Multi-Object Tracking Method Based on Domain Adaptation and Camera Motion Compensation
Abstract
1. Introduction
- We propose the DA-BIN module, a novel domain adaptation framework that dynamically balances BN and IN through learnable parameters. By actively simulating failure scenarios during training, DA-BIN prevents source domain overfitting and significantly enhances ReID generalization in MOT tasks without requiring additional training data.
- We introduce the CMC-GP module, a ground plane-based camera motion compensation approach that projects KF from image coordinates to ground coordinates. This paradigm shift fundamentally eliminates camera-induced pseudo-motion while modeling spatial correlations through non-diagonal noise covariance matrices, achieving superior accuracy with minimal computational overhead.
2. Related Works
2.1. Appearance Models and Domain Adaptation in MOT
- Data dependency: Require substantial additional datasets and complex training strategies with limited performance gains;
- Single normalization bias: Using BN or IN alone leads to overfitting or underfitting in diverse MOT scenarios;
- Passive adaptation: Cannot actively explore domain boundaries or simulate failure scenarios.
2.2. Motion Models and Camera Motion Compensation in MOT
- Image plane constraint: Traditional motion models operate in 2D image coordinates, failing to capture true 3D object motion on the ground plane;
- Camera motion interference: Camera movement introduces pseudo-motion artifacts that severely degrade motion prediction accuracy;
- Computational complexity: Advanced models (LSTM, Transformer, graph-based) require extensive computational resources and labeled data, compromising real-time performance.
3. Method
Algorithm 1 Pseudo-code of DCTrack | |
1: Input: A video sequence V; object detector ; appearance feature extractor ; high detection score threshold ; new track score threshold ; camera parameters A | |
2: Output: Tracks of the video | |
3: Initialization: | |
4: for frame in V do | |
5: | ▹ Handle new detections |
6: | |
7: | |
8: | |
9: | |
10: for d in do | |
11: if then | |
12: | ▹ Store high scores detections |
13: | |
14: | ▹ Extract appearance features using DA-BIN |
15: | ▹ Equation (1): hybrid BN-IN |
16: else | |
17: | ▹ Store low scores detections |
18: | |
19: end if | |
20: end for | |
21: | ▹ Find warp matrix from k-1 to k |
22: | |
23: | ▹ Predict new locations of tracks using CMC-GP |
24: for t in do | |
25: | ▹ Standard prediction |
26: | ▹ CMC-GP Equations (11)–(15) |
27: end for | |
28: | ▹ First association |
29: | |
30: | |
31: | |
32: Linear assignment by Hungarian’s alg. with | |
33: remaining object boxes from | |
34: remaining tracks from | |
35: | ▹ Second association |
36: | |
37: Linear assignment by Hungarian’s alg. with | |
38: remaining tracks from | |
39: | ▹ Update matched tracks using CMC-GP |
40: Update matched tracklets Kalman filter | ▹ with non-diagonal Equation (14) |
41: Update tracklets appearance features | ▹ using DA-BIN features Equation (1) |
42: | ▹ Delete unmatched tracks |
43: | |
44: | ▹ Initialize new tracks with CMC-GP |
45: for d in do | |
46: if then | |
47: | ▹ Initialize on ground plane Equation (11) |
48: end if | |
49: end for | |
50: | ▹ Cascaded offline post-processing |
51: | |
52: end for | |
53: Return: | |
In red are the key modules of our method. |
3.1. DA-BIN:Appearance Enhancement Model Based on Domain Adaptation
- encourages toward values that maximize classification accuracy;
- with hard negatives pushes toward IN () to simulate overfitting scenarios;
- promotes toward BN () when domain diversity is needed.
- When hard negative mining selects very similar inter-class samples, the gradient tends to be positive, pushing toward 0 (more IN), simulating overfitting to instance-specific features;
- When positive samples are diverse within the same identity, the gradient tends to be negative, pushing toward 1 (more BN), exploring potential underfitting to batch statistics;
- This creates a dynamic exploration of the space, preventing the model from settling into suboptimal local minima.
- Early stage: oscillates significantly as the model explores different BN-IN combinations;
- Middle stage: gradually stabilizes but maintains sensitivity to hard samples;
- Late stage: converges to domain-specific optimal values while retaining adaptability.
3.2. CMC-GP: Camera Motion Compensation Model on Ground Plane
4. Experiments
4.1. Implementation Details
4.2. Datasets
4.3. Evaluation Metrics
4.4. Benchmark Results
4.5. Ablation Studies
- Method A: Baseline method without proposed modules;
- Method B: Baseline + CMC-GP module only;
- Method C: Baseline + DA-BIN module only;
- Method D: Baseline + both DA-BIN and CMC-GP modules (DCTrack).
4.6. Visualization Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, K.; Luo, K.; Luo, X.; Huang, J.; Wu, H.; Hu, R.; Hao, W. Ucmctrack: Multi-object tracking with uniform camera motion compensation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 26–27 February 2024; Volume 38, pp. 6702–6710. [Google Scholar]
- Cao, J.; Pang, J.; Weng, X.; Khirodkar, R.; Kitani, K. Observation-centric sort: Rethinking sort for robust multi-object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 9686–9696. [Google Scholar]
- Zeng, F.; Dong, B.; Zhang, Y.; Wang, T.; Zhang, X.; Wei, Y. Motr: End-to-end multiple-object tracking with transformer. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 659–675. [Google Scholar]
- Bai, H.; Cheng, W.; Chu, P.; Liu, J.; Zhang, K.; Ling, H. Gmot-40: A benchmark for generic multiple object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6719–6728. [Google Scholar]
- Yu, F.; Li, W.; Li, Q.; Liu, Y.; Shi, X.; Yan, J. Poi: Multiple object tracking with high performance detection and appearance feature. In Proceedings of the Computer Vision–ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 and 15–16 October 2016; Proceedings, Part II 14. Springer: Cham, Switzerland, 2016; pp. 36–42. [Google Scholar]
- Aharon, N.; Orfaig, R.; Bobrovsky, B.Z. Bot-sort: Robust associations multi-pedestrian tracking. arXiv 2022, arXiv:2206.14651. [Google Scholar]
- Zhao, Y.; Zhong, Z.; Yang, F.; Luo, Z.; Lin, Y.; Li, S.; Sebe, N. Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6277–6286. [Google Scholar]
- Guo, X.; Zheng, Y.; Wang, D. PMTrack: Multi-object Tracking with Motion-Aware. In Proceedings of the Asian Conference on Computer Vision, Hanoi, Vietnam, 8–12 December 2024; pp. 3091–3106. [Google Scholar]
- Han, S.; Huang, P.; Wang, H.; Yu, E.; Liu, D.; Pan, X. Mat: Motion-aware multi-object tracking. Neurocomputing 2022, 476, 75–86. [Google Scholar] [CrossRef]
- Sun, P.; Cao, J.; Jiang, Y.; Yuan, Z.; Bai, S.; Kitani, K.; Luo, P. Dancetrack: Multi-object tracking in uniform appearance and diverse motion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 20993–21002. [Google Scholar]
- Dendorfer, P.; Rezatofighi, H.; Milan, A.; Shi, J.; Cremers, D.; Reid, I.; Roth, S.; Schindler, K.; Leal-Taixé, L. Mot20: A benchmark for multi object tracking in crowded scenes. arXiv 2020, arXiv:2003.09003. [Google Scholar]
- Milan, A.; Leal-Taixé, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A benchmark for multi-object tracking. arXiv 2016, arXiv:1603.00831. [Google Scholar]
- Luo, H.; Gu, Y.; Liao, X.; Lai, S.; Jiang, W. Bag of tricks and a strong baseline for deep person re-identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA, 16–17 June 2019. [Google Scholar]
- Wang, G.; Yuan, Y.; Chen, X.; Li, J.; Zhou, X. Learning discriminative features with multiple granularities for person re-identification. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 274–282. [Google Scholar]
- Wang, Z.; Zheng, L.; Liu, Y.; Li, Y.; Wang, S. Towards real-time multi-object tracking. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 107–122. [Google Scholar]
- Xu, Y.; Osep, A.; Ban, Y.; Horaud, R.; Leal-Taixé, L.; Alameda-Pineda, X. How to train your deep multi-object tracker. In Proceedings of the IEEE/CVF Conference on Computer Vision And pattern Recognition, Seattlw, WA, USA, 13–19 June 2020; pp. 6787–6796. [Google Scholar]
- Lu, Z.; Rathod, V.; Votel, R.; Huang, J. Retinatrack: Online single stage joint detection and tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14668–14678. [Google Scholar]
- Yu, E.; Li, Z.; Han, S.; Wang, H. Relationtrack: Relation-aware multiple object tracking with decoupled representation. IEEE Trans. Multimed. 2022, 25, 2686–2697. [Google Scholar] [CrossRef]
- Peng, J.; Wang, C.; Wan, F.; Wu, Y.; Wang, Y.; Tai, Y.; Wang, C.; Li, J.; Huang, F.; Fu, Y. Chained-tracker: Chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part IV 16. Springer: Cham, Switzerland, 2020; pp. 145–161. [Google Scholar]
- Wang, Q.; Zheng, Y.; Pan, P.; Xu, Y. Multiple object tracking with correlation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3876–3886. [Google Scholar]
- Zhuang, Z.; Wei, L.; Xie, L.; Zhang, T.; Zhang, H.; Wu, H.; Ai, H.; Tian, Q. Rethinking the distribution gap of person re-identification with camera-based batch normalization. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XII 16. Springer: Cham, Switzerland, 2020; pp. 140–157. [Google Scholar]
- Schneider, S.; Rusak, E.; Eck, L.; Bringmann, O.; Brendel, W.; Bethge, M. Improving robustness against common corruptions by covariate shift adaptation. Adv. Neural Inf. Process. Syst. 2020, 33, 11539–11551. [Google Scholar]
- Chang, W.G.; You, T.; Seo, S.; Kwak, S.; Han, B. Domain-specific batch normalization for unsupervised domain adaptation. In Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 7354–7362. [Google Scholar]
- Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: New York, NY, USA, 2016; pp. 3464–3468. [Google Scholar]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Weng, F.; Yuan, Z.; Luo, P.; Liu, W.; Wang, X. Bytetrack: Multi-object tracking by associating every detection box. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; Springer: Cham, Switzerland, 2022; pp. 1–21. [Google Scholar]
- Zhang, J.; Zhou, S.; Chang, X.; Wan, F.; Wang, J.; Wu, Y.; Huang, D. Multiple object tracking by flowing and fusing. arXiv 2020, arXiv:2001.11180. [Google Scholar]
- Chaabane, M.; Zhang, P.; Beveridge, J.R.; O’Hara, S. Deft: Detection embeddings for tracking. arXiv 2021, arXiv:2102.02267. [Google Scholar]
- Qin, Z.; Zhou, S.; Wang, L.; Duan, J.; Hua, G.; Tang, W. Motiontrack: Learning robust short-term and long-term motions for multi-object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 17939–17948. [Google Scholar]
- Bergmann, P.; Meinhardt, T.; Leal-Taixe, L. Tracking without bells and whistles. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 941–951. [Google Scholar]
- Stadler, D.; Beyerer, J. Modelling ambiguous assignments for multi-person tracking in crowds. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 133–142. [Google Scholar]
- Du, Y.; Wan, J.; Zhao, Y.; Zhang, B.; Tong, Z.; Dong, J. Giaotracker: A comprehensive framework for mcmot with global information and optimizing strategies in visdrone 2021. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, USA, 11–17 October 2021; pp. 2809–2819. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: New York, NY, USA, 2011; pp. 2564–2571. [Google Scholar]
- Evangelidis, G.D.; Psarakis, E.Z. Parametric image alignment using enhanced correlation coefficient maximization. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1858–1865. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.H.; Lin, C.Y.; Muchtar, K.; Lai, H.E.; Sun, M.T. Three-pronged compensation and hysteresis thresholding for moving object detection in real-time video surveillance. IEEE Trans. Ind. Electron. 2017, 64, 4945–4955. [Google Scholar] [CrossRef]
- Yu, J.; McMillan, L. General linear cameras. In Proceedings of the Computer Vision-ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004; Proceedings, Part II 8. Springer: Berlin/Heidelberg, Germany, 2004; pp. 14–27. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable person re-identification: A benchmark. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1116–1124. [Google Scholar]
- Du, Y.; Zhao, Z.; Song, Y.; Zhao, Y.; Su, F.; Gong, T.; Meng, H. Strongsort: Make deepsort great again. IEEE Trans. Multimed. 2023, 25, 8725–8737. [Google Scholar] [CrossRef]
- Wang, Y.H.; Hsieh, J.W.; Chen, P.Y.; Chang, M.C.; So, H.H.; Li, X. Smiletrack: Similarity learning for occlusion-aware multiple object tracking. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 26–27 February 2024; Volume 38, pp. 5740–5748. [Google Scholar]
- Bernardin, K.; Stiefelhagen, R. Evaluating multiple object tracking performance: The clear mot metrics. EURASIP J. Image Video Process. 2008, 2008, 246309. [Google Scholar] [CrossRef]
- Ristani, E.; Solera, F.; Zou, R.; Cucchiara, R.; Tomasi, C. Performance measures and a data set for multi-target, multi-camera tracking. In Proceedings of the European Conference on Computer Vision, Graz, Austria, 7–13 May 2006; Springer: Berlin/Heidelberg, Germany, 2016; pp. 17–35. [Google Scholar]
- Zhang, Y.; Wang, C.; Wang, X.; Zeng, W.; Liu, W. Fairmot: On the fairness of detection and re-identification in multiple object tracking. Int. J. Comput. Vis. 2021, 129, 3069–3087. [Google Scholar] [CrossRef]
- Zhou, X.; Koltun, V.; Krähenbühl, P. Tracking objects as points. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 474–490. [Google Scholar]
- Sun, P.; Cao, J.; Jiang, Y.; Zhang, R.; Xie, E.; Yuan, Z.; Wang, C.; Luo, P. Transtrack: Multiple object tracking with transformer. arXiv 2020, arXiv:2012.15460. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: New York, NY, USA, 2017; pp. 3645–3649. [Google Scholar]
- Pang, J.; Qiu, L.; Li, X.; Chen, H.; Li, Q.; Darrell, T.; Yu, F. Quasi-dense similarity learning for multiple object tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 164–173. [Google Scholar]
- Yang, F.; Odashima, S.; Masui, S.; Jiang, S. Hard to track objects with irregular motions and similar appearances? Make it easier by buffering the matching space. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023; pp. 4799–4808. [Google Scholar]
- Yang, M.; Han, G.; Yan, B.; Zhang, W.; Qi, J.; Lu, H.; Wang, D. Hybrid-sort: Weak cues matter for online multi-object tracking. Proc. AAAI Conf. Artif. Intell. 2024, 38, 6504–6512. [Google Scholar] [CrossRef]
- Wang, Y.; Kitani, K.; Weng, X. Joint object detection and multi-object tracking with graph neural networks. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: New York, NY, USA, 2021; pp. 13708–13715. [Google Scholar]
- Zhang, Y.; Wang, T.; Zhang, X. Motrv2: Bootstrapping end-to-end multi-object tracking by pretrained object detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 22056–22065. [Google Scholar]
Tracker | HOTA↑/% | MOTA↑/% | IDF1↑/% | DetA↑% | AssA↑% |
---|---|---|---|---|---|
FairMOT [42] | 39.7 | 82.2 | 40.8 | 66.7 | 23.8 |
CenterTrack [43] | 41.8 | 86.8 | 35.7 | 78.1 | 22.6 |
TransTrack [44] | 45.5 | 88.4 | 45.2 | 75.9 | 27.5 |
DeepSORT [45] | 45.6 | 87.8 | 47.9 | 71.0 | 29.7 |
QDTrack [46] | 45.7 | 83.0 | 44.8 | 72.1 | 29.2 |
ByteTrack [25] | 47.3 | 89.5 | 52.5 | 71.6 | 31.4 |
SORT [24] | 47.9 | 91.8 | 50.8 | 72.0 | 31.2 |
OC-SORT [2] | 55.7 | 92.0 | 54.6 | 81.7 | 38.3 |
C-BIoU Tracker [47] | 60.6 | 91.6 | 61.6 | 81.3 | 45.4 |
Hybrid-SORT [48] | 62.2 | 91.6 | 63.0 | - | - |
Ours | 67.3 | 91.2 | 65.8 | 83.7 | 47.6 |
Tracker | HOTA↑/% | MOTA↑/% | IDF1↑/% | FP↓ | FN↓ | IDs↓ | FPS↑ |
---|---|---|---|---|---|---|---|
GSDT [49] | 53.6 | 67.1 | 67.5 | 31,913 | 135,409 | 3131 | 0.9 |
FairMOT | 54.6 | 61.8 | 67.3 | 103,440 | 88,910 | 5243 | 13.2 |
OC-SORT | 55.2 | 61.7 | 67.9 | 5700 | 192,000 | 508 | 29 |
RelationTrack [18] | 56.5 | 67.2 | 70.5 | 61,134 | 104,597 | 4243 | 2.7 |
MOTRv2 [50] | 61.0 | 76.2 | 73.1 | - | - | - | - |
ByteTrack | 61.3 | 77.8 | 75.2 | 26,249 | 87,594 | 1223 | 17.5 |
StrongSORT [38] | 62.6 | 73.8 | 77.0 | 16,632 | 117,920 | 770 | 1.4 |
MotionTrack [28] | 62.8 | 78.0 | 76.5 | 28,629 | 84,152 | 1165 | - |
BoTSORT [6] | 63.3 | 77.8 | 77.5 | 24,638 | 88,863 | 1257 | 2.4 |
SMILETTRACK [39] | 63.4 | 78.2 | 77.5 | 24,554 | 85,548 | 1318 | 7.2 |
Ours | 65.9 | 79.1 | 80.1 | 27,252 | 79,263 | 486 | 15.6 |
Tracker | HOTA↑/% | MOTA↑/% | IDF1↑/% | FP↓ | FN↓ | IDs↓ | FPS↑ |
---|---|---|---|---|---|---|---|
OC-SORT | 52.9 | 59.4 | 65.7 | 6600 | 222,000 | 801 | 29.0 |
TransTrack | 54.1 | 75.2 | 63.5 | 50,157 | 86,442 | 3603 | 10.0 |
FairMOT | 59.3 | 73.7 | 72.3 | 27,507 | 117,477 | 3303 | 25.9 |
RelationTrack | 61.0 | 73.8 | 74.7 | 27,999 | 118,623 | 1374 | - |
MOTRv2 | 62.0 | 78.6 | 75.0 | - | - | - | - |
ByteTrack | 63.1 | 80.3 | 77.3 | 25,491 | 83,721 | 2196 | 29.6 |
StrongSORT | 64.4 | 79.6 | 79.5 | 27,876 | 86,205 | 1194 | 7.1 |
BoTSORT | 65.0 | 80.5 | 80.2 | 22,521 | 86,037 | 1212 | 4.5 |
MotionTrack | 65.1 | 81.1 | 80.1 | 23,802 | 81,660 | 1140 | - |
SMILEtrack | 65.3 | 81.1 | 80.5 | 22,963 | 79,428 | 1246 | 5.6 |
Ours | 67.8 | 81.9 | 83.9 | 24,061 | 77,483 | 637 | 22.1 |
Datasets | Method | DA-BIN | CMC-GP | HOTA↑/% | MOTA↑/% | IDF1↑/% |
---|---|---|---|---|---|---|
DanceTrack | A | ✕ | ✕ | 60.2 | 89.5 | 59.5 |
B | ✕ | ✓ | 61.1 | 90.3 | 60.6 | |
C | ✓ | ✕ | 65.9 | 90.8 | 63.2 | |
D | ✓ | ✓ | 67.3 | 91.2 | 65.8 | |
MOT20 | A | ✕ | ✕ | 61.3 | 77.8 | 75.2 |
B | ✕ | ✓ | 63.5 | 78.3 | 76.8 | |
C | ✓ | ✕ | 64.2 | 78.9 | 77.4 | |
D | ✓ | ✓ | 65.9 | 79.1 | 80.1 | |
MOT17 | A | ✕ | ✕ | 63.1 | 80.3 | 77.3 |
B | ✕ | ✓ | 65.5 | 80.7 | 79.4 | |
C | ✓ | ✕ | 66.2 | 81.2 | 81.6 | |
D | ✓ | ✓ | 67.8 | 81.9 | 83.9 |
Method | CMC | CMC-GP | HOTA↑/% | FPS↑ |
---|---|---|---|---|
DanceTrack | ||||
Baseline | ✕ | ✕ | 60.2 | 18.7 |
Baseline + CMC | ✓ | ✕ | 62.9 | 15.9 |
DCTrack | ✕ | ✓ | 67.3 | 17.3 |
DCTrack+ | ✓ | ✓ | 66.7 | 14.2 |
MOT20 | ||||
Baseline | ✕ | ✕ | 61.3 | 17.5 |
Baseline + CMC | ✓ | ✕ | 63.2 | 14.7 |
DCTrack | ✕ | ✓ | 65.9 | 15.6 |
DCTrack+ | ✓ | ✓ | 66.3 | 12.8 |
MOT17 | ||||
Baseline | ✕ | ✕ | 63.1 | 29.6 |
Baseline + CMC | ✓ | ✕ | 65.3 | 20.7 |
DCTrack | ✕ | ✓ | 67.8 | 22.1 |
DCTrack+ | ✓ | ✓ | 68.2 | 18.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Da, F.; Zhou, H. Multi-Object Tracking Method Based on Domain Adaptation and Camera Motion Compensation. Electronics 2025, 14, 2238. https://doi.org/10.3390/electronics14112238
Zhang Y, Da F, Zhou H. Multi-Object Tracking Method Based on Domain Adaptation and Camera Motion Compensation. Electronics. 2025; 14(11):2238. https://doi.org/10.3390/electronics14112238
Chicago/Turabian StyleZhang, Yongze, Feipeng Da, and Haocheng Zhou. 2025. "Multi-Object Tracking Method Based on Domain Adaptation and Camera Motion Compensation" Electronics 14, no. 11: 2238. https://doi.org/10.3390/electronics14112238
APA StyleZhang, Y., Da, F., & Zhou, H. (2025). Multi-Object Tracking Method Based on Domain Adaptation and Camera Motion Compensation. Electronics, 14(11), 2238. https://doi.org/10.3390/electronics14112238