Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures
Abstract
1. Introduction
2. Electrodynamics of Weakly Corrugated Planar and Cylindrical Waveguides
2.1. Dispersion Characteristics of Normal Waves near a Single Periodically Corrugated Plate
2.2. Dispersion Characteristics of Normal Waves in a Planar Corrugated Waveguide
2.3. Dispersion Characteristics of Normal Waves in Oversized Cylindrical Waveguides with Azimuthally Symmetric Corrugation
2.4. Evanescent Eigenmodes in Finite-Length Periodic Structures
3. Quasi-Optical Models of Planar Cherenkov-Type Devices
3.1. General Self-Consistent Equations of Electron-Wave Interaction
3.2. Surface-Wave Oscillator in π-Mode Operation Regime
3.3. Diffraction Mode Selection in the Planar Surface-Wave Oscillator
3.4. Surface-Wave BWO Operation Regimes
3.5. TWT Operation Regimes
3.6. Orotron Operation Regimes
3.7. Super-Radiant Regimes of Surface-Wave Excitation by Extended Electron Bunches
4. Quasi-Optical Theory of Cylindrical Surface-Wave Oscillators
4.1. Symmetric Mode Excitation
4.2. Non-Symmetric Mode Excitation
5. Conclusions—Novel Schemes of Relativistic Surface-Wave Devices Utilizing Complex Gratings
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovalev, N.F.; Petelin, M.I.; Raiser, M.D.; Smorgonskii, A.V.; Tsopp, L.E. Generation of powerful electromagnetic radiation pulses by a beam of relativistic electrons. JETP Lett. 1973, 18, 138. [Google Scholar]
- Kovalev, N.F.; Petrukhina, V.I.; Smorgonskii, A.V. Ultrarelativistic carcinotron. Radio Eng. Electron. Phys. 1975, 20, 1547–1550. (In Russian) [Google Scholar]
- Kovalev, N.F.; Smorgonsky, A.V. The theory of ultrarelativistic TWT. Radio Eng. Electron. Phys. 1975, 20, 1305–1309. (In Russian) [Google Scholar]
- Carmel, Y.; Ivers, J.; Kribel, R.E.; Nation, J.A. Intense Coherent Cherenkov Radiation Due to the Interaction of a Relativistic Electron Beam with a Slow-Wave Structure. Phys. Rev. Lett. 1974, 33, 1275. [Google Scholar] [CrossRef]
- Bratman, V.L.; Denisov, G.G.; Kol’chugin, B.D.; Korovin, S.D.; Polevin, S.D.; Rostov, V.V. Powerful millimeter-wave generators based on the stimulated Cerenkov radiation of relativistic electron beams. Int. J. Infrared Millim. Waves 1984, 5, 1311–1332. [Google Scholar] [CrossRef]
- Bratman, V.L.; Denisov, G.G.; Ofitserov, M.M.; Korovin, S.D.; Polevin, S.D.; Rostov, V.V. Millimeter-wave HF relativistic electron oscillators. IEEE Trans. Plasma Sci. 1987, 15, 2–15. [Google Scholar] [CrossRef]
- Abe, D.K.; Carmel, Y.; Miller, S.M.; Bromborsky, A.; Levush, B.; Antonsen, T.M., Jr.; Destler, W.W. Experimental Studies of Overmoded Relativistic Backward-Wave Oscillators. IEEE Trans. Plasma Sci. 1998, 26, 591–604. [Google Scholar] [CrossRef]
- Levush, B.; Antonsen, T.M.; Bromborsky, A.; Lou, W.R.; Carmel, Y. Relativistic backward-wave oscillators: Theory and experiment. Phys. Fluids B 1992, 4, 2293. [Google Scholar] [CrossRef]
- Gunin, A.V.; Klimov, A.I.; Korovin, S.D.; Kurkan, I.K.; Pegel, I.V.; Polevin, S.D.; Roitman, A.M.; Rostov, V.V.; Stepchenko, A.S.; Totmeninov, E.M. Relativistic X-band BWO with 3-GW output power. IEEE Trans. Plasma Sci. 1998, 26, 326–331. [Google Scholar] [CrossRef]
- Abubakirov, E.B.; Denisenko, A.N.; Kovalev, N.F.; Kopelovich, E.A.; Savel’ev, A.V.; Soluyanov, E.I.; Fuks, M.I.; Yastrebov, V.V. Relativistic backward wave oscillator using a selective mode converter. Tech. Phys. 1999, 44, 1356–1359. [Google Scholar] [CrossRef]
- Kovalev, N.F.; Palitsin, A.V.; Fuks, M.I. Cyclotron Suppression of Generation in a Relativistic Backward-wave Oscillator of Cherenkov Type. Radiophys. Quantum Electron. 2006, 49, 93–107. [Google Scholar] [CrossRef]
- Moreland, L.D.; Schamiloglu, E.; Lemke, R.W.; Roitman, A.M.; Korovin, S.D.; Rostov, V.V. Enhanced frequency agility of high-power relativistic backward wave oscillators. IEEE Trans. Plasma Sci. 1996, 24, 852–858. [Google Scholar] [CrossRef]
- Goykhman, M.B.; Kladukhin, V.V.; Kladukhin, S.V.; Kovalev, N.F.; Kolganov, N.G.; Khramtsov, S.P. A high power relativistic backward wave oscillator with a longitudinal slot slow-wave system. Tech. Phys. Lett. 2014, 40, 84–86. [Google Scholar] [CrossRef]
- Totmeninov, E.M.; Klimov, A.I.; Rostov, V.V. Relativistic Cherenkov microwave oscillator without a guiding magnetic field. IEEE Trans. Plasma Sci. 2009, 37, 1242–1245. [Google Scholar] [CrossRef]
- Bunkin, B.V.; Gaponovgrekhov, A.V.; Elchaninov, A.S.; Zagulov, F.Y.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivanchik, E.A.; Petelin, M.I.; Prokhorov, A.M.; et al. Radar based on UHF-generator with relativistic electron-beam. Pisma V Zhurnal Tekhnicheskoi Fiz. 1992, 18, 61–65. [Google Scholar]
- Abubakirov, E.B.; Botvinnik, I.E.; Bratman, V.L.; Vinogradov, D.V.; Denisov, G.G.; Kazacha, V.I.; Krasnykh, A.K.; Ofitserov, M.M.; Perelstein, E.A.; Sidorov, A.I. Generation of Powerful UHF Emission of Millimeter-wave Range in the Cherenkov TWT with Relativistic High-current Electron-beams. Zhurnal Tekhnicheskoi Fiz. 1990, 60, 186–190. (In Russian) [Google Scholar]
- Abubakirov, E.B.; Denisenko, A.N.; Fuchs, M.I.; Kolganov, N.G.; Kovalev, N.F.; Petelin, M.I.; Savelyev, A.V.; Schamiloglu, E.; Soluyanov, E.I.; Yastrebov, V.V. An X-band gigawatt amplifier. IEEE Trans. Plasma Sci. 2002, 30, 1041–1052. [Google Scholar] [CrossRef]
- Alexandrov, A.F.; Galuzo, S.Y.; Kanavets, V.I.; Pletyushkin, V.A. Surface wave excitation by electron flow in a diaphragmatic waveguide. Sov. J. Tech. Phys. 1981, 51, 1727–1730. [Google Scholar]
- AVlasov, N.; Shkvarunets, A.G.; Rodgers, J.C.; Carmel, Y.; Antonsen, T.M.; Abuelfadl, T.M.; Lingze, D.; Cherepenin, V.A.; Nusinovich, G.S.; Botton, M.; et al. Overmoded GW-class surface-wave microwave oscillator. IEEE Trans. Plasma Sci. 2000, 28, 550–560. [Google Scholar]
- Bugaev, P.S.; Cherepenin, V.A.; Kanavets, V.I.; Klimov, A.I.; Kopenkin, A.D.; Koshelev, V.I.; Popov, V.A.; Slepkov, A.I. Relativistic multiwave Cherenkov generators. IEEE Trans. Plasma Sci. 1990, 18, 525–536. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Tong, C.; Li, X.; Wang, X.; Li, S.; Lu, X. A repetitive 0.14 THz relativistic surface wave oscillator. Phys. Plasmas 2013, 20, 043105. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Zeng, P.; Li, S.; Wang, D. Overmoded Subterahertz Surface Wave Oscillator with Pure TM01 Mode Otput. Phys. Plasmas 2016, 23, 023104. [Google Scholar] [CrossRef]
- San, M.T.; Ogura, K.; Yambe, K.; Annaka, Y.; Gong, S.; Kawamura, J.; Miura, T.; Kubo, S.; Shimozuma, T.; Kobayashi, S.; et al. Experimental Study on W-Band (75–110 GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams. Plasma Fusion Res. 2016, 11, 2406085. [Google Scholar] [CrossRef][Green Version]
- Wang, J.; Wang, G.; Wang, D.; Li, S.; Zeng, P. A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam. Sci. Rep. 2018, 8, 6978. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Wang, D. Relativistic Surface Wave Oscillator in Y-Band with Large Oversized Structures Modulated by Dual Reflectors. Sci. Rep. 2020, 10, 336. [Google Scholar] [CrossRef] [PubMed]
- Rusin, F.S.; Bogomolov, G.D. Generation of Electromagnetic Oscillations in an Open Resonator. JETP Lett. 1966, 4, 160. [Google Scholar]
- Asgekar, V.B.; Dattoli, G. Theory Of Cherenkov Free Electron Lasers: An Analytical Treatment of Saturation. Opt. Commun. 2005, 255, 309. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Kuznetsov, S.P.; Fedoseeva, T.N. Theory of transients in relativistic backward-wave tubes. Radiophys. Quantum Electron. 1978, 21, 728–739. [Google Scholar] [CrossRef]
- Levush, B.; Antonsen, T.M.; Bromborsky, A.; Lou, W.R.; Carmel, Y. Theory of relativistic BWOs with end reflections. IEEE Trans. Plasma Sci. 1992, 20, 263–280. [Google Scholar] [CrossRef]
- Miller, S.M.; Antonsen, T.M., Jr.; Levush, B.; Bromborsky, A.; Abe, D.K.; Carmel, Y. Theory of relativistic backward wave oscillators operating near cutoff. Phys. Plasmas 1994, 1, 730–740. [Google Scholar] [CrossRef]
- Vlasov, A.N.; Nusinovich, G.S.; Levush, B. Effect of the zero spatial harmonic in a slow electromagnetic wave on operation of relativistic backward-wave oscillators. Phys. Plasmas 1997, 4, 1402–1412. [Google Scholar] [CrossRef]
- Pierce, J.R. Traveling Wave Tubes, 1st ed.; Van Nostrand: Princeton, NJ, USA, 1950. [Google Scholar]
- Rowe, J.E. Nonlinear Electron-Wave Interaction Phenomena; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Ginzburg, N.S.; Zavol’skii, N.A.; Zapevalov, V.E.; Moiseev, M.A.; Novozhilova, Y.V. Nonstationary Processes in a Diffraction-Output Orotron. Tech. Phys. 2000, 45, 480. [Google Scholar] [CrossRef]
- Nusinovich, G.S. Introduction to the Physics of Gyrotrons; J. Hopkins University Press: Baltimore, MD, USA, 2004. [Google Scholar]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zaslavsky, V.Y. Quasi-optical theory of relativistic submillimeter surface-wave oscillators. Appl. Phys. Lett. 2011, 99, 121505. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Zheleznov, I.V.; Zaslavsky, V.Y.; Sergeev, A.S. Stimulated Cherenkov radiation of a relativistic electron beam moving over a periodically corrugated surface (quasi-optical theory). J. Exp. Theor. Phys. 2013, 117, 975–987. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Zheleznov, I.V.; Sergeev, A.S. Evanescent waves propagation along a periodically corrugated surface and their amplification by relativistic electron beam (quasi-optical theory). Phys. Plasmas 2013, 20, 063105. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zaslavsky, V.Y. Quasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures. Phys. Plasmas 2013, 20, 113104. [Google Scholar] [CrossRef]
- Malkin, A.M.; Zheleznov, I.V.; Sergeev, A.S.; Ginzburg, N.S. Quasi-optical theory of relativistic Cherenkov surface-wave oscillators with oversized cylindrical waveguides. Phys. Plasmas 2021, 28, 063102. [Google Scholar] [CrossRef]
- Malkin, A.M.; Zheleznov, I.V.; Sergeev, A.S.; Zaslavsky, V.Y.; Makhalov, P.B.; Ginzburg, N.S. Unified quasi-optical theory of short-wavelength radiation amplification by relativistic electron beams moving near the impedance surfaces. Phys. Plasmas 2020, 27, 113106. [Google Scholar] [CrossRef]
- Katsenelenbaum, B.Z.; del Rio, L.M.; Pereyaslavets, M.; Ayza, M.S.; Thumm, M. Theory of Nonuniform Waveguides: The Cross-section Method. IET Electromagn. Waves Ser. 1998, 44, 249. [Google Scholar]
- Fedotov, A.E.; Makhalov, P.B. Transverse dynamics of a surface wave excited by a wide electron beam. Phys. Plasmas 2012, 19, 033103. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, Y.; Wei, Y.; Duan, Z. High-power millimeter-wave BWO driven by sheet electron beam. IEEE Trans. Electron Dev. 2013, 60, 471. [Google Scholar] [CrossRef]
- Shin, Y.-M.; Zhao, J.; Barnett, L.R.; Luhmann, N.C. Investigation of terahertz sheet beam traveling wave tube amplifier with nanocomposite cathode. Phys. Plasmas 2012, 17, 123105. [Google Scholar] [CrossRef]
- Shin, Y.-M.; Baig, A.; Barnett, L.R.; Luhmann, N.C.; Pasour, J.; Larsen, P. Modeling investigation of an ultrawideband terahertz sheet beam TWT amplifier Circuit. IEEE Trans. Electron Dev. 2011, 58, 3213–3218. [Google Scholar] [CrossRef]
- Malkin, A.M.; Zaslavsky, V.Y.; Zheleznov, I.V.; Goykhman, M.B.; Gromov, A.V.; Palitsin, A.V.; Sergeev, A.S.; Fedotov, A.É.; Makhalov, P.B.; Ginzburg, N.S. Development of high-power millimeter-wave surface-wave generators based on relativistic ribbon electron beams. Radiophys. Quantum Electron. 2020, 63, 458. [Google Scholar] [CrossRef]
- Leontovich, M.A. On the Approximate Boundary Conditions for the Electromagnetic Field on the Surface of Well Conducting Bodies. In Investigations on Propagation of Radio Waves; AN SSSR: Moscow, Russia, 1948; pp. 5–10. [Google Scholar]
- Peskov, N.Y.; Ginzburg, N.S.; Golubev, I.I.; Golubykh, S.M.; Kaminsky, A.K.; Kozlov, A.P.; Malkin, A.M.; Sedykh, S.N.; Sergeev, A.S.; Sidorov, A.I.; et al. Powerful oversized W-band free-electron maser with advanced Bragg resonator based on coupling of propagating and cutoff waves. Appl. Phys. Lett. 2020, 116, 213505. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 6th ed.; U.S. Dept. of Commerce, National Bureau of Standards: Washington, DC, USA, 1972. [Google Scholar]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Fil’chenkov, S.E.; Zaslavsky, V.Y. Highly selective surface-wave resonators for terahertz frequency range formed by metallic Bragg gratings. Phys. Lett. A 2018, 382, 925–929. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zaslavsky, V.Y. Powerful surface-wave oscillators with two-dimensional periodic structures. Appl. Phys. Lett. 2012, 100, 143510. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zaslavsky, V.Y. Oversized co-axial and cylindrical surface-wave oscillators with two-dimensional periodical grating (quasi-optical model). J. Appl. Phys. 2013, 113, 104504. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Luchinin, A.G.; Nusinovich, G.S.; Rodgers, J.; Kashyn, D.G.; Romero-Talamas, C.A.; Pu, R. A 670 GHz gyrotron with record power and efficiency. Appl. Phys. Lett. 2012, 101, 153503. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Novozhilova, Y.V.; Zotova, I.V.; Sergeev, A.S.; Peskov, N.Y.; Phelps, A.D.R.; Wiggins, S.M.; Cross, A.W.; Ronald, K.; He, W.; et al. Generation of powerful subnanosecond microwave pulses by intense electron bunches moving in a periodic backward wave structure in the superradiative regime. Phys. Rev. E 1999, 60, 3297. [Google Scholar] [CrossRef]
- Eltchaninov, A.A.; Korovin, S.D.; Rostov, V.V.; Pegel, I.V.; Mesyats, G.A.; Rukin, S.N.; Shpak, V.G.; Yalandin, M.I.; Ginzburg, N.S. Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 2003, 21, 187. [Google Scholar] [CrossRef]
- Korovin, S.D.; Eltchaninov, A.A.; Rostov, V.V.; Shpak, V.G.; Yalandin, M.I.; Ginzburg, N.S.; Sergeev, A.S.; Zotova, I.V. Generation of Cherenkov superradiance pulses with a peak power exceeding the power of the driving short electron beam. Phys. Rev. E. 2006, 74, 016501. [Google Scholar] [CrossRef] [PubMed]
- Rostov, V.V.; Elchaninov, A.A.; Romanchenko, I.V.; Yalandin, M.I. A coherent two-channel source of Cherenkov superradiance pulses. Appl. Phys. Lett. 2012, 100, 224102. [Google Scholar] [CrossRef]
- Shpak, V.G.; Shunailov, S.A.; Yalandin, M.I.; Dyad’kov, A.N. The RADAN SEF-303A, a small high-current pulsed power supply. Instrum. Exp. Tech. 1993, 25, 25031539. [Google Scholar]
- Mesyats, G.A.; Yalandin, M.I. High-power picosecond electronics. Physics-Uspekhi 2007, 48, 211. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zotova, I.V.; Zaslavsky, V.Y.; Zheleznov, I.V. 3D Quasioptical Theory of Terahertz Superradiance of an Extended Electron Bunch Moving Over a Corrugated Surface. Phys. Rev. Lett. 2013, 110, 184801. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zheleznov, I.V.; Zotova, I.V.; Zaslavsky, V.Y.; Boltachev, G.S.; Sharypov, K.A.; Shunailov, S.A.; Ul’masculov, M.R.; et al. Generation of Subterahertz Superradiance Pulses Based on Excitation of a Surface Wave by Relativistic Electron Bunches Moving in Oversized Corrugated Waveguides. Phys. Rev. Lett. 2016, 117, 204801. [Google Scholar] [CrossRef]
- Power, J.G. Overview of photoinjectors. In AIP Conference Proceedings, Proceedings of 14th Advanced Accelerator Concepts Workshop, Annapolis, MD, USA, 13–19 June 2010; Nusinovich, G., Gold, S., Eds.; American Institute of Physics: College Park, MD, USA, 2010; Volume 1299. [Google Scholar]
- Piot, P.; Sun, Y.E.; Kim, K.J. Photoinjector generation of a flat electron beam with transverse emittance ratio of 100. Phys. Rev. ST-AB 2006, 9, 031001. [Google Scholar] [CrossRef]
- Konoplev, I.V.; McGrane, P.; He, W.; Cross, A.W.; Phelps, A.D.R.; Whyte, C.G.; Ronald, K.; Robertson, C.W. Experimental Study of Coaxial Free-Electron Maser Based on Two-Dimensional Distributed Feedback. Phys. Rev. Lett. 2006, 96, 035002. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Ilyakov, E.V.; Kulagin, I.S.; Malkin, A.M.; Peskov, N.Y.; Sergeev, A.S.; Zaslavsky, V.Y. Theoretical and experimental studies of relativistic oversized Ka-band surface-wave oscillator based on 2D periodical corrugated structure. Phys. Rev. Accel. Beams 2018, 21, 080701. [Google Scholar] [CrossRef]
- Arzhannikov, A.V.; Ginzburg, N.S.; Kalinin, P.V.; Kuznetsov, S.A.; Malkin, A.M.; Peskov, N.Y.; Sergeev, A.S.; Sinitsky, S.L.; Stepanov, V.D.; Thumm, M.; et al. Using Two-Dimensional Distributed Feedback for Synchronization of Radiation from Two Parallel-Sheet Electron Beams in a Free-Electron Maser. Phys. Rev. Lett. 2016, 117, 114801. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, N.S.; Zaslavsky, V.Y.; Malkin, A.M.; Sergeev, A.S.; Zotova, I.V.; Sharypov, K.A.; Shunailov, S.A.; Shpak, V.G.; Ul’masculov, M.R.; Yalandin, M.I. Generation of intense spatially coherent superradiant pulses in strongly oversized 2D periodical surface-wave structure. Appl. Phys. Lett. 2020, 117, 183505. [Google Scholar] [CrossRef]
- Malkin, A.M.; Fedotov, A.E.; Zaslavsky, V.Y.; Fil’chenkov, S.E.; Sergeev, A.S.; Egorova, E.D.; Ginzburg, N.S. Relativistic sub-THz surface-wave oscillators with transverse Gaussian-like radiation output. IEEE Electron Device Lett. 2021, 42, 751. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Zaslavsky, V.Y.; Fedotov, A.E.; Sergeev, A.S. Relativistic sub-THz surface-wave sheet-beam amplifier with transverse energy input and output. IEEE Trans. Electron Devices 2021, 69, 759. [Google Scholar] [CrossRef]
Slow-Wave System Parameters | Electron Beam Parameters | ||
---|---|---|---|
Length of corrugated section | cm | Total current | kA |
Corrugation period | cm | Accelerating voltage | ) |
Mean radius | ) | Mean beam radius | cm |
Corrugation amplitude | mm | Beam thickness | mm |
Output Parameters | |||
Efficiency | % | ||
Integral radiated power | GW | ||
Operating frequency | GHz |
Slow-Wave System Parameters | Electron Beam Parameters | ||
---|---|---|---|
Length of corrugated section | cm | Total current | A |
Corrugation period | mm | Accelerating voltage | kV |
Mean radius | ) | Mean beam radius | mm |
Corrugation amplitude | mm | Beam thickness | mm |
Output Parameters | |||
Efficiency | % | ||
Integral radiated power | MW | ||
Operating frequency | GHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malkin, A.; Ginzburg, N.; Zaslavsky, V.; Zheleznov, I.; Sergeev, A. Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures. Electronics 2022, 11, 1197. https://doi.org/10.3390/electronics11081197
Malkin A, Ginzburg N, Zaslavsky V, Zheleznov I, Sergeev A. Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures. Electronics. 2022; 11(8):1197. https://doi.org/10.3390/electronics11081197
Chicago/Turabian StyleMalkin, Andrey, Naum Ginzburg, Vladislav Zaslavsky, Ilya Zheleznov, and Alexander Sergeev. 2022. "Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures" Electronics 11, no. 8: 1197. https://doi.org/10.3390/electronics11081197
APA StyleMalkin, A., Ginzburg, N., Zaslavsky, V., Zheleznov, I., & Sergeev, A. (2022). Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures. Electronics, 11(8), 1197. https://doi.org/10.3390/electronics11081197