# Multimodal Mood Consistency and Mood Dependency Neural Network Circuit Based on Memristors

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Memristor Model

## 3. Multimodal Mood Consistency and Mood Dependency

## 4. Circuit Design

#### 4.1. Voltage Control Module

#### 4.2. Emotion Generation Module

#### 4.3. Synaptic Neuron Module

#### 4.4. Complete Circuit

## 5. Simulation and Analysis

#### 5.1. Learning the Initial Situation

#### 5.2. Single-Channel Mood Consistency

#### 5.2.1. Different Emotional Effects of Single-Channel Positive Materials

#### 5.2.2. Different Emotional Effects of Single-Channel Negative Materials

#### 5.3. Dual-Channel Mood Consistency

#### 5.3.1. Different Emotional Effects of Dual-Channel Positive Materials

#### 5.3.2. Different Emotional Effects of Dual-Channel Negative Materials

#### 5.4. Mood Consistency and Mood Dependency

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Tyng, C.M.; Amin, H.U.; Saad, M.N.; Malik, A.S. The influences of emotion on learning and memory. Front. Psychol.
**2017**, 8, 1454. [Google Scholar] [CrossRef] [PubMed] - Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature
**2008**, 453, 80–83. [Google Scholar] [CrossRef] [PubMed] - Ding, T.; Wang, Z.; Rong, Z. Intermittent control for quasisyn chronization of delayed discrete-time neural networks. IEEE Trans. Cybern.
**2021**, 51, 862–873. [Google Scholar] [CrossRef] [PubMed] - Liu, X.; Zeng, Z. Memristor crossbar architectures for implementing deep neural networks. Complex Intell. Syst.
**2022**, 110, 91–104. [Google Scholar] [CrossRef] - Sun, J.; Han, G.; Zeng, Z.; Wang, Y. Memristor-based neural network circuit of full-function Pavlov associative memory with time delay and variable learning rate. IEEE Trans. Cybern.
**2020**, 50, 2935–2945. [Google Scholar] [CrossRef] - Liu, G.; Shen, S.; Jin, P.; Wang, G.; Liang, Y. Design of memristor-based combinational logic circuits. Circuits Syst. Signal Process.
**2021**, 40, 5825–5846. [Google Scholar] [CrossRef] - Wen, S.; Xiao, S.; Zeng, Z.; Yan, Y.; Huang, T. Adjusting learning rate of memristor-based multilayer neural networks via fuzzy method. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
**2019**, 38, 1084–1094. [Google Scholar] [CrossRef] - Liu, X.; Huang, Z.; Wunsch, C. Memristor-based HTM spatial pooler with on-device learning for pattern recognition. IEEE Trans. Syst. Man Cybern. Syst.
**2022**, 3, 1901–1915. [Google Scholar] [CrossRef] - Chen, W.; Qi, Z.; Akhtar, Z.; Siddique, K. Resistive-RAM-based in-memory computing for neural network: A review. Electronics
**2022**, 11, 3667. [Google Scholar] [CrossRef] - Wen, S.; Han, J.; Wei, H.; Yang, Y.; Guo, Z.; Zeng, Z.; Huang, T.; Chen, Y. Memristive LSTM networks for sentiment analysis. IEEE Trans. Syst. Man Cybern. Syst.
**2021**, 51, 1794–1804. [Google Scholar] [CrossRef] - Qiu, R.; Dong, Y.; Jiang, X.; Wang, G. Two-neuron based memristive hopfield neural network with synaptic crosstalk. Electronics
**2022**, 11, 3034. [Google Scholar] [CrossRef] - Ranjan, R.; Ponce, P.M.; Hellweg, W.L.; Kyrmanidis, A.; Saleh, L.A.; Schroeder, D.; Krautschneider, W.H. Integrated circuit with memristor emulator array and neuron circuits for biologically inspired neuromorphic pattern recognition. J. Circuits Syst. Comp.
**2017**, 26, 1750183. [Google Scholar] [CrossRef][Green Version] - Lu, W.; Bao, N.; Zheng, T.; Zhang, X.; Song, Y. Memristor-based read/write circuit with stable sontinuous read operation. Electronics
**2022**, 11, 2018. [Google Scholar] [CrossRef] - Wen, S.; Wei, H.; Yan, Z.; Guo, Z.; Yang, Y.; Huang, T.; Chen, Y. Memristor-based design of sparse compact convolutional neural networks. IEEE Trans. Netw. Sci. Eng.
**2020**, 7, 1431–1440. [Google Scholar] [CrossRef] - Yang, L.; Wang, C. Emotion model of associative memory possessing variable learning rates with time delay. Neurocomputing
**2021**, 460, 117–125. [Google Scholar] [CrossRef] - Hong, Q.; Yan, R.; Wang, C.; Sun, J. Memristive circuit implementation of biological nonassociative learning mechanism and its applications. IEEE Trans. Biomed. Circuits Syst.
**2020**, 14, 1036–1050. [Google Scholar] [CrossRef] [PubMed] - Hittner, E.F.; Stephens, J.E.; Turiano, N.A.; Gerstorf, D.; Lachman, M.E.; Haase, C.M. Positive affect is associated with less memory decline: Evidence from a 9-year longitudinal study. Psychol. Sci.
**2020**, 31, 1386–1395. [Google Scholar] [CrossRef] [PubMed] - Wang, Z.; Wang, X.; Lu, Z.; Wu, W.; Zeng, Z. The design of memristive circuit for affective multi-associative learning. IEEE Trans. Biomed. Circuits Syst.
**2020**, 14, 173–185. [Google Scholar] [CrossRef] - Sun, J.; Han, J.; Wang, Y.; Liu, P. Memristor-based neural network circuit of emotion congruent memory with mental fatigue and emotion inhibition. IEEE Trans. Biomed. Circuits Syst.
**2021**, 15, 606–616. [Google Scholar] [CrossRef] - Wang, Z.; Wang, X.; Zeng, Z. Memristive circuit design of brain-like emotional learning and generation. IEEE Trans. Cybern.
**2021**, 53, 222–235. [Google Scholar] [CrossRef] - Wang, Z.; Wang, X.; Zeng, Z. Memristive circuit design of brain-inspired emotional evolution based on theories of internal regulation and external stimulation. IEEE Trans. Biomed. Circuits Syst.
**2021**, 15, 1380–1392. [Google Scholar] [CrossRef] [PubMed] - Wang, L.; Zou, H. A new emotion model of associative memory neural network based on memristor. Neurocomputing
**2020**, 410, 83–92. [Google Scholar] [CrossRef] - Wang, Z.; Hong, Q.; Wang, X. Memristive circuit design of emotional generation and evolution based on skin-like sensory processor. IEEE Trans. Biomed. Circuits Syst.
**2019**, 13, 631–644. [Google Scholar] [CrossRef] [PubMed] - Pershin, Y.V.; Ventra, M.D. Experimental demonstration of associative memory with memristive neural networks. Neural Netw.
**2010**, 23, 881–886. [Google Scholar] [CrossRef] [PubMed][Green Version] - Xie, G.; Liu, G.; Zhang, S. Expression of emotion using a system combined artificial neural network and memristor-based crossbar array. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; pp. 9837–9841. [Google Scholar]
- Erk, S.; Kiefer, M.; Grothe, J.; Wunderlich, A.P.; Spitzer, M.; Walter, H. Emotional context modulates subsequent memory effect. NeuroImage
**2003**, 18, 439–447. [Google Scholar] [CrossRef] - Lewis, P.A.; Critchley, H.D. Mood-dependent memory. Trends Cogn. Sci.
**2003**, 7, 431–433. [Google Scholar] [CrossRef] [PubMed] - Kvatinsky, S.; Ramadan, M.; Friedman, E.G.; Kolodny, A. VTEAM: A general model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II Express Briefs
**2015**, 62, 786–790. [Google Scholar] [CrossRef] - Ren, K.; Zhang, K.; Qin, X.; Yang, F.; Sun, B.; Zhao, Y.; Zhang, Y. VETAM-M: A general model for voltage-controlled memcapacitive-coupled memristors. IEEE Trans. Circuits Syst. II Express Briefs
**2015**, 69, 1717–1721. [Google Scholar] [CrossRef] - Zhang, Y.; Wang, X.; Li, Y.; Friedman, E.G. Memristive model for synaptic circuits. IEEE Trans. Circuits Syst. II Express Briefs
**2016**, 64, 767–771. [Google Scholar] [CrossRef]

**Figure 1.**The curves of memristance when the memristors in Table 1 are applied with different voltages. The blue line (negative voltage) represents the increase of the memristance, and the red line (positive voltage) represents the decrease of the memristance. (

**a**) Memristance curve of M

_{1}, M

_{2}, and M

_{3}. (

**b**) Memristance curves of M

_{4}, M

_{7}, and M

_{8}. (

**c**) Memristance curves of M

_{5}and M

_{6}. (

**d**) Memristance curves of M

_{9}.

**Figure 3.**Voltage control module. ${R}_{1}={R}_{2}={R}_{3}={R}_{4}=1\phantom{\rule{3.33333pt}{0ex}}\mathrm{k}\Omega $, ${R}_{5}={R}_{6}=100\phantom{\rule{3.33333pt}{0ex}}\Omega $. ${V}_{1}=2.9$ V, ${V}_{2}=2.1$ V, ${V}_{3}=2.4$ V. ${D}_{1}$ is the NAND gate; ${D}_{2}$ and ${D}_{4}$ are the AND gate; ${D}_{3}$ and ${D}_{5}$ are the XOR gate. $O{P}_{1},O{P}_{2}$, and $O{P}_{3}$ are operational amplifiers. ${M}_{1},{M}_{2}$ and ${M}_{3}$ are memristors.

**Figure 4.**Emotion-generation module. ${V}_{18}=50\phantom{\rule{3.33333pt}{0ex}}\Omega $, ${V}_{19}={V}_{20}={V}_{21}={V}_{22}={V}_{23}=1\phantom{\rule{3.33333pt}{0ex}}\mathrm{k}\Omega $. ${V}_{5}=2$ V, ${V}_{6}=-2$ V, ${V}_{7}=-0.12$ V. ${T}_{4}$, ${T}_{6}$, and ${T}_{7}$ are PMOSs and ${T}_{5}$ is an NMOS. ${M}_{7},{M}_{8}$ and ${M}_{9}$ are memristors.

**Figure 5.**Synaptic neuron module. ${R}_{7}={R}_{8}={R}_{9}={R}_{10}={R}_{11}$, ${R}_{17}=100\phantom{\rule{3.33333pt}{0ex}}\Omega $, ${R}_{12}=200\phantom{\rule{3.33333pt}{0ex}}\Omega $, ${R}_{13}={R}_{14}=1\phantom{\rule{3.33333pt}{0ex}}\mathrm{k}\Omega $, ${R}_{15}={R}_{16}=2\phantom{\rule{3.33333pt}{0ex}}\mathrm{k}\Omega $. ${V}_{4}=3$ V, ${C}_{1}=300$ $\mathsf{\mu}$V. $O{P}_{4}$, and $O{P}_{5}$ are operational amplifiers. ${T}_{1},{T}_{2}$, and ${T}_{3}$ are PMOSs. ${M}_{4},{M}_{5}$ and ${M}_{6}$ are memristors.

**Figure 7.**Learning the initial situation. (

**a**) Input signal. (

**b**) Visual signal ${U}_{1}$, auditory signal ${U}_{2}$. (

**c**) Positive emotion signal ${U}_{3}$, negative emotion signal ${U}_{4}$. (

**d**) Variation curve of memristors ${M}_{1}$ and ${M}_{2}$. (

**e**) Voltage curve of ${U}_{A}$. (

**f**) Output signal.

**Figure 8.**Positive emotional effects of single=channel positive materials. (

**a**) Input signal. (

**b**) Visual signal ${U}_{1}$, auditory signal ${U}_{2}$. (

**c**) Positive emotion signal ${U}_{3}$, negative emotion signal ${U}_{4}$. (

**d**) Variation curve of memristors ${M}_{1}$ and ${M}_{2}$. (

**e**) Voltage curve of ${U}_{A}$. (

**f**) Output signal.

**Figure 9.**Negative emotional effects of single-channel positive materials. (

**a**) Input signal. (

**b**) Visual signal ${U}_{1}$, auditory signal ${U}_{2}$. (

**c**) Positive emotion signal. (

**d**) Variation curve of memristors ${M}_{1}$ and ${M}_{2}$. (

**e**) Voltage curve of ${U}_{A}$. (

**f**) Output signal.

**Figure 10.**Different emotional effects of single-channel negative auditory signal. (

**a**) Input signal. (

**b**) Visual signal. (

**c**) Negative emotion signal. (

**d**) Voltage curve of ${U}_{A}$. (

**e**) Output signal.

**Figure 11.**Different emotional effects of single-channel negative visual signal. (

**a**) Input signal. (

**b**) Auditory signal. (

**c**) Positive emotion signal ${U}_{3}$, negative emotion signal ${U}_{4}$. (

**d**) Voltage curve of ${U}_{A}$. (

**e**) Output signal.

**Figure 12.**Positive emotional effects of dual-channel positive visual and auditory signals. (

**a**) Input signal. (

**b**) Voltage of memristor ${M}_{4}$. (

**c**) Positive emotion signal. (

**d**) Variation curve of memristor ${M}_{4}$. (

**e**) Voltage curve of ${U}_{A}$. (

**f**) Output signal.

**Figure 13.**Negative emotional effects of dual-channel positive visual and auditory signals. (

**a**) Input signal. (

**b**) Voltage of memristor ${M}_{4}$. (

**c**) Negative emotion signal. (

**d**) Variation curve of memristor ${M}_{4}$. (

**e**) Voltage curve of ${U}_{A}$. (

**f**) Output signal.

**Figure 14.**Different emotional effects of single-channel negative visual and auditory signals. (

**a**) Input signal. (

**b**) Visual signal ${U}_{1}$, auditory signal ${U}_{2}$. (

**c**) Positive emotion signal ${U}_{3}$, negative emotion signal ${U}_{4}$. (

**d**) Voltage curve of ${U}_{A}$. (

**e**) Output signal.

**Figure 15.**Mood dependency. (

**a**) Input signal. (

**b**) Voltage of memristor ${M}_{4}$. (

**c**) Variation curve of memristor ${M}_{4}$. (

**d**) Voltage curve of ${U}_{A}$. (

**e**) Output signal.

Parameters | ${\mathit{M}}_{1}\phantom{\rule{3.33333pt}{0ex}}\mathit{and}\phantom{\rule{3.33333pt}{0ex}}{\mathit{M}}_{2}\phantom{\rule{3.33333pt}{0ex}}\mathit{and}\phantom{\rule{3.33333pt}{0ex}}{\mathit{M}}_{3}$ | ${\mathit{M}}_{4}\phantom{\rule{3.33333pt}{0ex}}\mathit{and}\phantom{\rule{3.33333pt}{0ex}}{\mathit{M}}_{7}\phantom{\rule{3.33333pt}{0ex}}\mathit{and}\phantom{\rule{3.33333pt}{0ex}}{\mathit{M}}_{8}$ | ${\mathit{M}}_{5}\phantom{\rule{3.33333pt}{0ex}}\mathit{and}\phantom{\rule{3.33333pt}{0ex}}{\mathit{M}}_{6}$ | ${\mathit{M}}_{9}$ |
---|---|---|---|---|

D (nm) | 3 | 3 | 3 | 3 |

${R}_{on}\phantom{\rule{3.33333pt}{0ex}}(\Omega )$ | 100 | 10 | 50 | 100 |

${R}_{off}\phantom{\rule{3.33333pt}{0ex}}(\Omega )$ | $2k$ | 300 | 300 | $1k$ |

${R}_{init}\phantom{\rule{3.33333pt}{0ex}}(\Omega )$ | $1k$ | 200 | 200 | 500 |

${V}_{T+}$ (V) | 0.1 | 0.19 | 0.19 | 0.1 |

${V}_{T-}$ (V) | −0.1 | −0.19 | −0.19 | −0.1 |

${\mu}_{v}\phantom{\rule{3.33333pt}{0ex}}({\mathrm{m}}^{2}{\mathrm{s}}^{-1}{\Omega}^{-1})$ | $1.6\times {10}^{-18}$ | $1.6\times {10}^{-17}$ | $1.6\times {10}^{-17}$ | $1.6\times {10}^{-17}$ |

${i}_{on}$ (A) | 1 | 1 | 1 | 1 |

${i}_{off}$ (A) | $1\times {10}^{-5}$ | $1\times {10}^{-5}$ | $1\times {10}^{-5}$ | $1\times {10}^{-5}$ |

${i}_{0}$ (A) | $1\times {10}^{-3}$ | $1\times {10}^{-3}$ | $1\times {10}^{-3}$ | $1\times {10}^{-3}$ |

p | 10 | 10 | 10 | 10 |

No. | Normal State | Positive Emotions | Negative Emotions |
---|---|---|---|

1 | 102 s | 86 s | 118 s |

2 | 110 s | 103 s | 125 s |

3 | 38 s | 28 s | 54 s |

4 | / | 136 s | 89 s |

5 | / | 122 s | 103 s |

6 | / | 66 s | 24 s |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, Y.; Sun, J.; Wang, Y.; Liu, P. Multimodal Mood Consistency and Mood Dependency Neural Network Circuit Based on Memristors. *Electronics* **2023**, *12*, 521.
https://doi.org/10.3390/electronics12030521

**AMA Style**

Wang Y, Sun J, Wang Y, Liu P. Multimodal Mood Consistency and Mood Dependency Neural Network Circuit Based on Memristors. *Electronics*. 2023; 12(3):521.
https://doi.org/10.3390/electronics12030521

**Chicago/Turabian Style**

Wang, Yangyang, Junwei Sun, Yanfeng Wang, and Peng Liu. 2023. "Multimodal Mood Consistency and Mood Dependency Neural Network Circuit Based on Memristors" *Electronics* 12, no. 3: 521.
https://doi.org/10.3390/electronics12030521