Reshaping the Digital Economy with Big Data: A Meta-Analysis of Trends and Technological Evolution
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Annual Scientific Production
3.2. The Most Relevant Journals and the Most Influential Authors
3.3. Analysis of Social Structure
3.4. Analysis of Intellectual Structure
3.5. Conceptual Structure Analysis
4. Discussion
4.1. General Findings and Trends Regarding the Application of Big Data in the Global Digital Economy
4.2. Conceptual Structure: Factorial Analysis of Keywords and Thematic Evolution
- Niche themes (top left): one community dedicated to research on information, big, and competition.
- Motor themes (top right): two communities engaged in research on (1) management, transformation, and analytics and on (2) innovation, growth, and efficiency.
- Emerging or declining themes (bottom left): two communities focused on (1) big data, impact, and performance within emerging themes and on (2) capabilities, industry, and governance within declining themes.
- Basic themes (bottom right): one community devoted to research on Internet, model, and information technology.
- 1995–2000: emergence of the commercial Internet and the development of the first scalable relational databases;
- 2006: introduction of Apache Hadoop, enabling efficient storage and processing of massive datasets across server clusters [85];
- 2010–2012: emergence of scalable cloud services (like Amazon Web Services and Microsoft Azure), making big data infrastructure more accessible [88].
- 2005: launch of YouTube, triggering a surge in user-generated multimedia content [89];
- 2020–present: The integration of technologies such as AI, blockchain, and edge computing into digital operations has cemented big data as a strategic asset. Companies are transforming into “data-native” enterprises, while traditional models give way to fully digital ecosystems [105,106,107,108,109].
- 2024–2025: implementation of the Corporate Sustainability Reporting Directive (CSRD) into national legislation introducing phased requirements for corporate sustainability reporting, incorporating ESG (Environmental, Social, and Governance) principles into business strategies and big data analytics models [117,118,119,120].
4.3. Future Research Perspectives on the Implications of Big Data on the Global Digital Economy
5. Conclusions
5.1. General Conclusions
5.2. Theoretical and Practical Contributions
5.3. Limitations of This Study and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Javaid, M.; Haleem, A.; Singh, R.P.; Sinha, A.K. Digital economy to improve the culture of industry 4.0: A study on features, implementation and challenges. Green Technol. Sustain. 2024, 2, 100083. [Google Scholar] [CrossRef]
- Samsul, S.A.; Yahaya, N.; Abuhassna, H. Education big data and learning analytics: A bibliometric analysis. Humanit. Soc. Sci. Commun. 2023, 10, 709. [Google Scholar] [CrossRef]
- Erümit, A.K.; Cebeci, H.Y.; Özmen, S. Big Data in Higher Education: Bibliometric Analysis. TechTrends 2024, 68, 1129–1139. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X.-J. A bibliometric analysis and visualization of medical big data research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef]
- Li, B.; Du, K.; Qu, G.; Tang, N. Big data research in nursing: A bibliometric exploration of themes and publications. J. Nurs. Scholarsh. 2024, 56, 466–477. [Google Scholar] [CrossRef]
- Nobanee, H. A Bibliometric Review of Big Data in Finance. Big Data 2021, 9, 73–78. [Google Scholar] [CrossRef]
- Ar-Raisi, F.A.; Sakti, E.; Anggono, A.; Tarjo, T. Bibliometric Analysis of Big Data Research in Finance. J. Magister Akunt. Trisakti 2023, 10, 1–18. [Google Scholar] [CrossRef]
- Ardito, L.; Scuotto, V.; Del Giudice, M.; Petruzzelli, A.M. A bibliometric analysis of research on Big Data analytics for business and management. Manag. Decis. 2019, 57, 1993–2009. [Google Scholar] [CrossRef]
- Nobanee, H. Big Data in Business: A Bibliometric Analysis of Relevant Literature. Big Data 2020, 8, 459–463. [Google Scholar] [CrossRef]
- Sahoo, S. Big data analytics in manufacturing: A bibliometric analysis of research in the field of business management. Int. J. Prod. Res. 2021, 60, 6793–6821. [Google Scholar] [CrossRef]
- Gao, W.; Qiu, Q.; Yuan, C.; Shen, X.; Cao, F.; Wang, G.; Wang, G. Forestry Big Data: A Review and Bibliometric Analysis. Forests 2022, 13, 1549. [Google Scholar] [CrossRef]
- Islam, N.; Hu, G.; Ashiq, M.; Ahmad, S. Exploring the landscape of big data applications in librarianship: A bibliometric analysis of research trends and patterns. Libr. Hi Tech 2025, 43, 872–895. [Google Scholar] [CrossRef]
- Wang, L.; Pertheban, T.R.A.L.; Li, T.; Zhao, L. Application of business intelligence based on big data in E-commerce data evaluation. Heliyon 2024, 10, e38768. [Google Scholar] [CrossRef]
- Akter, S.; Wamba, S.F. Big data analytics in e-commerce: A systematic review and agenda for future research. Electron. Mark. 2016, 26, 173–194. [Google Scholar] [CrossRef]
- Tzika-Kostopoulou, D.; Nathanail, E.; Kokkinos, K. Big data in transportation: A systematic literature analysis and topic classification. Knowl. Inf. Syst. 2024, 66, 5021–5046. [Google Scholar] [CrossRef]
- Zhuang, Y.; Cenci, J.; Zhang, J. Review of Big Data Implementation and Expectations in Smart Cities. Buildings 2024, 14, 3717. [Google Scholar] [CrossRef]
- Abdelrahman, Y.; Hajek, P.; Lubica, H. Research trends in the application of big data in smart cities—A literature review. Can. J. Adm. Stud. 2023, 40, 254–269. [Google Scholar] [CrossRef]
- Gu, D.; Li, J.; Li, X.; Liang, C. Visualizing the knowledge structure and evolution of big data research in healthcare informatics. Int. J. Med. Inform. 2017, 98, 22–32. [Google Scholar] [CrossRef]
- Raban, D.R.; Gordon, A. The evolution of data science and big data research: A bibliometric analysis. Scientometrics 2020, 122, 1563–1581. [Google Scholar] [CrossRef]
- Bilgili, E.C.G.; Yılmaz, A.A. The Big Data Revolution: A Comprehensive Bibliometric Study on Management and Organizational Development with a Focus on Web of Science. Korkut Ata Türk. Araşt. Derg. 2024, 16, 328–356. [Google Scholar] [CrossRef]
- Juliardi, M.; Malik, I. A Bibliometric Analysis of Data Science: Trends, Contributions, and Research Developments. West Sci. Interdiscip. Stud. 2023, 1, 387–397. Available online: https://scispace.com/pdf/bibliometric-analysis-of-data-science-trends-contributions-tk775qbvfe.pdf (accessed on 15 May 2025).
- Lundberg, L. Bibliometric mining of research directions and trends for big data. J. Big Data 2023, 10, 112. [Google Scholar] [CrossRef]
- Raghuramapatruni, R. Trends and Pattern in Big Data: A Bibliometric Study. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 322–333. Available online: https://ijisae.org/index.php/IJISAE/article/view/4599 (accessed on 16 May 2025).
- Islam, N.; Hu, G. An Insight into the State of Big Data Research: A Bibliometric Study of Scientific Publications. Sci. Technol. Libr. 2023, 43, 31–51. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Li, J.; Liu, G.; Yang, M.M.; Liu, S. A bibliometric review of a decade of research: Big data in business research—Setting a research agenda. J. Bus. Res. 2021, 131, 374–390. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, D. A Bibliometrics analysis on big data research (2009–2018). J. Data Inf. Manag. 2019, 1, 3–15. [Google Scholar] [CrossRef]
- Inamdar, Z.; Raut, R.; Narwane, V.S.; Gardas, B.; Narkhede, B.; Sagnak, M. A systematic literature review with bibliometric analysis of big data analytics adoption from period 2014 to 2018. J. Enterp. Inf. Manag. 2021, 34, 101–139. [Google Scholar] [CrossRef]
- Chavez, H.; Albornoz, M.B.; Martín, F. Big data Research: A Bibliometric Analysis of the Scopus Database, 2009–2019. J. Scientometr. Res. 2022, 11, 64–78. [Google Scholar] [CrossRef]
- Abdian, S.; Shahri, M.H.; Khadivar, A. A Bibliometric Analysis of Research on Big Data and Its Potential to Value Creation and Capture. Interdiscip. J. Manag. Stud. 2023, 16, 1–24. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Y. Discovering the interdisciplinary nature of big data research through social network analysis and visualization. Scientometrics 2017, 112, 91–109. [Google Scholar] [CrossRef]
- Kuc-Czarnecka, M.; Olczyk, M. How ethics combine with big data: A bibliometric analysis. Humanit. Soc. Sci. Commun. 2020, 7, 137. [Google Scholar] [CrossRef]
- Mishra, D.; Gunasekaran, A.; Papadopoulos, T.; Childe, S.J. Big Data and supply chain management: A review and bibliometric analysis. Ann. Oper. Res. 2018, 270, 313–336. [Google Scholar] [CrossRef]
- Al-Sartawi, A.M.A.M. The Big Data-Driven Digital Economy: Artificial and Computational Intelligence; Springer: Cham, Switzerland, 2021; Available online: https://link.springer.com/book/10.1007/978-3-030-73057-4 (accessed on 1 July 2025).
- Xia, Y.; Lv, G.; Wang, H.; Ding, L. Evolution of digital economy research: A bibliometric analysis. Int. Rev. Econ. Financ. 2023, 88, 1151–1172. [Google Scholar] [CrossRef]
- Zeng, S.; Yang, H. A Bibliometric and Visualization Analysis of Knowledge Mapping in Digital Economy Research, 1992–2022. Sustainability 2023, 15, 6565. [Google Scholar] [CrossRef]
- Yuan, Z. Analysis and research of digital economy based on the background of big data. In Proceedings of the International Conference on Digital Economy and Management Science (CDEMS 2023), Kaifeng, China, 21–23 April 2023; Volume 170, p. 01016. [Google Scholar] [CrossRef]
- Bogoviz, A.V. Big Data in Information Society and Digital Economy; Springer: Cham, Switzerland, 2023; Available online: https://link.springer.com/book/10.1007/978-3-031-29489-1 (accessed on 25 May 2025).
- Zherlitsyn, D.; Kolarov, K.; Rekova, N. Digital Transformation in the EU: Bibliometric Analysis and Digital Economy Trends Highlights. Digital 2025, 5, 1. [Google Scholar] [CrossRef]
- Mougenot, B.; Doussoulin, J.P. Conceptual evolution of the bioeconomy: A bibliometric analysis. Environ. Dev. Sustain. 2022, 24, 1031–1047. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. Prof. Inf. 2020, 29, 4. [Google Scholar] [CrossRef]
- Goldfarb, A.; Tucker, C. Digital Economics. J. Econ. Lit. 2019, 57, 3–43. [Google Scholar] [CrossRef]
- Hampton, S.E.; Strasser, C.A.; Tewksbury, J.J.; Gram, W.K.; Budden, A.E.; Batcheller, A.L.; Duke, C.S.; Porter, J.H. Big data and the future of ecology. Front. Ecol. Environ. 2013, 11, 156–162. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Shin, D.-H.; Choi, M.-J. Ecological Views of Big Data: Perspectives and Issues. Telemat. Inform. 2015, 32, 311–320. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- McAfee, A.; Brynjolfsson, E.; Davenport, T.H.; Patil, D.J.; Barton, D. Big data: The management revolution. Harv. Bus. Rev. 2012, 90, 61–67. Available online: https://harrt.ucla.edu/wp-content/uploads/2015/12/Big-Data-The-Management-Revolution-.pdf (accessed on 20 May 2025).
- Nambisan, S.; Lyytinen, K.; Majchrzak, A.; Song, M. Digital Innovation Management: Reinventing Innovation Management Research in a Digital World. MIS Q. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Boyd, D.; Crawford, K. Critical Questions for Big Data: Provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 2012, 15, 662–679. [Google Scholar] [CrossRef]
- Gupta, M.; George, J.F. Toward the development of a big data analytics capability. Inf. Manag. 2016, 53, 1049–1064. [Google Scholar] [CrossRef]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; Wite, T.; van Hees, V.T.; Trenell, M.I.; Owen, C.G.; et al. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-Level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Guo, B.; Wang, Y.; Zhang, H.; Liang, C.; Feng, Y.; Hu, F. Impact of the digital economy on high-quality urban economic development: Evidence from Chinese cities. Econ. Model. 2023, 120, 106194. [Google Scholar] [CrossRef]
- Vidgen, R.; Shaw, S.; Grant, D.B. Management challenges in creating value from business analytics. Eur. J. Oper. Res. 2017, 261, 626–639. [Google Scholar] [CrossRef]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci. Total. Environ. 2022, 852, 158401. [Google Scholar] [CrossRef]
- Moll, J.; Yigitbasioglu, O. The role of internet-related technologies in shaping the work of accountants: New directions for accounting research. Br. Account. Rev. 2019, 51, 100833. [Google Scholar] [CrossRef]
- Allam, Z.; Sharifi, A.; Bibri, S.E.; Jones, D.S.; Krogstie, J. The Metaverse as a Virtual Form of Smart Cities: Opportunities and Challenges for Environmental, Economic, and Social Sustainability in Urban Futures. Smart Cities 2022, 5, 771–801. [Google Scholar] [CrossRef]
- Xu, Z.; Frankwick, G.L.; Ramirez, E. Effects of big data analytics and traditional marketing analytics on new product success: A knowledge fusion perspective. J. Bus. Res. 2016, 69, 1562–1566. [Google Scholar] [CrossRef]
- Ren, S.; Li, L.; Han, Y.; Hao, Y.; Wu, H. The emerging driving force of inclusive green growth: Does digital economy agglomeration work? Bus. Strategy Environ. 2022, 31, 1656–1678. [Google Scholar] [CrossRef]
- Manesh, M.F.; Pellegrini, M.M.; Marzi, G.; Dabic, M. Knowledge Management in the Fourth Industrial Revolution: Mapping the Literature and Scoping Future Avenues. IEEE Trans. Eng. Manag. 2021, 68, 289–300. [Google Scholar] [CrossRef]
- Newlands, G. Algorithmic Surveillance in the Gig Economy: The Organization of Work through Lefebvrian Conceived Space. Organ. Stud. 2021, 42, 719–737. [Google Scholar] [CrossRef]
- Yang, P.; Xiong, N.; Ren, J. Data Security and Privacy Protection for Cloud Storage: A Survey. IEEE Access 2020, 8, 131723–131740. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, Y.; Huang, H.; Xiong, Z.; Kang, J.; Zheng, Z. Fusing Blockchain and AI With Metaverse: A Survey. IEEE Open J. Comput. Soc. 2022, 3, 122–136. [Google Scholar] [CrossRef]
- Arts, K.; van der Wal, R.; Adams, W.M. Digital technology and the conservation of nature. Ambio 2015, 44, 661–673. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, Y.; Wang, J.; Jiang, J. The impact of the urban digital economy on China’s carbon intensity: Spatial spillover and mediating effect. Resour. Conserv. Recycl. 2023, 189, 106762. [Google Scholar] [CrossRef]
- Hu, J. Synergistic effect of pollution reduction and carbon emission mitigation in the digital economy. J. Environ. Manag. 2023, 337, 117755. [Google Scholar] [CrossRef]
- Fourcade, M.; Kluttz, D.N. A Maussian bargain: Accumulation by gift in the digital economy. Big Data Soc. 2020, 7. [Google Scholar] [CrossRef]
- Sultana, S.; Akter, S.; Kyriazis, E.; Wamba, S.F. Architecting and Developing Big Data-Driven Innovation (DDI) in the Digital Economy. J. Glob. Inf. Manag. 2021, 29, 165–187. [Google Scholar] [CrossRef]
- Tranos, E.; Kitsos, T.; Ortega-Argilés, R. Digital economy in the UK: Regional productivity effects of early adoption. Reg. Stud. 2020, 55, 1924–1938. [Google Scholar] [CrossRef]
- Nuccio, M.; Guerzoni, M. Big data: Hell or heaven? Digital platforms and market power in the data-driven economy. Compet. Change 2018, 23, 312–328. [Google Scholar] [CrossRef]
- Novikov, S.V. Data Science and Big Data Technologies Role in the Digital Economy. TEM J. 2020, 9, 756–762. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Y.; Zhong, K. Impact of digital economy on urban sustainable development: Evidence from Chinese cities. Sustain. Dev. 2024, 32, 307–324. [Google Scholar] [CrossRef]
- Nathan, M.; Rosso, A. Mapping digital businesses with big data: Some early findings from the UK. Res. Policy 2015, 44, 1714–1733. [Google Scholar] [CrossRef]
- Newlands, G.; Lutz, C.; Tamò-Larrieux, A.; Villaronga, E.F.; Harasgama, R.; Scheitlin, G. Innovation under pressure: Implications for data privacy during the Covid-19 pandemic. Big Data Soc. 2020, 7. [Google Scholar] [CrossRef]
- Valentine, E.; Stewart, G. The emerging role of the Board of Directors in enterprise business technology governance. Int. J. Discl. Gov. 2013, 10, 346–362. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Tao, Z.; Zhi, Z.; Shangkun, L. Digital Economy, Entrepreneurship, and High-Quality Economic Development: Empirical Evidence from Urban China. Front. Econ. China 2022, 17, 393–426. [Google Scholar] [CrossRef]
- Teece, D.J. Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world. Res. Policy 2018, 47, 1367–1387. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment: Dataset. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Chen, H.; Chiang, R.H.L.; Storey, V.C. Business Intelligence and Analytics: From Big Data to Big Impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef]
- Bukht, R.; Heeks, R. Defining, Conceptualising and Measuring the Digital Economy. Int. Organ. Res. J. 2018, 13, 143–172. [Google Scholar] [CrossRef]
- Ghemawat, S.; Gobioff, H.; Leung, S.-T. The Google File System. Available online: https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf (accessed on 20 May 2025).
- Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. 2004. Available online: https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf (accessed on 20 May 2025).
- Moise, D.; Shestakov, D. Terabyte-Scale Image Similarity Search. In Handbook of Statistics; Govindaraju, V., Vijay, V.R., Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 33, pp. 279–301. [Google Scholar] [CrossRef]
- Yu, J.-H.; Zhou, Z.-M. Components and Development in Big Data System: A Survey. J. Electron. Sci. Technol. 2019, 17, 51–72. [Google Scholar] [CrossRef]
- Landset, S.; Khoshgoftaar, T.M.; Richter, A.N.; Hasanin, T. A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data 2015, 2, 24. [Google Scholar] [CrossRef]
- Al-Sayyed, R.M.H.; Hijawi, W.A.; Bashiti, A.M.; AlJarah, I.; Obeid, N.; Al-Adwan, O.Y.A. An Investigation of Microsoft Azure and Amazon Web Services from Users’ Perspectives. Int. J. Emerg. Technol. Learn. 2019, 14, 217–241. [Google Scholar] [CrossRef]
- Holland, M. How YouTube Developed into a Successful Platform for User-Generated Content. Elon J. Undergrad. Res. Commun. 2016, 7. Available online: http://www.inquiriesjournal.com/a?id=1477 (accessed on 15 May 2025).
- Helmond, A.; Nieborg, D.B.; van der Vlist, F.N. Facebook’s evolution: Development of a platform-as-infrastructure. Internet Hist. 2019, 3, 123–146. [Google Scholar] [CrossRef]
- Cano-Marin, E.; Mora-Cantallops, M.; Sánchez-Alonso, S. Twitter as a predictive system: A systematic literature review. J. Bus. Res. 2023, 157, 113561. [Google Scholar] [CrossRef]
- Matekaire, K.; Siriram, R. An overview of factors influencing the adoption of IoT payment systems in South Africa’s small and medium-sized retail enterprises. J. Open Innov. Technol. Mark. Complex. 2025, 11, 100566. [Google Scholar] [CrossRef]
- Brous, P.; Janssen, M.; Herder, P. The dual effects of the Internet of Things (IoT): A systematic review of the benefits and risks of IoT adoption by organizations. Int. J. Inf. Manag. 2020, 51, 101952. [Google Scholar] [CrossRef]
- Chataut, R.; Phoummalayvane, A.; Akl, R. Unleashing the Power of IoT: A Comprehensive Review of IoT Applications and Future Prospects in Healthcare, Agriculture, Smart Homes, Smart Cities, and Industry 4.0. Sensors 2023, 23, 7194. [Google Scholar] [CrossRef]
- Korherr, P.; Kanbach, D.K.; Kraus, S.; Mikalef, P. From intuitive to data-driven decision-making in digital transformation: A framework of prevalent managerial archetypes. Digit. Bus. 2022, 2, 100045. [Google Scholar] [CrossRef]
- Szukits, Á.; Móricz, P. Towards data-driven decision making: The role of analytical culture and centralization efforts. Rev. Manag. Sci. 2023, 18, 2849–2887. [Google Scholar] [CrossRef]
- Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J.; et al. Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 2016, 59, 56–65. [Google Scholar] [CrossRef]
- Theodorakopoulos, L.; Karras, A.; Krimpas, G.A. Optimizing Apache Spark MLlib: Predictive Performance of Large-Scale Models for Big Data Analytics. Algorithms 2025, 18, 74. [Google Scholar] [CrossRef]
- Aldoseri, A.; Al-Khalifa, K.N.; Hamouda, A.M. Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges. Appl. Sci. 2023, 13, 7082. [Google Scholar] [CrossRef]
- Almanasra, S. Applications of integrating artificial intelligence and big data: A comprehensive analysis. J. Intell. Syst. 2024, 33, 20240237. [Google Scholar] [CrossRef]
- Yaiprasert, C.; Hidayanto, A.N. AI-driven ensemble three machine learning to enhance digital marketing strategies in the food delivery business. Intell. Syst. Appl. 2023, 18, 200235. [Google Scholar] [CrossRef]
- Zhao, Y.; von Delft, S.; Morgan-Thomas, A.; Buck, T. The evolution of platform business models: Exploring competitive battles in the world of platforms. Long Range Plan. 2020, 53, 101892. [Google Scholar] [CrossRef]
- Gawer, A. Digital platforms’ boundaries: The interplay of firm scope, platform sides, and digital interfaces. Long Range Plan. 2021, 54, 102045. [Google Scholar] [CrossRef]
- Ofulue, J.; Benyoucef, M. Data monetization: Insights from a technology-enabled literature review and research agenda. Manag. Rev. Q. 2024, 74, 521–565. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, H.; Gia, T.N. Exploring the integration of edge computing and blockchain IoT: Principles, architectures, security, and applications. J. Netw. Comput. Appl. 2024, 226, 103884. [Google Scholar] [CrossRef]
- Zhu, J.; Li, F.; Chen, J. A survey of blockchain, artificial intelligence, and edge computing for Web 3.0. Comput. Sci. Rev. 2024, 54, 100667. [Google Scholar] [CrossRef]
- Ficili, I.; Giacobbe, M.; Tricomi, G.; Puliafito, A. From Sensors to Data Intelligence: Leveraging IoT, Cloud, and Edge Computing with AI. Sensors 2025, 25, 1763. [Google Scholar] [CrossRef]
- Asaithambi, S.; Nallusamy, S.; Yang, J.; Prajapat, S.; Kumar, G.; Rathore, P.S. A secure and trustworthy blockchain-assisted edge computing architecture for industrial internet of things. Sci. Rep. 2025, 15, 15410. [Google Scholar] [CrossRef]
- Kumar, S.; Lim, W.M.; Sivarajah, U.; Kaur, J. Artificial Intelligence and Blockchain Integration in Business: Trends from a Bibliometric-Content Analysis. Inf. Syst. Front. 2023, 25, 871–896. [Google Scholar] [CrossRef]
- Murikah, W.; Nthenge, J.K.; Musyoka, F.M. Bias and ethics of AI systems applied in auditing-A systematic review. Sci. Afr. 2024, 25, e02281. [Google Scholar] [CrossRef]
- Radanliev, P. AI Ethics: Integrating Transparency, Fairness, and Privacy in AI Development. Appl. Artif. Intell. 2025, 39. [Google Scholar] [CrossRef]
- Ferrara, E. Fairness and Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, and Mitigation Strategies. Science 2024, 6, 3. [Google Scholar] [CrossRef]
- Belenguer, L. AI bias: Exploring discriminatory algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry. AI Ethics 2022, 2, 771–787. [Google Scholar] [CrossRef]
- Montagnani, M.L.; Najjar, M.-C.; Davola, A. The EU Regulatory approach(es) to AI liability, and its Application to the financial services market. Comput. Law Secur. Rev. 2024, 53, 105984. [Google Scholar] [CrossRef]
- Bogucki, A.; Engler, A.; Perarnaud, C.; Renda, A. The AI Act and Emerging EU Digital Acquis. Overlaps, Gaps and Inconsistencies; CEPS: Brussels, Belgium, 2022; Available online: https://cdn.ceps.eu/wp-content/uploads/2022/09/CEPS-In-depth-analysis-2022-02_The-AI-Act-and-emerging-EU-digital-acquis.pdf (accessed on 24 June 2025).
- Nannini, L.; Bonel, E.; Bassi, D.; Maggini, M.J. Beyond phase-in: Assessing impacts on disinformation of the EU Digital Services Act. AI Ethics 2025, 5, 1241–1269. [Google Scholar] [CrossRef]
- Hummel, K.; Jobst, D. An Overview of Corporate Sustainability Reporting Legislation in the European Union. Account. Eur. 2024, 21, 320–355. [Google Scholar] [CrossRef]
- Lim, T. Environmental, social, and governance (ESG) and artificial intelligence in finance: State-of-the-art and research takeaways. Artif. Intell. Rev. 2024, 57, 76. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Gilardi, E. Corporate Environmental, Social, and Governance Performance: The Impacts on Financial Returns, Business Model Innovation, and Social Transformation. Sustainability 2025, 17, 1286. [Google Scholar] [CrossRef]
- Abdelhalim, A.M.; Hassan, M. Exploring the impact of big data analytics and risk management convergence on sustainability performance development: An accounting perspective. Discov. Sustain. 2025, 6, 175. [Google Scholar] [CrossRef]
- Vărzaru, A.A.; Bocean, C.G. Digital Transformation and Innovation: The Influence of Digital Technologies on Turnover from Innovation Activities and Types of Innovation. Systems 2024, 12, 359. [Google Scholar] [CrossRef]
- Schmid, S.; Lambach, D.; Diehl, C.; Reuter, C. Arms Race or Innovation Race? Geopolitical AI Development. Geopolitics 2025, 30, 1907–1936. [Google Scholar] [CrossRef]
- Yi, X.; Liu, F.; Liu, J.; Jin, H. Building a network highway for big data: Architecture and challenges. IEEE Netw. 2014, 28, 5–13. [Google Scholar] [CrossRef]
- Aldoseri, A.; Al-Khalifa, K.N.; Hamouda, A.M. AI-Powered Innovation in Digital Transformation: Key Pillars and Industry Impact. Sustainability 2024, 16, 1790. [Google Scholar] [CrossRef]
- EU. State of the Digital Decade Package. 2025. Available online: https://digital-strategy.ec.europa.eu/en/policies/2025-state-digital-decade-package (accessed on 25 June 2025).
- Musoni, M.; Karkare, P.; Teevan, C.; Domingo, E. Global Approaches to Digital Sovereignty: Competing Definitions and Contrasting Policy; ECDPM: Maastricht, The Netherlands, 2023; Available online: https://ecdpm.org/application/files/7816/8485/0476/Global-approaches-digital-sovereignty-competing-definitions-contrasting-policy-ECDPM-Discussion-Paper-344-2023.pdf (accessed on 25 June 2025).
- Burwell, F.; Propp, K. Digital Sovereignty in Practice: The EU’s Push to Shape the New Global Economy; Atlantic Council: Washington, DC, USA, 2022; Available online: https://www.atlanticcouncil.org/in-depth-research-reports/report/digital-sovereignty-in-practice-the-eus-push-to-shape-the-new-global-economy/ (accessed on 25 June 2025).
Description | Results | Description | Results |
---|---|---|---|
Main information about data | Document types | ||
Timespan | 2013–2024 | Article review | 16 |
Sources (journals, books, etc.) | 416 | Book chapter | 4 |
Documents | 752 | Document contents | |
Average citations per doc | 17.91 | Author’s keywords (DE) | 2540 |
References | 30,789 | Authors | 1794 |
Document types | Authors of single-authored docs | 111 | |
Article | 529 | Authors collaboration | |
Proceeding paper | 203 | Co-authors per doc | 3.44 |
International co-authorships % | 19.55 |
Source | h_Index | g_Index | m_Index | TCs | NPs | PY_Start |
---|---|---|---|---|---|---|
01. Sustainability | 15 | 25 | 1.875 | 756 | 54 | 2018 |
02. 8th International Conference on Information Technology and Quantitative Management | 8 | 12 | 2 | 183 | 29 | 2022 |
03. Big Data & Society | 8 | 12 | 0.8 | 415 | 12 | 2016 |
04. Environmental Science and Pollution Research | 8 | 9 | 2 | 212 | 9 | 2022 |
05. PLoS ONE | 8 | 16 | 0.889 | 857 | 16 | 2017 |
06. ACM Transactions on Graphics | 7 | 8 | 1.167 | 364 | 8 | 2020 |
07. Technological Forecasting and Social Change | 6 | 7 | 1.2 | 455 | 7 | 2021 |
08. Frontiers in Environmental Science | 5 | 8 | 1.25 | 105 | 8 | 2022 |
09. Journal of Cleaner Production | 5 | 7 | 1.25 | 712 | 7 | 2022 |
10. Journal of Environmental Management | 5 | 6 | 1.667 | 235 | 6 | 2023 |
Document | DOI | TCs | TCs/Year | NTCs |
---|---|---|---|---|
DOHERTY A, 2017, PLoS ONE [50] | 10.1371/journal.pone.0169649 | 750 | 83.33 | 7.03 |
LI Z, 2022, J CLEAN PROD [51] | 10.1016/j.jclepro.2022.131570 | 440 | 110.00 | 21.76 |
GUO B, 2023, ECON MODEL [52] | 10.1016/j.econmod.2023.106194 | 335 | 111.67 | 16.46 |
VIDGEN R, 2017, EUR J OPER RES [53] | 10.1016/j.ejor.2017.02.023 | 314 | 34.89 | 2.94 |
DONG F, 2022, SCI TOTAL ENVIRON [54] | 10.1016/j.scitotenv.2022.158401 | 307 | 76.75 | 15.19 |
MOLL J, 2019, BRIT ACCOUNT REV [55] | 10.1016/j.bar.2019.04.002 | 254 | 36.29 | 19.05 |
ALLAM Z, 2022, SMART CITIES [56] | 10.3390/smartcities5030040 | 235 | 58.75 | 11.62 |
XU Z, 2016, J BUS RES [57] | 10.1016/j.jbusres.2015.10.017 | 233 | 23.30 | 5.67 |
REN S, 2022, BUS STRATEG ENVIRON [58] | 10.1002/bse.2975 | 226 | 56.50 | 11.18 |
MANESH MF, 2021, IEEE TRANS ENG MANAGE [59] | 10.1109/TEM.2019.2963489 | 223 | 44.60 | 10.91 |
NEWLANDS G, 2021, ORGAN STUD [60] | 10.1177/0170840620937900 | 213 | 42.60 | 10.42 |
YANG P, 2020, IEEE ACCESS [61] | 10.1109/ACCESS.2020.3009876 | 211 | 35.17 | 8.05 |
YANG Q, 2022, IEEE OPEN J COMPUT SOC [62] | 10.1109/OJCS.2022.3188249 | 209 | 52.25 | 10.34 |
ARTS K, 2015, AMBIO [63] | 10.1007/s13280-015-0705-1 | 202 | 18.36 | 3.99 |
CHENG Y, 2023, RESOUR CONSERV RECYCL [64] | 10.1016/j.resconrec.2022.106762 | 197 | 65.67 | 9.68 |
Document | DOI | Year | LCs | GCs | LC/GC Ratio (%) | NLCs | NGCs |
---|---|---|---|---|---|---|---|
DONG F, 2022, SCI TOTAL ENVIRON [54] | 10.1016/j.scitotenv.2022.158401 | 2022 | 11 | 307 | 3.58 | 116.29 | 15.19 |
HU J, 2023, J ENVIRON MANAGE [65] | 10.1016/j.jenvman.2023.117755 | 2023 | 11 | 197 | 5.58 | 98.27 | 9.68 |
FOURCADE M, 2020, BIG DATA SOC [66] | 10.1177/2053951719897092 | 2020 | 6 | 68 | 8.82 | 20.40 | 2.60 |
SULTANA S, 2021, J GLOB INF MANAG [67] | 10.4018/JGIM.2021050107 | 2021 | 5 | 72 | 6.94 | 24.69 | 3.52 |
TRANOS E, 2021, REG STUD [68] | 10.1080/00343404.2020.1826420 | 2021 | 5 | 75 | 6.67 | 24.69 | 3.67 |
NUCCIO M, 2019, COMPET CHANG [69] | 10.1177/1024529418816525 | 2019 | 4 | 64 | 6.25 | 33.00 | 4.80 |
NOVIKOV SV, 2020, TEM J [70] | 10.18421/TEM92-44 | 2020 | 4 | 18 | 22.22 | 13.60 | 0.69 |
LIU Y, 2024, SUSTAIN DEV [71] | 10.1002/sd.2656 | 2024 | 4 | 64 | 6.25 | 144.80 | 11.80 |
NATHAN M, 2015, RES POLICY [72] | 10.1016/j.respol.2015.01.008 | 2015 | 3 | 38 | 7.89 | 5.25 | 0.75 |
XIA Y, 2023, INT REV ECON FINANC [34] | 10.1016/j.iref.2023.07.051 | 2023 | 3 | 26 | 11.54 | 26.80 | 1.28 |
VIDGEN R, 2017, EUR J OPER RES [53] | 10.1016/j.ejor.2017.02.023 | 2017 | 2 | 314 | 0.64 | 11.00 | 2.94 |
NEWLANDS G, 2020, BIG DATA SOC [73] | 10.1177/2053951720976680 | 2020 | 2 | 64 | 3.13 | 6.80 | 2.44 |
NEWLANDS G, 2021, ORGAN STUD [60] | 10.1177/0170840620937900 | 2021 | 2 | 213 | 0.94 | 9.88 | 10.42 |
VALENTINE ELH, 2013, INT J DISCL GOV [74] | 10.1057/jdg.2013.11 | 2013 | 1 | 21 | 4.76 | 2.00 | 0.35 |
ARTS K, 2015, AMBIO [63] | 10.1007/s13280-015-0705-1 | 2015 | 1 | 202 | 0.50 | 1.75 | 3.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Căpușneanu, S.; Barbu, C.-M.; Solomon, A.-G.; Rakos, I.-S. Reshaping the Digital Economy with Big Data: A Meta-Analysis of Trends and Technological Evolution. Electronics 2025, 14, 2709. https://doi.org/10.3390/electronics14132709
Căpușneanu S, Barbu C-M, Solomon A-G, Rakos I-S. Reshaping the Digital Economy with Big Data: A Meta-Analysis of Trends and Technological Evolution. Electronics. 2025; 14(13):2709. https://doi.org/10.3390/electronics14132709
Chicago/Turabian StyleCăpușneanu, Sorinel, Cristian-Marian Barbu, Alina-Georgiana Solomon, and Ileana-Sorina Rakos. 2025. "Reshaping the Digital Economy with Big Data: A Meta-Analysis of Trends and Technological Evolution" Electronics 14, no. 13: 2709. https://doi.org/10.3390/electronics14132709
APA StyleCăpușneanu, S., Barbu, C.-M., Solomon, A.-G., & Rakos, I.-S. (2025). Reshaping the Digital Economy with Big Data: A Meta-Analysis of Trends and Technological Evolution. Electronics, 14(13), 2709. https://doi.org/10.3390/electronics14132709