flight. Expert Syst. Appl. 2021, 165, 113902. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, Z. Comprehensive learning Jaya algorithm for engineering design optimization problems. J. Intell. Manuf. 2022, 33, 1229–1253. [Google Scholar] [CrossRef]
- Viswanathan, G.M.; Buldyrev, S.V.; Havlin, S.; da Luz, M.G.; Raposo, E.P.; Stanley, H.E. Optimizing the success of random searches. Nature 1999, 401, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wu, J.; Wang, T. Enhancing grasshopper optimization algorithm (GOA) with levy flight for engineering applications. Sci. Rep. 2023, 13, 124. [Google Scholar] [CrossRef]
- Heidari, A.A.; Pahlavani, P. An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl. Soft Comput. 2017, 60, 115–134. [Google Scholar] [CrossRef]
- He, Q.; Liu, H.; Ding, G.; Tu, L. A modified Lévy flight distribution for solving high-dimensional numerical optimization problems. Math. Comput. Simul. 2023, 204, 376–400. [Google Scholar] [CrossRef]
- Mohiz, M.J.; Baloch, N.K.; Hussain, F.; Saleem, S.; Zikria, Y.B.; Yu, H. Application mapping using cuckoo search optimization with Lévy flight for NoC-based system. IEEE Access 2021, 9, 141778–141789. [Google Scholar] [CrossRef]
- Shen, X.; Sunat, K. A Novel Comprehensive Learning JAYA Algorithm Based on Lévy Flights. In Proceedings of the 2024 28th International Computer Science and Engineering Conference (ICSEC), Khon Kaen, Thailand, 6–8 November 2024; IEEE: New York, NY, USA, 2024; pp. 1–5. [Google Scholar]
- Wu, G.; Mallipeddi, R.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition and Special Session on Constrained Single Objective Real-Parameter Optimization; Nanyang Technological University: Singapore, 2016. [Google Scholar]
- Yusof, N.J.; Kamaruddin, S. Optimal design of step–cone pulley problem using the bees algorithm. In Intelligent Manufacturing and Mechatronics: Proceedings of SympoSIMM 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 139–149. [Google Scholar]
- Jangir, P.; Buch, H.; Mirjalili, S.; Manoharan, P. MOMPA: Multi-objective marine predator algorithm for solving multi-objective optimization problems. Evol. Intell. 2023, 16, 169–195. [Google Scholar] [CrossRef]
- Daoudi, K.; Boudi, E.M. Optimal volume design of planetary gear train using particle swarm optimization. In Proceedings of the 2018 4th International Conference on Optimization and Applications (ICOA), Mohammedia, Morocco, 26–27 April; IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
No. | Ind. | CLJAYA-LF | CLJAYA | JAYALF | JAYA | DMO | HHO | SABO | PSO |
---|---|---|---|---|---|---|---|---|---|
F1 | STD | ||||||||
F1 | Mean | ||||||||
F3 | STD | ||||||||
F3 | Mean | ||||||||
F4 | STD | ||||||||
F4 | Mean | ||||||||
F5 | STD | ||||||||
F5 | Mean | ||||||||
F6 | STD | ||||||||
F6 | Mean | ||||||||
F7 | STD | ||||||||
F7 | Mean | ||||||||
F8 | STD | ||||||||
F8 | Mean | ||||||||
F9 | STD | ||||||||
F9 | Mean | ||||||||
F10 | STD | ||||||||
F10 | Mean | ||||||||
F11 | STD | ||||||||
F11 | Mean | ||||||||
F12 | STD | ||||||||
F12 | Mean | ||||||||
F13 | STD | ||||||||
F13 | Mean | ||||||||
F14 | STD | ||||||||
F14 | Mean | ||||||||
F15 | STD | ||||||||
F15 | Mean | ||||||||
F16 | STD | ||||||||
F16 | Mean | ||||||||
F17 | STD | ||||||||
F17 | Mean | ||||||||
F18 | STD | ||||||||
F18 | Mean | ||||||||
F19 | STD | ||||||||
F19 | Mean | ||||||||
F20 | STD | ||||||||
F20 | Mean | ||||||||
F21 | STD | ||||||||
F21 | Mean | ||||||||
F22 | STD | ||||||||
F22 | Mean | ||||||||
F23 | STD | ||||||||
F23 | Mean | ||||||||
F24 | STD | ||||||||
F24 | Mean | ||||||||
F25 | STD | ||||||||
F25 | Mean | ||||||||
F26 | STD | ||||||||
F26 | Mean | ||||||||
F27 | STD | ||||||||
F27 | Mean | ||||||||
F28 | STD | ||||||||
F28 | Mean | ||||||||
F29 | STD | ||||||||
F29 | Mean | ||||||||
F30 | STD | ||||||||
F30 | Mean |
No. | Ind. | CLJAYA-LF | CLJAYA | JAYALF | JAYA | DMO | HHO | SABO | PSO |
---|---|---|---|---|---|---|---|---|---|
F1 | STD | ||||||||
F1 | Mean | ||||||||
F3 | STD | ||||||||
F3 | Mean | ||||||||
F4 | STD | ||||||||
F4 | Mean | ||||||||
F5 | STD | ||||||||
F5 | Mean | ||||||||
F6 | STD | ||||||||
F6 | Mean | ||||||||
F7 | STD | ||||||||
F7 | Mean | ||||||||
F8 | STD | ||||||||
F8 | Mean | ||||||||
F9 | STD | ||||||||
F9 | Mean | ||||||||
F10 | STD | ||||||||
F10 | Mean | ||||||||
F11 | STD | ||||||||
F11 | Mean | ||||||||
F12 | STD | ||||||||
F12 | Mean | ||||||||
F13 | STD | ||||||||
F13 | Mean | ||||||||
F14 | STD | ||||||||
F14 | Mean | ||||||||
F15 | STD | ||||||||
F15 | Mean | ||||||||
F16 | STD | ||||||||
F16 | Mean | ||||||||
F17 | STD | ||||||||
F17 | Mean | ||||||||
F18 | STD | ||||||||
F18 | Mean | ||||||||
F19 | STD | ||||||||
F19 | Mean | ||||||||
F20 | STD | ||||||||
F20 | Mean | ||||||||
F21 | STD | ||||||||
F21 | Mean | ||||||||
F22 | STD | ||||||||
F22 | Mean | ||||||||
F23 | STD | ||||||||
F23 | Mean | ||||||||
F24 | STD | ||||||||
F24 | Mean | ||||||||
F25 | STD | ||||||||
F25 | Mean | ||||||||
F26 | STD | ||||||||
F26 | Mean | ||||||||
F27 | STD | ||||||||
F27 | Mean | ||||||||
F28 | STD | ||||||||
F28 | Mean | ||||||||
F29 | STD | ||||||||
F29 | Mean | ||||||||
F30 | STD | ||||||||
F30 | Mean |
Alg. | CLJAYA-LF | CLJAYA | JAYALF | JAYA | DMO | HHO | SABO | PSO |
---|---|---|---|---|---|---|---|---|
Best | 1.62 × 101 | 1.61 × 101 | 1.90 × 107 | 1.71 × 101 | 1.61 × 101 | 1.76 × 101 | 1.26 × 108 | 2.33 × 101 |
STD | 3.32 × 10−1 | 4.20 × 10−1 | 1.21 × 1011 | 1.45 × 106 | 1.12 × 103 | 1.72 × 108 | 1.72 × 1012 | 1.85 × 1012 |
Mean | 1.69 × 101 | 1.70 × 101 | 3.58 × 1010 | 4.20 × 105 | 2.41 × 102 | 4.26 × 107 | 3.02 × 1011 | 2.06 × 1011 |
Median | 1.70 × 101 | 1.70 × 101 | 6.23 × 108 | 1.86 × 101 | 1.86 × 101 | 1.67 × 106 | 7.35 × 109 | 1.94 × 103 |
Worst | 1.78 × 101 | 1.80 × 101 | 8.40 × 1011 | 8.45 × 106 | 1.10 × 104 | 1.49 × 109 | 1.37 × 1013 | 1.84 × 1013 |
Alg. | CLJAYA-LF | CLJAYA | JAYALF | JAYA | DMO | HHO | SABO | PSO |
---|---|---|---|---|---|---|---|---|
Best | 2.90 × 10−20 | 1.16 × 10−25 | 2.90 × 10−14 | 2.43 × 10−16 | 1.89 × 10−21 | 0 | 9.49 × 10−17 | 3.55 × 10−28 |
STD | 3.14 × 10−15 | 3.79 × 10−12 | 8.10 × 10−10 | 5.60 × 10−11 | 2.03 × 10−11 | 0 | 4.60 × 10−11 | 3.45 × 10−12 |
Mean | 1.44 × 10−15 | 1.07 × 10−12 | 4.69 × 10−10 | 1.93 × 10−11 | 8.32 × 10−12 | 0 | 1.52 × 10−11 | 1.58 × 10−12 |
Median | 2.14 × 10−16 | 5.04 × 10−14 | 1.10 × 10−10 | 2.03 × 10−12 | 1.18 × 10−12 | 0 | 1.94 × 10−12 | 6.64 × 10−14 |
Worst | 1.93 × 10−14 | 3.29 × 10−11 | 5.30 × 10−09 | 3.73 × 10−10 | 1.40 × 10−10 | 0 | 4.09 × 10−10 | 2.10 × 10−11 |
Alg. | CLJAYA-LF | CLJAYA | JAYALF | JAYA | DMO | HHO | SABO | PSO |
---|---|---|---|---|---|---|---|---|
Best | 5.26 × 10−1 | 5.23 × 10−1 | 5.55 × 10−1 | 5.26 × 10−1 | 5.26 × 10−1 | 5.26 × 10−1 | 5.23 × 10−1 | 5.26 × 10−1 |
STD | 4.98 × 10−2 | 5.86 × 10−2 | 3.16 × 10−1 | 7.93 × 10−2 | 1.14 × 10−2 | 5.90 × 10−3 | 1.27 × 10−2 | 7.85 × 10−2 |
Mean | 5.35 × 10−1 | 5.46 × 10−1 | 9.33 × 10−1 | 5.54 × 10−1 | 5.40 × 10−1 | 5.33 × 10−1 | 5.37 × 10−1 | 5.47 × 10−1 |
Median | 5.39 × 10−1 | 5.37 × 10−1 | 8.53 × 10−1 | 5.37 × 10−1 | 5.37 × 10−1 | 5.35 × 10−1 | 5.37 × 10−1 | 5.33 × 10−1 |
Worst | 8.90 × 10−1 | 1.09 × 100 | 1.89 × 100 | 1.20 × 100 | 5.94 × 10−1 | 5.65 × 10−1 | 6.50 × 10−1 | 1.10 × 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Luo, X. An Improved Comprehensive Learning Jaya Algorithm with Lévy Flight for Engineering Design Optimization Problems. Electronics 2025, 14, 3776. https://doi.org/10.3390/electronics14193776
Shen X, Luo X. An Improved Comprehensive Learning Jaya Algorithm with Lévy Flight for Engineering Design Optimization Problems. Electronics. 2025; 14(19):3776. https://doi.org/10.3390/electronics14193776
Chicago/Turabian StyleShen, Xintong, and Xiaonan Luo. 2025. "An Improved Comprehensive Learning Jaya Algorithm with Lévy Flight for Engineering Design Optimization Problems" Electronics 14, no. 19: 3776. https://doi.org/10.3390/electronics14193776
APA StyleShen, X., & Luo, X. (2025). An Improved Comprehensive Learning Jaya Algorithm with Lévy Flight for Engineering Design Optimization Problems. Electronics, 14(19), 3776. https://doi.org/10.3390/electronics14193776