Cross-Mesh Clock Network Synthesis
Abstract
:1. Introduction
2. Related Works
2.1. Clock Tree
2.2. Clock Mesh
2.3. Hybrid Network
3. Motivation Example
4. Design Flow and Methodology
4.1. Overview
4.2. Cross-Mesh Planning Algorithm
4.3. Register Clustering Algorithm
4.4. Mesh Network-Connecting Algorithm
4.5. Load Balancing Algorithm
5. Experiment Results and Discussion
5.1. Analysis of Cross-Mesh Clock Network
5.2. Comparison of Clock Mesh Structures
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, C.; Li, H. Algebraic Formulation and Application of Multi-input Single-output Hierarchical Fuzzy Systems with Correction Factors. IEEE Trans. Fuzzy Syst. 2023, 31, 2076–2085. [Google Scholar] [CrossRef]
- Fan, H.; Feng, J.E.; Meng, M.; Wang, B. General Decomposition of Fuzzy Relations: Semi-tensor Product Approach. Fuzzy Sets Syst. 2020, 384, 75–90. [Google Scholar] [CrossRef]
- Tsai, J.L.; Chen, T.H.; Chen, C.C.P. Zero Skew Clock-tree Optimization with Buffer Insertion/Sizing and Wire Sizing. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2004, 23, 565–572. [Google Scholar] [CrossRef]
- Liu, W.H.; Li, Y.L.; Chen, H.C. Minimizing Clock Latency Range in Robust Clock Tree Synthesis. In Proceedings of the 15th Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan, 18–21 January 2010; pp. 389–394. [Google Scholar] [CrossRef]
- Shih, X.W.; Cheng, C.C.; Ho, Y.-K.; Chang, Y.-W. Blockage-avoiding Buffered Clock-tree Synthesis for Clock Latency-range and Skew Minimization. In Proceedings of the 15th Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei, Taiwan, 18–21 January 2010; pp. 395–400. [Google Scholar] [CrossRef]
- Kwon, N.; Park, D. Lightweight Buffer Insertion for Clock Tree Synthesis Visualization. In Proceedings of the International Conference on Electronics, Information, and Communication (ICEIC), Jeju, Republic of Korea, 6–9 February 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Zhang, S.; Wang, X. Buffer Sizing for Near-Threshold Clock Tree using Improved Genetic Algorithm. In Proceedings of the IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, 29 October–1 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Su, Y.S.; Hon, W.K.; Yang, C.C.; Chang, S.C.; Chang, Y.J. Value Assignment of Adjustable Delay Buffers for Clock Skew Minimization in Multi-voltage Mode Designs. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2–5 November 2009; pp. 535–538. [Google Scholar]
- Su, Y.S.; Hon, W.K.; Yang, C.C.; Chang, S.C.; Chang, Y.J. Clock Skew Minimization in Multi-voltage Mode Designs Using Adjustable Delay Buffers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2010, 29, 1921–1930. [Google Scholar] [CrossRef]
- Lim, K.H.; Kim, T. An Optimal Algorithm for Allocation, Placement, and Delay Assignment of Adjustable Delay Buffers for Clock Skew Minimization in Multi-voltage Mode Designs. In Proceedings of the 16th Asia and South Pacific Design Automation Conference (ASP-DAC), Yokohama, Japan, 25–28 January 2011; pp. 503–508. [Google Scholar] [CrossRef]
- Kim, J.; Joo, D.; Kim, T. An Optimal Algorithm of Adjustable Delay Buffer Insertion for Solving Clock Skew Variation Problem. In Proceedings of the 50th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2–6 June 2013; pp. 1–6. [Google Scholar]
- Kao, H.Y.; Lee, Y.; Huang, S.H.; Cheng, W.K.; Chou, Y.C. An Industrial Design Methodology for the Synthesis of OCV-aware Top-level Clock Tree. In Proceedings of the 6th International Symposium on Next Generation Electronics (ISNE), Keelung, Taiwan, 23–25 May 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Teng, S.K.; Soin, N. Regional Clock Gate Splitting Algorithm for Clock Tree Synthesis. In Proceedings of the IEEE International Conference on Semiconductor Electronics (ICSE), Malacca, Malaysia, 28–30 June 2010; pp. 131–134. [Google Scholar] [CrossRef]
- Teng, S.K.; Soin, N. Low Power Clock Gates Optimization for Clock Tree Distribution. In Proceedings of the 11th International Symposium on Quality Electronic Design (ISQED), San Jose, CA, USA, 22–24 March 2010; pp. 488–492. [Google Scholar] [CrossRef]
- Wang, Q.; Roy, S. Power Minimization by Clock Root Gating. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC), Kitakyushu, Japan, 21–24 January 2003; pp. 249–254. [Google Scholar] [CrossRef] [Green Version]
- Shelar, R.S. A Fast and Near-Optimal Clustering Algorithm for Low-Power Clock Tree Synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2012, 31, 1781–1786. [Google Scholar] [CrossRef]
- Chan, T.B.; Han, K.; Kahng, A.B.; Lee, J.G.; Nath, S. OCV-aware Top-level Clock Tree Optimization. In Proceedings of the 24th ACM Great Lakes Symposium on VLSI (GLSVLAI), Houston, TX, USA, 21–23 May 2014; pp. 33–38. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Huang, S.H.; Jian, J.H.; Chen, X.J. New Activity-driven Clock Tree Design Methodology for Low Power Clock Gating. In Proceedings of the 6th International Symposium on Next Generation Electronics (ISNE), Keelung, Taiwan, 23–25 May 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Cheng, W.K.; Wu, P.H.; Chiu, Y.H. A Skew-Window based Methodology for Timing Fixing in Multiple Power Modes. J. Inf. Sci. Eng. 2015, 31, 1795–1812. [Google Scholar]
- Lin, C.H.; Huang, S.H.; Cheng, W.K. An Effective Approach for Building Low-Power General Activity-Driven Clock Trees. In Proceedings of the 15th International SoC Design Conference (ISOCC), Daegu, Republic of Korea, 12–15 November 2018; pp. 13–14. [Google Scholar] [CrossRef]
- Lu, J.; Mao, X.; Taskin, B. Clock Mesh Synthesis with Gated Local Trees and Activity driven Register Clustering. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 5–8 November 2012; pp. 691–697. [Google Scholar]
- Lu, J.; Mao, X.; Taskin, B. Integrated Clock Mesh Synthesis with Incremental Register Placement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2012, 31, 217–227. [Google Scholar] [CrossRef]
- Lu, J.; Aksehir, Y.; Taskin, B. Register on MEsh (ROME): A Novel Approach for Clock Mesh Network Synthesis. In Proceedings of the IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011; pp. 1219–1222. [Google Scholar] [CrossRef]
- Venkataraman, G.; Feng, Z.; Hu, J.; Li, P. Combinatorial Algorithms for Fast Clock Mesh Optimization. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Jose, CA, USA, 5–9 November 2006; pp. 563–567. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Sun, W.; Wang, D. Optimization of Clock Mesh based on Wire Sizing Variation. In Proceedings of the 14th International SoC Design Conference (ISOCC), Seoul, Republic of Korea, 5–8 November 2017; pp. 129–130. [Google Scholar] [CrossRef]
- Abdelhadi, A.; Ginosar, R.; Kolodny, A.; Friedman, E.G. Timing-driven Variation-aware Nonuniform Clock Mesh Synthesis. In Proceedings of the 20th ACM Great Lakes Symposium on VLSI (GLSVLAI), Providence, RI, USA, 16–18 May 2010; pp. 15–20. [Google Scholar] [CrossRef]
- Guthaus, M.R.; Wilke, G.; Reis, R. Non-uniform Clock Mesh Optimization with Linear Programming Buffer Insertion. In Proceedings of the 47th Design Automation Conference (DAC), Anaheim, CA, USA, 13–18 June 2010; pp. 74–79. [Google Scholar] [CrossRef]
- Cho, M.; Pan, D.Z.; Puri, R. Novel Binary Linear Programming for High Performance Clock Mesh Synthesis. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 7–11 November 2010; pp. 438–443. [Google Scholar] [CrossRef]
- Cheng, W.K.; Hung, J.H.; Chiu, Y.H. Non-Uniform Clock Mesh Synthesis with Clock Gating and Register Clustering. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2016, E99.A, 2388–2397. [Google Scholar] [CrossRef]
- Yang, S.C.; Huang, S.H. Non-uniform Clock Mesh Synthesis under Temperature Constraints. In Proceedings of the 13th International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hsinchu, Taiwan, 18–20 October 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Yeh, C.; Wilke, G.; Chen, H.; Reddy, S.; Nguyen, H.; Miyoshi, T.; Walker, W.; Murgai, R. Clock Distribution Architectures: A Comparative Study. In Proceedings of the 7th International Symposium on Quality Electronic Design (ISQED), San Jose, CA, USA, 27–29 March 2006; pp. 85–91. [Google Scholar] [CrossRef]
- Su, H.; Sapatnekar, S.S. Hybrid Structured Clock Network Construction. In Proceedings of the IEEE/ACM International Conference on Computer Aided Design (ICCAD), San Jose, CA, USA, 4–8 November 2001; pp. 333–336. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.H.; Wang, C.K.; Chen, H.M.; Chou, Y.C.; Tsai, C.H. A Comparative Study on Multisource Clock Network Synthesis. In Proceedings of the 20th Workshop on Synthesis and System Integration of Mixed Information Technologies (SASIMI), Kyoto, Japan, 24–25 October 2016; pp. 1–5. [Google Scholar]
- Abdelhadi, A.; Ginosar, R.; Kolodny, A.; Friedman, E.G. Timing–driven Variation–aware Synthesis of Hybrid Mesh/Tree Clock Distribution Networks. Integration 2013, 46, 382–391. [Google Scholar] [CrossRef]
- Xiao, L.; Xiao, Z.; Qian, Z.; Jiang, Y.; Huang, T.; Tian, H.; Young, E.F.Y. Local Clock Skew Minimization Using Blockage-aware Mixed Tree-Mesh Clock Network. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 7–11 November 2010; pp. 458–462. [Google Scholar] [CrossRef]
Mesh Tree | Subtree | Whole Circuit | ||
---|---|---|---|---|
Capavg (pf) | Capavg (pf) | Pwrtot (pw) | ||
Conventional mesh tree | A | 33.75 | 30 | 128.5 |
B | 24 | 31 | 126 | |
C | 25.3 | 39 | 126 | |
Cross-mesh tree | D | 21.2 | 15 | 107 |
Cluster Constraint | Circuit | |||
---|---|---|---|---|
S9234 | S13207 | S38584 | S35932 | |
#Clock Gates | ||||
60% | 11 | 27 | 69 | 80 |
70% | 9 | 23 | 54 | 66 |
80% | 8 | 21 | 46 | 55 |
90% | 8 | 20 | 39 | 46 |
Circuit | Voltage: 1.0 V, Temperature: 25 °C, Cluster Constraint 90% | ||||
---|---|---|---|---|---|
#Gate | Capacitance (pF) | ||||
Non-Cluster | Cluster | Non-Cluster | Cluster | Cap. Reduction | |
s9234 | 211 | 8 | 0.867 | 0.338 | 61.0% |
s13207 | 638 | 20 | 3.408 | 0.906 | 73.4% |
s38584 | 1426 | 39 | 11.746 | 2.086 | 82.2% |
s35932 | 1728 | 46 | 13.556 | 2.425 | 82.1% |
Avg. Capacitance Reduction | 74.7% |
Circuit | Voltage: 1.1 V, Temperature: −40 °C, Cluster Constraint 90% | ||||
---|---|---|---|---|---|
#Gate | Capacitance (pF) | ||||
Non-Cluster | Cluster | Non-Cluster | Cluster | Cap. Reduction | |
s9234 | 211 | 8 | 0.879 | 0.345 | 61.8% |
s13207 | 638 | 20 | 3.444 | 0.924 | 73.2% |
s38584 | 1426 | 41 | 11.824 | 2.155 | 81.8% |
s35932 | 1728 | 47 | 13.651 | 2.484 | 81.8% |
Avg. Capacitance Reduction | 74.4% |
Circuit | Voltage: 0.9 V, Temperature: 125 °C, Cluster Constraint 90% | ||||
---|---|---|---|---|---|
#Gate | Capacitance (pF) | ||||
Non-Cluster | Cluster | Non-Cluster | Cluster | Cap. Reduction | |
s9234 | 211 | 8 | 0.857 | 0.333 | 61.2% |
s13207 | 638 | 9 | 3.377 | 0.879 | 74.0% |
s38584 | 1426 | 40 | 11.676 | 2.064 | 82.3% |
s35932 | 1728 | 47 | 13.471 | 2.393 | 82.2% |
Avg. Capacitance Reduction | 74.9% |
Circuit | Voltage: 1.0 V, Temperature: 25 °C | |||||
---|---|---|---|---|---|---|
Capacitance (pF) | Skew (ps) | |||||
Pre-Opt. | Post-Opt. | Cap. Ratio | Pre-Opt. | Post-Opt. | Skew Reduction | |
s9234 | 0.338 | 0.487 | 1.44× | 100.25 | 10.15 | 89.9% |
s13207 | 0.906 | 1.613 | 1.78× | 402.25 | 9.02 | 97.8% |
s38584 | 2.086 | 2.582 | 1.24× | 323.51 | 12.43 | 96.2% |
s35932 | 2.425 | 2.974 | 1.22× | 318.75 | 10.55 | 96.7% |
Avg. Capacitance Increasing | 1.42× | Avg. Skew Reduction | 95.1% |
Circuit | Voltage: 1.1 V, Temperature: −40 °C | |||||
---|---|---|---|---|---|---|
Capacitance (pF) | Skew (ps) | |||||
Pre-Opt. | Post-Opt. | Cap. Ratio | Pre-Opt. | Post-Opt. | Skew Reduction | |
s9234 | 0.345 | 0.493 | 1.43× | 71.89 | 7.27 | 89.9% |
s13207 | 0.924 | 1.589 | 1.72× | 273.94 | 6.69 | 97.6% |
s38584 | 2.155 | 2.870 | 1.33× | 317.69 | 6.83 | 97.8% |
s35932 | 2.484 | 2.983 | 1.20× | 251.65 | 7.08 | 97.2% |
Avg. Capacitance Increasing | 1.42× | Avg. Skew Reduction | 95.6% |
Circuit | Voltage: 0.9 V, Temperature: 125 °C | |||||
---|---|---|---|---|---|---|
Capacitance (pF) | Skew (ps) | |||||
Pre-Opt. | Post-Opt. | Cap. Ratio | Pre-Opt. | Post-Opt. | Skew Reduction | |
s9234 | 0.333 | 0.477 | 1.43× | 140.86 | 14.39 | 89.8% |
s13207 | 0.879 | 1.479 | 1.68× | 542.28 | 24.66 | 95.4% |
s38584 | 2.064 | 2.766 | 1.34× | 579.97 | 13.21 | 97.7% |
s35932 | 2.393 | 3.160 | 1.32× | 574.61 | 16.76 | 97.1% |
Avg. Capacitance Increasing | 1.44× | Avg. Skew Reduction | 95.0% |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s9234 | 3 × 3 | 88.442 | 1 | 0.656 | 1 |
4 × 4 | 50.391 | 0.57 | 0.637 | 0.97 | |
5 × 5 | 67.982 | 0.77 | 0.641 | 0.98 | |
6 × 6 | 35.962 | 0.41 | 0.666 | 1.02 | |
Cross-Mesh | 10.148 | 0.11 | 0.487 | 0.74 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s13207 | 5 × 5 | 110.536 | 1 | 1.842 | 1 |
6 × 6 | 111.81 | 1.01 | 1.868 | 1.01 | |
7 × 7 | 94.66 | 0.86 | 1.820 | 0.99 | |
8 × 8 | 87.816 | 0.79 | 1.792 | 0.97 | |
Cross-Mesh | 9.017 | 0.08 | 1.613 | 0.88 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s38584 | 10 × 10 | 100.044 | 1 | 3.913 | 1 |
11 × 11 | 82.381 | 0.82 | 4.032 | 1.03 | |
12 × 12 | 65.774 | 0.66 | 4.276 | 1.09 | |
13 × 13 | 57.641 | 0.58 | 4.409 | 1.13 | |
Cross-Mesh | 12.426 | 0.12 | 2.583 | 0.66 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s35932 | 12 × 12 | 80.257 | 1 | 4.526 | 1 |
13 × 13 | 67.558 | 0.84 | 4.500 | 0.99 | |
14 × 14 | 70.897 | 0.88 | 4.720 | 1.04 | |
15 × 15 | 57.558 | 0.72 | 4.774 | 1.05 | |
Cross-Mesh | 10.548 | 0.13 | 2.974 | 0.66 |
Circuit | Capacitance (pF) | ||
---|---|---|---|
Cross-Mesh (Our Proposed) | Uniform Mesh ([21]) | Capacitance Reduction | |
s9234 | 0.487 | 0.666 | 26.7% |
s13207 | 1.613 | 1.792 | 9.9% |
s38584 | 2.582 | 4.409 | 41.4% |
s35932 | 2.974 | 4.774 | 37.7% |
Avg. Capacitance Reduction | 28.9% |
Circuit | Skew (ps) | ||
---|---|---|---|
Cross-Mesh (Our Proposed) | Uniform Mesh ([21]) | Skew Reduction | |
s9234 | 10.148 | 35.962 | 71.7% |
s13207 | 9.017 | 87.816 | 89.7% |
s38584 | 12.426 | 57.641 | 78.4% |
s35932 | 10.548 | 57.558 | 81.6% |
Avg. Skew Reduction | 80.4% |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s9234 | 3 × 3 | 65.378 | 1 | 0.503 | 1 |
4 × 4 | 46.984 | 0.72 | 0.554 | 1.10 | |
5 × 5 | 28.428 | 0.43 | 0.601 | 1.20 | |
6 × 6 | 46.298 | 0.71 | 0.645 | 1.28 | |
Cross-Mesh | 10.148 | 0.16 | 0.487 | 0.97 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s13207 | 5 × 5 | 126.881 | 1 | 1.360 | 1 |
6 × 6 | 67.638 | 0.53 | 1.512 | 1.11 | |
7 × 7 | 59.068 | 0.47 | 1.591 | 1.17 | |
8 × 8 | 62.39 | 0.49 | 1.616 | 1.19 | |
Cross-Mesh | 9.017 | 0.07 | 1.613 | 1.19 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s38584 | 10 × 10 | 82.198 | 1 | 3.715 | 1 |
11 × 11 | 60.983 | 0.74 | 3.925 | 1.06 | |
12 × 12 | 55.541 | 0.68 | 4.135 | 1.11 | |
13 × 13 | 55.09 | 0.67 | 4.074 | 1.10 | |
Cross-Mesh | 12.426 | 0.15 | 2.582 | 0.70 |
Circuit | Mesh Size | Skew (ps) | Skew Normalization | Capacitance (pF) | Capacitance Normalization |
---|---|---|---|---|---|
s35932 | 12 × 12 | 64.243 | 1 | 4.207 | 1 |
13 × 13 | 61.974 | 0.96 | 4.271 | 1.02 | |
14 × 14 | 55.178 | 0.86 | 4.485 | 1.07 | |
15 × 15 | 53.917 | 0.84 | 4.629 | 1.10 | |
Cross-Mesh | 10.548 | 0.16 | 2.974 | 0.71 |
Circuit | Capacitance (pF) | ||
---|---|---|---|
Cross-Mesh (Our Proposed) | Non-Uniform ([29]) | Capacitance Reduction | |
s9234 | 0.487 | 0.601 | 18.8% |
s13207 | 1.613 | 1.591 | −1.4% |
s38584 | 2.582 | 4.074 | 36.6% |
s35932 | 2.974 | 4.629 | 35.7% |
Avg. Capacitance Reduction | 22.4% |
Circuit | Skew (ps) | ||
---|---|---|---|
Cross-Mesh (Our Proposed) | Non-Uniform ([29]) | Skew Reduction | |
s9234 | 10.148 | 28.428 | 64.3% |
s13207 | 9.017 | 59.068 | 84.7% |
s38584 | 12.426 | 55.090 | 77.4% |
s35932 | 10.548 | 53.917 | 80.4% |
Avg. Skew Reduction | 76.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.-K.; Yeh, Z.-M.; Kao, H.-Y.; Huang, S.-H. Cross-Mesh Clock Network Synthesis. Electronics 2023, 12, 3410. https://doi.org/10.3390/electronics12163410
Cheng W-K, Yeh Z-M, Kao H-Y, Huang S-H. Cross-Mesh Clock Network Synthesis. Electronics. 2023; 12(16):3410. https://doi.org/10.3390/electronics12163410
Chicago/Turabian StyleCheng, Wei-Kai, Zih-Ming Yeh, Hsu-Yu Kao, and Shih-Hsu Huang. 2023. "Cross-Mesh Clock Network Synthesis" Electronics 12, no. 16: 3410. https://doi.org/10.3390/electronics12163410