Cross-Mesh Clock Network Synthesis
Abstract
1. Introduction
2. Related Works
2.1. Clock Tree
2.2. Clock Mesh
2.3. Hybrid Network
3. Motivation Example
4. Design Flow and Methodology
4.1. Overview
4.2. Cross-Mesh Planning Algorithm
4.3. Register Clustering Algorithm
4.4. Mesh Network-Connecting Algorithm
4.5. Load Balancing Algorithm
5. Experiment Results and Discussion
5.1. Analysis of Cross-Mesh Clock Network
5.2. Comparison of Clock Mesh Structures
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, C.; Li, H. Algebraic Formulation and Application of Multi-input Single-output Hierarchical Fuzzy Systems with Correction Factors. IEEE Trans. Fuzzy Syst. 2023, 31, 2076–2085. [Google Scholar] [CrossRef]
- Fan, H.; Feng, J.E.; Meng, M.; Wang, B. General Decomposition of Fuzzy Relations: Semi-tensor Product Approach. Fuzzy Sets Syst. 2020, 384, 75–90. [Google Scholar] [CrossRef]
- Tsai, J.L.; Chen, T.H.; Chen, C.C.P. Zero Skew Clock-tree Optimization with Buffer Insertion/Sizing and Wire Sizing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2004, 23, 565–572. [Google Scholar] [CrossRef]
- Liu, W.H.; Li, Y.L.; Chen, H.C. Minimizing Clock Latency Range in Robust Clock Tree Synthesis. In Proceedings of the 15th Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan, 18–21 January 2010; pp. 389–394. [Google Scholar] [CrossRef]
- Shih, X.W.; Cheng, C.C.; Ho, Y.-K.; Chang, Y.-W. Blockage-avoiding Buffered Clock-tree Synthesis for Clock Latency-range and Skew Minimization. In Proceedings of the 15th Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan, 18–21 January 2010; pp. 395–400. [Google Scholar] [CrossRef]
- Kwon, N.; Park, D. Lightweight Buffer Insertion for Clock Tree Synthesis Visualization. In Proceedings of the International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 6–9 February 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Zhang, S.; Wang, X. Buffer Sizing for Near-Threshold Clock Tree using Improved Genetic Algorithm. In Proceedings of the IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, 29 October–1 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Su, Y.S.; Hon, W.K.; Yang, C.C.; Chang, S.C.; Chang, Y.J. Value Assignment of Adjustable Delay Buffers for Clock Skew Minimization in Multi-voltage Mode Designs. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2–5 November 2009; pp. 535–538. [Google Scholar]
- Su, Y.S.; Hon, W.K.; Yang, C.C.; Chang, S.C.; Chang, Y.J. Clock Skew Minimization in Multi-voltage Mode Designs Using Adjustable Delay Buffers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2010, 29, 1921–1930. [Google Scholar] [CrossRef]
- Lim, K.H.; Kim, T. An Optimal Algorithm for Allocation, Placement, and Delay Assignment of Adjustable Delay Buffers for Clock Skew Minimization in Multi-voltage Mode Designs. In Proceedings of the 16th Asia and South Pacific Design Automation Conference (ASP-DAC), Yokohama, Japan, 25–28 January 2011; pp. 503–508. [Google Scholar] [CrossRef]
- Kim, J.; Joo, D.; Kim, T. An Optimal Algorithm of Adjustable Delay Buffer Insertion for Solving Clock Skew Variation Problem. In Proceedings of the 50th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2–6 June 2013; pp. 1–6. [Google Scholar]
- Kao, H.Y.; Lee, Y.; Huang, S.H.; Cheng, W.K.; Chou, Y.C. An Industrial Design Methodology for the Synthesis of OCV-aware Top-level Clock Tree. In Proceedings of the 6th International Symposium on Next Generation Electronics (ISNE), Keelung, Taiwan, 23–25 May 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Teng, S.K.; Soin, N. Regional Clock Gate Splitting Algorithm for Clock Tree Synthesis. In Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE), Malacca, Malaysia, 28–30 June 2010; pp. 131–134. [Google Scholar] [CrossRef]
- Teng, S.K.; Soin, N. Low Power Clock Gates Optimization for Clock Tree Distribution. In Proceedings of the 11th International Symposium on Quality Electronic Design (ISQED), San Jose, CA, USA, 22–24 March 2010; pp. 488–492. [Google Scholar] [CrossRef]
- Wang, Q.; Roy, S. Power Minimization by Clock Root Gating. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC), Kitakyushu, Japan, 21–24 January 2003; pp. 249–254. [Google Scholar] [CrossRef]
- Shelar, R.S. A Fast and Near-Optimal Clustering Algorithm for Low-Power Clock Tree Synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2012, 31, 1781–1786. [Google Scholar] [CrossRef]
- Chan, T.B.; Han, K.; Kahng, A.B.; Lee, J.G.; Nath, S. OCV-aware Top-level Clock Tree Optimization. In Proceedings of the 24th ACM Great Lakes Symposium on VLSI (GLSVLAI), Houston, TX, USA, 21–23 May 2014; pp. 33–38. [Google Scholar] [CrossRef]
- Lin, C.H.; Huang, S.H.; Jian, J.H.; Chen, X.J. New Activity-driven Clock Tree Design Methodology for Low Power Clock Gating. In Proceedings of the 6th International Symposium on Next Generation Electronics (ISNE), Keelung, Taiwan, 23–25 May 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Cheng, W.K.; Wu, P.H.; Chiu, Y.H. A Skew-Window based Methodology for Timing Fixing in Multiple Power Modes. J. Inf. Sci. Eng. 2015, 31, 1795–1812. [Google Scholar]
- Lin, C.H.; Huang, S.H.; Cheng, W.K. An Effective Approach for Building Low-Power General Activity-Driven Clock Trees. In Proceedings of the 15th International SoC Design Conference (ISOCC), Daegu, Republic of Korea, 12–15 November 2018; pp. 13–14. [Google Scholar] [CrossRef]
- Lu, J.; Mao, X.; Taskin, B. Clock Mesh Synthesis with Gated Local Trees and Activity driven Register Clustering. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 5–8 November 2012; pp. 691–697. [Google Scholar]
- Lu, J.; Mao, X.; Taskin, B. Integrated Clock Mesh Synthesis with Incremental Register Placement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2012, 31, 217–227. [Google Scholar] [CrossRef]
- Lu, J.; Aksehir, Y.; Taskin, B. Register on MEsh (ROME): A Novel Approach for Clock Mesh Network Synthesis. In Proceedings of the IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 1219–1222. [Google Scholar] [CrossRef]
- Venkataraman, G.; Feng, Z.; Hu, J.; Li, P. Combinatorial Algorithms for Fast Clock Mesh Optimization. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Jose, CA, USA, 5–9 November 2006; pp. 563–567. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Sun, W.; Wang, D. Optimization of Clock Mesh based on Wire Sizing Variation. In Proceedings of the 14th International SoC Design Conference (ISOCC), Seoul, Republic of Korea, 5–8 November 2017; pp. 129–130. [Google Scholar] [CrossRef]
- Abdelhadi, A.; Ginosar, R.; Kolodny, A.; Friedman, E.G. Timing-driven Variation-aware Nonuniform Clock Mesh Synthesis. In Proceedings of the 20th ACM Great Lakes Symposium on VLSI (GLSVLAI), Providence, RI, USA, 16–18 May 2010; pp. 15–20. [Google Scholar] [CrossRef]
- Guthaus, M.R.; Wilke, G.; Reis, R. Non-uniform Clock Mesh Optimization with Linear Programming Buffer Insertion. In Proceedings of the 47th Design Automation Conference (DAC), Anaheim, CA, USA, 13–18 June 2010; pp. 74–79. [Google Scholar] [CrossRef]
- Cho, M.; Pan, D.Z.; Puri, R. Novel Binary Linear Programming for High Performance Clock Mesh Synthesis. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 7–11 November 2010; pp. 438–443. [Google Scholar] [CrossRef]
- Cheng, W.K.; Hung, J.H.; Chiu, Y.H. Non-Uniform Clock Mesh Synthesis with Clock Gating and Register Clustering. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2016, E99.A, 2388–2397. [Google Scholar] [CrossRef]
- Yang, S.C.; Huang, S.H. Non-uniform Clock Mesh Synthesis under Temperature Constraints. In Proceedings of the 13th International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hsinchu, Taiwan, 18–20 October 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Yeh, C.; Wilke, G.; Chen, H.; Reddy, S.; Nguyen, H.; Miyoshi, T.; Walker, W.; Murgai, R. Clock Distribution Architectures: A Comparative Study. In Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED), San Jose, CA, USA, 27–29 March 2006; pp. 85–91. [Google Scholar] [CrossRef]
- Su, H.; Sapatnekar, S.S. Hybrid Structured Clock Network Construction. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Jose, CA, USA, 4–8 November 2001; pp. 333–336. [Google Scholar] [CrossRef]
- Chen, W.H.; Wang, C.K.; Chen, H.M.; Chou, Y.C.; Tsai, C.H. A Comparative Study on Multisource Clock Network Synthesis. In Proceedings of the 20th Workshop on Synthesis and System Integration of Mixed Information Technologies (SASIMI), Kyoto, Japan, 24–25 October 2016; pp. 1–5. [Google Scholar]
- Abdelhadi, A.; Ginosar, R.; Kolodny, A.; Friedman, E.G. Timing–driven Variation–aware Synthesis of Hybrid Mesh/Tree Clock Distribution Networks. Integration 2013, 46, 382–391. [Google Scholar] [CrossRef]
- Xiao, L.; Xiao, Z.; Qian, Z.; Jiang, Y.; Huang, T.; Tian, H.; Young, E.F.Y. Local Clock Skew Minimization Using Blockage-aware Mixed Tree-Mesh Clock Network. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 7–11 November 2010; pp. 458–462. [Google Scholar] [CrossRef]
Mesh Tree | Subtree | Whole Circuit | ||
---|---|---|---|---|
Capavg (pf) | Capavg (pf) | Pwrtot (pw) | ||
Conventional mesh tree | A | 33.75 | 30 | 128.5 |
B | 24 | 31 | 126 | |
C | 25.3 | 39 | 126 | |
Cross-mesh tree | D | 21.2 | 15 | 107 |
Cluster Constraint | Circuit | |||
---|---|---|---|---|
S9234 | S13207 | S38584 | S35932 | |
#Clock Gates | ||||
60% | 11 | 27 | 69 | 80 |
70% | 9 | 23 | 54 | 66 |
80% | 8 | 21 | 46 | 55 |
90% | 8 | 20 | 39 | 46 |
Circuit | Voltage: 1.0 V, Temperature: 25 °C, Cluster Constraint 90% | ||||
---|---|---|---|---|---|
#Gate | Capacitance (pF) | ||||
Non-Cluster | Cluster | Non-Cluster | Cluster | Cap. Reduction | |
s9234 | 211 | 8 | 0.867 | 0.338 | 61.0% |
s13207 | 638 | 20 | 3.408 | 0.906 | 73.4% |
s38584 | 1426 | 39 | 11.746 | 2.086 | 82.2% |
s35932 | 1728 | 46 | 13.556 | 2.425 | 82.1% |
Avg. Capacitance Reduction | 74.7% |
Circuit | Voltage: 1.1 V, Temperature: −40 °C, Cluster Constraint 90% | ||||
---|---|---|---|---|---|
#Gate | Capacitance (pF) | ||||
Non-Cluster | Cluster | Non-Cluster | Cluster | Cap. Reduction | |
s9234 | 211 | 8 | 0.879 | 0.345 | 61.8% |
s13207 | 638 | 20 | 3.444 | 0.924 | 73.2% |
s38584 | 1426 | 41 | 11.824 | 2.155 | 81.8% |
s35932 | 1728 | 47 | 13.651 | 2.484 | 81.8% |
Avg. Capacitance Reduction | 74.4% |
Circuit | Voltage: 0.9 V, Temperature: 125 °C, Cluster Constraint 90% | ||||
---|---|---|---|---|---|
#Gate | Capacitance (pF) | ||||
Non-Cluster | Cluster | Non-Cluster | Cluster | Cap. Reduction | |
s9234 | 211 | 8 | 0.857 | 0.333 | 61.2% |
s13207 | 638 | 9 | 3.377 | 0.879 | 74.0% |
s38584 | 1426 | 40 | 11.676 | 2.064 | 82.3% |
s35932 | 1728 | 47 | 13.471 | 2.393 | 82.2% |
Avg. Capacitance Reduction | 74.9% |
Circuit | Voltage: 1.0 V, Temperature: 25 °C | |||||
---|---|---|---|---|---|---|
Capacitance (pF) | Skew (ps) | |||||
Pre-Opt. | Post-Opt. | Cap. Ratio | Pre-Opt. | Post-Opt. | Skew Reduction | |
s9234 | 0.338 | 0.487 | 1.44× | 100.25 | 10.15 | 89.9% |
s13207 | 0.906 | 1.613 | 1.78× | 402.25 | 9.02 | 97.8% |
s38584 | 2.086 | 2.582 | 1.24× | 323.51 | 12.43 | 96.2% |
s35932 | 2.425 | 2.974 | 1.22× | 318.75 | 10.55 | 96.7% |
Avg. Capacitance Increasing | 1.42× | Avg. Skew Reduction | 95.1% |
Circuit | Voltage: 1.1 V, Temperature: −40 °C | |||||
---|---|---|---|---|---|---|
Capacitance (pF) | Skew (ps) | |||||
Pre-Opt. | Post-Opt. | Cap. Ratio | Pre-Opt. | Post-Opt. | Skew Reduction | |
s9234 | 0.345 | 0.493 | 1.43× | 71.89 | 7.27 | 89.9% |
s13207 | 0.924 | 1.589 | 1.72× | 273.94 | 6.69 | 97.6% |
s38584 | 2.155 | 2.870 | 1.33× | 317.69 | 6.83 | 97.8% |
s35932 | 2.484 | 2.983 | 1.20× | 251.65 | 7.08 | 97.2% |
Avg. Capacitance Increasing | 1.42× | Avg. Skew Reduction | 95.6% |
Circuit | Voltage: 0.9 V, Temperature: 125 °C | |||||
---|---|---|---|---|---|---|
Capacitance (pF) | Skew (ps) | |||||
Pre-Opt. | Post-Opt. | Cap. Ratio | Pre-Opt. | Post-Opt. | Skew Reduction | |
s9234 | 0.333 | 0.477 | 1.43× | 140.86 | 14.39 | 89.8% |
s13207 | 0.879 | 1.479 | 1.68× | 542.28 | 24.66 | 95.4% |
s38584 | 2.064 | 2.766 | 1.34× | 579.97 | 13.21 | 97.7% |
s35932 | 2.393 | 3.160 | 1.32× | 574.61 | 16.76 | 97.1% |
Avg. Capacitance Increasing | 1.44× | Avg. Skew Reduction | 95.0% |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s9234 | 3 × 3 | 88.442 | 1 | 0.656 | 1 |
4 × 4 | 50.391 | 0.57 | 0.637 | 0.97 | |
5 × 5 | 67.982 | 0.77 | 0.641 | 0.98 | |
6 × 6 | 35.962 | 0.41 | 0.666 | 1.02 | |
Cross-Mesh | 10.148 | 0.11 | 0.487 | 0.74 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s13207 | 5 × 5 | 110.536 | 1 | 1.842 | 1 |
6 × 6 | 111.81 | 1.01 | 1.868 | 1.01 | |
7 × 7 | 94.66 | 0.86 | 1.820 | 0.99 | |
8 × 8 | 87.816 | 0.79 | 1.792 | 0.97 | |
Cross-Mesh | 9.017 | 0.08 | 1.613 | 0.88 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s38584 | 10 × 10 | 100.044 | 1 | 3.913 | 1 |
11 × 11 | 82.381 | 0.82 | 4.032 | 1.03 | |
12 × 12 | 65.774 | 0.66 | 4.276 | 1.09 | |
13 × 13 | 57.641 | 0.58 | 4.409 | 1.13 | |
Cross-Mesh | 12.426 | 0.12 | 2.583 | 0.66 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s35932 | 12 × 12 | 80.257 | 1 | 4.526 | 1 |
13 × 13 | 67.558 | 0.84 | 4.500 | 0.99 | |
14 × 14 | 70.897 | 0.88 | 4.720 | 1.04 | |
15 × 15 | 57.558 | 0.72 | 4.774 | 1.05 | |
Cross-Mesh | 10.548 | 0.13 | 2.974 | 0.66 |
Circuit | Capacitance (pF) | ||
---|---|---|---|
Cross-Mesh (Our Proposed) | Uniform Mesh ([21]) | Capacitance Reduction | |
s9234 | 0.487 | 0.666 | 26.7% |
s13207 | 1.613 | 1.792 | 9.9% |
s38584 | 2.582 | 4.409 | 41.4% |
s35932 | 2.974 | 4.774 | 37.7% |
Avg. Capacitance Reduction | 28.9% |
Circuit | Skew (ps) | ||
---|---|---|---|
Cross-Mesh (Our Proposed) | Uniform Mesh ([21]) | Skew Reduction | |
s9234 | 10.148 | 35.962 | 71.7% |
s13207 | 9.017 | 87.816 | 89.7% |
s38584 | 12.426 | 57.641 | 78.4% |
s35932 | 10.548 | 57.558 | 81.6% |
Avg. Skew Reduction | 80.4% |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s9234 | 3 × 3 | 65.378 | 1 | 0.503 | 1 |
4 × 4 | 46.984 | 0.72 | 0.554 | 1.10 | |
5 × 5 | 28.428 | 0.43 | 0.601 | 1.20 | |
6 × 6 | 46.298 | 0.71 | 0.645 | 1.28 | |
Cross-Mesh | 10.148 | 0.16 | 0.487 | 0.97 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s13207 | 5 × 5 | 126.881 | 1 | 1.360 | 1 |
6 × 6 | 67.638 | 0.53 | 1.512 | 1.11 | |
7 × 7 | 59.068 | 0.47 | 1.591 | 1.17 | |
8 × 8 | 62.39 | 0.49 | 1.616 | 1.19 | |
Cross-Mesh | 9.017 | 0.07 | 1.613 | 1.19 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s38584 | 10 × 10 | 82.198 | 1 | 3.715 | 1 |
11 × 11 | 60.983 | 0.74 | 3.925 | 1.06 | |
12 × 12 | 55.541 | 0.68 | 4.135 | 1.11 | |
13 × 13 | 55.09 | 0.67 | 4.074 | 1.10 | |
Cross-Mesh | 12.426 | 0.15 | 2.582 | 0.70 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s35932 | 12 × 12 | 64.243 | 1 | 4.207 | 1 |
13 × 13 | 61.974 | 0.96 | 4.271 | 1.02 | |
14 × 14 | 55.178 | 0.86 | 4.485 | 1.07 | |
15 × 15 | 53.917 | 0.84 | 4.629 | 1.10 | |
Cross-Mesh | 10.548 | 0.16 | 2.974 | 0.71 |
Circuit | Capacitance (pF) | ||
---|---|---|---|
Cross-Mesh (Our Proposed) | Non-Uniform ([29]) | Capacitance Reduction | |
s9234 | 0.487 | 0.601 | 18.8% |
s13207 | 1.613 | 1.591 | −1.4% |
s38584 | 2.582 | 4.074 | 36.6% |
s35932 | 2.974 | 4.629 | 35.7% |
Avg. Capacitance Reduction | 22.4% |
Circuit | Skew (ps) | ||
---|---|---|---|
Cross-Mesh (Our Proposed) | Non-Uniform ([29]) | Skew Reduction | |
s9234 | 10.148 | 28.428 | 64.3% |
s13207 | 9.017 | 59.068 | 84.7% |
s38584 | 12.426 | 55.090 | 77.4% |
s35932 | 10.548 | 53.917 | 80.4% |
Avg. Skew Reduction | 76.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.-K.; Yeh, Z.-M.; Kao, H.-Y.; Huang, S.-H. Cross-Mesh Clock Network Synthesis. Electronics 2023, 12, 3410. https://doi.org/10.3390/electronics12163410
Cheng W-K, Yeh Z-M, Kao H-Y, Huang S-H. Cross-Mesh Clock Network Synthesis. Electronics. 2023; 12(16):3410. https://doi.org/10.3390/electronics12163410
Chicago/Turabian StyleCheng, Wei-Kai, Zih-Ming Yeh, Hsu-Yu Kao, and Shih-Hsu Huang. 2023. "Cross-Mesh Clock Network Synthesis" Electronics 12, no. 16: 3410. https://doi.org/10.3390/electronics12163410
APA StyleCheng, W.-K., Yeh, Z.-M., Kao, H.-Y., & Huang, S.-H. (2023). Cross-Mesh Clock Network Synthesis. Electronics, 12(16), 3410. https://doi.org/10.3390/electronics12163410