Improving the Efficiency of a 10 MHz Voltage Regulator Using a PCB-Embedded Inductor
Abstract
1. Introduction
2. Inductor Design and Structure
3. PCB-Embedded Inductor Measurement Method and Results
4. VRM Measurement Results with a PCB-Embedded Inductor
4.1. Measurement Setup
4.2. Measurement Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khorasani, R.R.; Li, X.; Kim, J.W.; Murali, P.; Sharma, R.; Swaminathan, M. Package Power Delivery Architecture for High Performance Computing Systems with a 1 kW IVR Operated in CCMDCM Boundary Mode Condition. In Proceedings of the IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 28–31 May 2024; pp. 285–292. [Google Scholar] [CrossRef]
- Hertel, J.C.; Nour, Y.; Knott, A. Integrated very-high-frequency switch mode power supplies: Design considerations. IEEE J. Emerg. Sel. Topics Power Electron. 2018, 6, 526–538. [Google Scholar] [CrossRef]
- Burton, E.A.; Schrom, G.; Paillet, F.; Douglas, J.; Labert, W.J.; Radhakrishnan, K.; Hill, M.J. Fully integrated voltage regulators on 4th generation Intel® CoreTM SoCs. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 16–20 March 2014; pp. 432–439. [Google Scholar]
- Lambert, W.J.; Hill, M.J.; Radhakrishnan, K.; Wojewoda, L.; Augustine, A.E. Package Inductors for Intel fully integrated voltage regulators. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 3–11. [Google Scholar] [CrossRef]
- Baek, J.; Choi, B.; Kulasekaran, S.; Do, H.; Marin, B.; Chavarria, J.; Wojewoda, L.; Radhakrishnan, K. Fully Integrated Voltage Regulators (FIVRs) with Package In-situ Coupled CoaxMIL Inductor for High Power Density Microprocessor Applications. In Proceedings of the 2025 IEEE Applied Power Electronics Conference and Exposition (APEC), Atlanta, GA, USA, 16–20 March 2025; pp. 491–497. [Google Scholar]
- Kim, S.; Krishnamurthy, H.K.; Ahmed, Z.K.; Desai, N.; Weng, S.; Augustine, A.E.; Do, H.T.; Yu, J.; Bach, P.D.; Liu, X.; et al. A Monolithic, 10.5 W/mm2, 600 MHz Top-Metal and C4 Planar Spiral Inductor-Based Integrated Buck Voltage Regulator on 16 nm Class. IEEE J. Solid-State Circuits 2025, 60, 75–84. [Google Scholar] [CrossRef]
- Joshi, K.; Bhat, A.S.; Schaef, C.; Chen, K.; Lee, E.; Kocharyan, Y.; Janardanan, A.; Ganta, D.; Zhang, H.; Geppert, M.; et al. 21.5 A Fully Integrated Multi-Phase Voltage Regulator with Enhanced Light-Load-Efficiency Peak of 86%, Featuring an Autonomous Mode Transition from Hard-Switching to Soft-Switching to Discontinuous Conduction Mode in 3 nm FinFET CMOS. In Proceedings of the 2025 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 15–19 February 2025; Volume 68. [Google Scholar]
- Tang, K.; Ji, Y.; Cheng, L. A 6-Phase Integrated Voltage Regulator With Multi-Phase Transient Optimization Technique in 28-nm CMOS Process. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 4596–4600. [Google Scholar] [CrossRef]
- Palm, P.; Moisala, J.; Kivikero, A.; Tuominen, R.; Iihola, A. Embedding active components inside printed circuit board (PCB)—A solution for miniaturization of electronics. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 3–11. [Google Scholar]
- Huesgen, T. Printed circuit board embedded power semiconductors: A technology review. Power Electron. Devices Compon. 2022, 3, 100017. [Google Scholar] [CrossRef]
- Zhu, F.; Li, Q. A Novel PCB-Embedded Coupled Inductor Structure for a 20-MHz Integrated Voltage Regulator. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 7452–7463. [Google Scholar] [CrossRef]
- Le, H.T.; Nour, Y.; Han, A.; Jensen, F.; Ouyang, Z.; Knott, A. Microfabricated air-core toroidal inductor in very high-frequency power converters. IEEE J. Emerg. Sel. Topics Power Electron. 2018, 6, 604–613. [Google Scholar]
- Dou, Y.; Ouyang, Z.; Thummala, P.; Andersen, M.A.E. PCB embedded inductor for high-frequency ZVS SEPIC converter. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 98–104. [Google Scholar]
- Kulkarni, S.; Li, D.; Jordan, D.; Wang, N.; Mathuna, C.O. PCB embedded bondwire inductors with discrete thin-film magnetic core for power supply in package. IEEE J. Emerg. Sel. Topics Power Electron. 2018, 6, 614–620. [Google Scholar] [CrossRef]
- Liang, W.; Glaser, J.; Rivas, J. 13.56 MHz high density dc-dc converter with PCB inductors. IEEE Trans. Power Electron. 2015, 30, 4291–4301. [Google Scholar] [CrossRef]
- Liang, W.; Raymond, L.; Rivas, J. 3-D-printed air-core inductors for high-frequency power converters. IEEE Trans. Power Electron. 2016, 31, 52–64. [Google Scholar] [CrossRef]
- Avula, V.; Murali, P.; Swaminathan, M. Design and demonstration of dual-core spiral package-embedded inductors for Integrated Voltage Regulators. IEEE Trans. Compon. Packag. Manuf. Technol. 2025, 15, 1278–1283. [Google Scholar] [CrossRef]
- Yang, S.T.; Chiang, C.H.; Hsieh, Y.C.; Lee, P.N.; Wans, C.C. PCB integrated inductor design optimized and electrical performance analysis for power module development. In Proceedings of the Electrical Design of Advanced Packaging and Systems (EDAPS), Kaohsiung, Taiwan, 16–18 December 2019; pp. 1–3. [Google Scholar]
- Kim, G.; Kim, S. Design of a packaged multi-radius multi-path solenoidal inductor for redistribution layers. J. Semicond. Technol. Sci. 2022, 22, 395–406. [Google Scholar] [CrossRef]
- Alvarez, C.; Bellaredj, M.; Swaminathan, M. Open and closed loop inductors for high-efficiency system-on-package integrated voltage regulators. In Proceedings of the 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019. [Google Scholar]
- Mønster, J.; Madsen, M.; Pedersen, J.; Knott, A. Investigation, development and verification of printed circuit board embedded air-core solenoid transformers. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 133–139. [Google Scholar]
- Qu, C.; Zhu, Z.; En, Y.; Wang, L.; Liu, X. Area-efficient extended 3-D inductor based on TSV technology for RF applications. Index IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 287–296. [Google Scholar] [CrossRef]
- ANSYS, Inc. HFSS Software; ANSYS, Inc.: Canonsburg, PA, USA; Available online: https://www.ansys.com/products/electronics/ansys-hfss (accessed on 20 September 2025).
- Crupi, G.; Schreurs, D. Microwave De-Embedding: From Theory to Applications; Academic: New York, NY, USA, 2013. [Google Scholar]
- Chen, B.; He, J.; Guo, Y.; Pan, S.; Ye, X.; Fan, J. Multi-ports (2n) 2×-thru de-embedding: Theory, validation, and mode conversion characterization. IEEE Trans. Electromagn. Compat. 2019, 61, 1261–1270. [Google Scholar] [CrossRef]
- Scafati, S.; Pellegrino, E.; de Paulis, F.; Olivieri, C.; Drewniak, J.; Orlandi, A. Single step 2-port device de-embedding algorithm for fixture-DUT-fixture network assembly. Electronics 2021, 10, 1275. [Google Scholar] [CrossRef]
- Shen, Z.; Lai, Y.; Zhao, H.; Wang, J.; Guo, J.; Wei, Z. An Improved De-Embedding Method for Low-Loss Reciprocal Fixtures. Electronics 2025, 14, 1487. [Google Scholar] [CrossRef]
- Schaef, C.; Desai, N.; Krishnamurthy, H.; Weng, S.; Do, H.; Lambert, W.; Radhakrishnan, K.; Ravichandran, K.; Tschanz, J.; De, V. A fully integrated voltage regulator in 14 nm CMOS with package-embedded air-core inductor featuring self-trimmed, digitally controlled variable on-time discontinuous conduction mode operation. In Proceedings of the IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 154–156. [Google Scholar]
- Schaef, C.; Salus, T.; Rayess, R.; Kulasekaran, S.; Manusharow, M.; Radhakrishnan, K.; Douglas, J. A IMax|max Fully Integrated Multi-Phase Voltage Regulator with 91.5% Peak Efficiency at 1.8 to 1 V, Operating at 50MHz and Featuring a Digitally Assisted Controller with Automatic Phase Shedding and Soft Switching in 4 nm Class FinFET CMOS. In Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 20–26 February 2022; pp. 306–307. [Google Scholar]
- Sturcken, N.; Petracca, M.; Warren, S.; Mantovani, P.; Carloni, L.P.; Peterchev, A.V.; Shepard, K.L. A switched-inductor integrated voltage regulator with nonlinear feedback and network-on-chip load in 45 nm SOI. IEEE J. Solid-State Circuit 2012, 47, 1935–1945. [Google Scholar] [CrossRef]
- Krishnamurthy, H.K.; Vaidya, V.; Kumar, P.; Jain, R.; Weng, S.; Kim, S.T.; Matthew, G.E.; Desai, N.; Liu, X.; Ravichandran, K.; et al. A digitally controlled fully integrated voltage regulator with on-die solenoid inductor with planar magnetic core in 14 nm Tri-Gate CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 336–337. [Google Scholar]
Parameter | Description | Value |
---|---|---|
Thickness of inner winding | 32 m | |
Thickness of outer winding | 40 m | |
Width of inner winding | 20 m | |
Width of outer winding | 30 m | |
d | Via diameter | 600 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Hwang, J.; Kim, S. Improving the Efficiency of a 10 MHz Voltage Regulator Using a PCB-Embedded Inductor. Electronics 2025, 14, 3732. https://doi.org/10.3390/electronics14183732
Kim G, Hwang J, Kim S. Improving the Efficiency of a 10 MHz Voltage Regulator Using a PCB-Embedded Inductor. Electronics. 2025; 14(18):3732. https://doi.org/10.3390/electronics14183732
Chicago/Turabian StyleKim, GiWon, Jisoo Hwang, and SoYoung Kim. 2025. "Improving the Efficiency of a 10 MHz Voltage Regulator Using a PCB-Embedded Inductor" Electronics 14, no. 18: 3732. https://doi.org/10.3390/electronics14183732
APA StyleKim, G., Hwang, J., & Kim, S. (2025). Improving the Efficiency of a 10 MHz Voltage Regulator Using a PCB-Embedded Inductor. Electronics, 14(18), 3732. https://doi.org/10.3390/electronics14183732