Eco-Friendly Enhancement of Ferulic Acid-Rich Extracts from Cnidium officinale and Angelica gigas via Hot-Melt Extrusion for Skin Brightening and Regeneration
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CO, HME-CO, AG, and HME-AG
2.3. HPLC Analysis for FA Quantification
2.4. Characterization
2.5. Assessment of Antioxidant Activity Through DPPH and ABTS Methods
2.6. Cytotoxicity
2.7. Assessment of Anti-Melanogenic Activity in B16F10 Cells
2.8. In Vitro Scratch Assay for Wound Healing
2.9. Statistical Analysis
3. Results and Discussion
3.1. Determination of FA Content by HPLC
3.2. FE-SEM and FE-TEM
3.3. FT-IR
3.4. Determination of Antioxidant Activity by DPPH and ABTS Assays
3.4.1. DPPH
3.4.2. ABTS
3.5. Cell Viability (%)
3.6. Evaluation of Anti-Melanogenesis Effect in B16F10 Cells
3.7. In Vitro Wound Healing Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, K.M.; Ge, Y.; Palanisamy, S.; Zhang, Y.; Kou, F.; Yelithao, K.; Jeong, D.; You, S.; Lim, S.-B. Cnidium officinale polysaccharide enhanced RAW 264.7 cells activation and NK-92 cells cytotoxicity against colon cancer via NF-κB and MAPKs signaling pathways. Int. J. Biol. Macromol. 2023, 253, 127605. [Google Scholar] [CrossRef]
- De la Cruz, J.; Kim, D.-H.; Hwang, S.G. Anti cancer effects of Cnidium officinale Makino extract mediated through apoptosis and cell cycle arrest in the HT-29 human colorectal cancer cell line. Asian Pac. J. Cancer Prev. 2014, 15, 5117–5121. [Google Scholar] [CrossRef]
- Jeong, J.B.; Park, J.H.; Lee, H.K.; Ju, S.Y.; Hong, S.C.; Lee, J.R.; Chung, G.Y.; Lim, J.H.; Jeong, H.J. Protective effect of the extracts from Cnidium officinale against oxidative damage induced by hydrogen peroxide via antioxidant effect. Food Chem. Toxicol. 2009, 47, 525–529. [Google Scholar] [CrossRef]
- Lee, Y.M.; Lee, Y.-R.; Kim, C.-S.; Jo, K.; Sohn, E.; Kim, J.S.; Kim, J. Cnidium officinale extract and butylidenephthalide inhibits retinal neovascularization in vitro and in vivo. BMC Complement Altern. Med. 2016, 16, 231. [Google Scholar] [CrossRef]
- Belete, M.T.; Kim, S.E.; Gudeta, W.F.; Igori, D.; Kwon, J.A.; Lee, S.-H.; Moon, J.S. Deciphering the virome of Chunkung (Cnidium officinale) showing dwarfism-like symptoms via a high-throughput sequencing analysis. Virol. J. 2024, 21, 86. [Google Scholar] [CrossRef]
- Ma, J.; Liu, W.; Wang, X.; Lu, C.; Hao, Z.; Wang, Y.; Ding, Y.; Li, Y. Cnidium officinale Makino: Phytology, Phytochemistry, Toxicology, Pharmacology and Prescriptions (1967–2023). Chem. Biodivers. 2024, 21, e202301639. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, Y.-J. Inhibition effect of Cnidium officinale Makino extracts on MMP1 expression in human dermal fibroblasts. Asian J. Beauty Cosmetol. 2018, 16, 131–138. [Google Scholar] [CrossRef]
- Ku, J.M.; Hong, S.H.; Kim, H.I.; Kim, M.J.; Mok, K.; Shin, Y.C.; Ko, S.-G. Cnidium officinale Makino promotes skin health via anti-inflammation processes in various skin cell lines. Res. Squar. 2020. [Google Scholar] [CrossRef]
- Sowndhararajan, K.; Kim, S. Neuroprotective and cognitive enhancement potentials of Angelica gigas Nakai root: A review. Sci. Pharm. 2017, 85, 21. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Wang, Y.; Chen, Y.; Geng, F.; Jiang, Z.; Li, X. Angelica gigas Nakai: An overview on its chemical composition and pharmacological activity. Biochem. Syst. Ecol. 2023, 111, 104717. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Jiang, C.; Xing, C.; Kim, S.-H.; Lu, J. Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds. Anticancer Agents Med. Chem. 2012, 12, 1239–1254. [Google Scholar] [CrossRef]
- Park, S.I.; Heo, S.H.; Lee, J.; Shin, M.S. Extraction of active compounds from Angelica gigas using supercritical carbon dioxide and its physiological activity. J. Converg. Inf. Technol. 2021, 11, 206–212. [Google Scholar] [CrossRef]
- Kim, S.-A.; Oh, H.-K.; Kim, J.-Y.; Hong, J.-W.; Cho, S.-I. A review of pharmacological effects of Angelica gigas, Angelica sinensis, Angelica acutiloba and their bioactive compounds. J. Korean Med. 2011, 32, 1–24. [Google Scholar]
- Kang, J.W.; Cho, H.E.; Choi, H.M.; Lee, I.C. Anti-wrinkle properties of Angelica gigas Nakai root extracts using mineral-rich water. J. Cosmet. Dermatol. 2023, 22, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Park, S.H.; Kim, B.Y.; Kim, A.H.; Park, B.J.; Kim, J.J. Inhibitory effects on melanin production of demethylsuberosin isolated from Angelica gigas Nakai. Korean J. Pharmacogn. 2014, 45, 209–213. [Google Scholar]
- Kang, J.; Nam, G.; Yoon, Y.; Kim, G.; Bae, S.; Lee, H.; Bae, S.; Cha, Y.; Cho, H.; Cho, H. Suppression of matrix metallopeptidase-3 expression in human dermal fibroblasts by decursin from Angelica gigas Nakai root extracts fermented with Jeju lava seawater. Asian J. Beauty Cosmetol. 2021, 19, 65–76. [Google Scholar] [CrossRef]
- Cao, Y.-j.; Zhang, Y.-m.; Qi, J.-p.; Liu, R.; Zhang, H.; He, L.-c. Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. Int. Immunopharmacol. 2015, 28, 1018–1025. [Google Scholar] [CrossRef]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef]
- Park, H.-J.; Cho, J.-H.; Hong, S.-H.; Kim, D.-H.; Jung, H.-Y.; Kang, I.-K.; Cho, Y.-J. Whitening and anti-wrinkle activities of ferulic acid isolated from Tetragonia tetragonioides in B16F10 melanoma and CCD-986sk fibroblast cells. J. Nat. Med. 2018, 72, 127–135. [Google Scholar] [CrossRef]
- Han, X.; Wei, T.; Jiang, H.; Li, W.; Zhang, G. Enhanced water solubility, stability, and in vitro antitumor activity of ferulic acid by chemical conjugation with amino-β-cyclodextrins. J. Mat. Sci. 2020, 55, 8694–8709. [Google Scholar] [CrossRef]
- Das, S.; Wong, A.B. Stabilization of ferulic acid in topical gel formulation via nanoencapsulation and pH optimization. Sci. Rep. 2020, 10, 12288. [Google Scholar] [CrossRef]
- Rezaei, A.; Varshosaz, J.; Fesharaki, M.; Farhang, A.; Jafari, S.M. Improving the solubility and in vitro cytotoxicity (anticancer activity) of ferulic acid by loading it into cyclodextrin nanosponges. Int. J. Nanomed. 2019, 14, 4589–4599. [Google Scholar] [CrossRef]
- Patil, H.; Vemula, S.K.; Narala, S.; Lakkala, P.; Munnangi, S.R.; Narala, N.; Jara, M.O.; Williams, R.O.; Terefe, H.; Repka, M.A. Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation—Where Are We Now? AAPS PharmSciTech 2024, 25, 37. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Ryu, S.; You, H.S.; Jeon, Y.N.; Jin, M.; Cho, C.-W.; Baek, J.-S. Enhanced antioxidant and anti-inflammatory effects of bee pollen and honey hybrid formulation by hot-melt extrusion. Food Hydrocoll. Health 2023, 4, 100167. [Google Scholar] [CrossRef]
- Ryu, S.-J.; You, H.-S.; Lee, H.-Y.; Baek, J.-S. Manufacture of mesoporous silica coated multi-walled carbon nanotubes containing silver nanoparticles synthesized by Angelica gigas Nakai using hot-melt extrusion for enhanced antimicrobial activities. Colloids Surf. A Physicochem. Eng. Asp. 2024, 693, 134023. [Google Scholar] [CrossRef]
- Ashour, E.A.; Majumdar, S.; Alsheteli, A.; Alshehri, S.; Alsulays, B.; Feng, X.; Gryczke, A.; Kolter, K.; Langley, N.; Repka, M.A. Hot melt extrusion as an approach to improve solubility, permeability and oral absorption of a psychoactive natural product, piperine. J. Pharm. Pharmacol. 2016, 68, 989–998. [Google Scholar] [CrossRef]
- Go, E.J.; Ryu, B.R.; Gim, G.J.; Lee, H.Y.; You, H.S.; Kim, H.B.; Lee, H.T.; Lee, J.Y.; Shim, M.S.; Baek, J.-S. Hot-melt extrusion enhances antioxidant effects of mulberry on probiotics and pathogenic microorganisms. Antioxidants 2022, 11, 2301. [Google Scholar] [CrossRef]
- Luo, Y.; Xu, L.; Xu, M.; Tao, X.; Ai, R.; Tang, X. Improvement of dissolution and bioavailability of Ginsenosides by hot melt extrusion and cogrinding. Drug Dev. Ind. Pharm 2013, 39, 109–116. [Google Scholar] [CrossRef]
- You, H.-S.; Jang, Y.-S.; Sathiyaseelan, A.; Ryu, S.-J.; Lee, H.-Y.; Baek, J.-S. Antibiofilm and Anticancer Activity of Multi-Walled Carbon Nanotubes Fabricated with Hot-Melt Extruded Astaxanthin-Mediated Synthesized Silver Nanoparticles. Int. J. Nanomed. 2025, 20, 343–366. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lee, Y.Y.; Lu, X.; Chen, J.; Liu, N.; Qiu, C.; Wang, Y. Simultaneous loading of (−)-epigallocatechin gallate and ferulic acid in chitosan-based nanoparticles as effective antioxidant and potential skin-whitening agents. Int. J. Biol. Macromol. 2022, 219, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, O.; Makiej, A.; Lopes Silva, C.; Jordan, O.; Borchard, G.; Marcinkowska, A.; Płatkiewicz, J.; Zgoła-Grześkowiak, A.; Kaczorek, E.; Smułek, W. Enhancing Formulation Stability: A Comparative Study of Ascorbic Acid and Ascorbyl Palmitate as Antioxidants in Nanoemulsions of Natural Products. ACS Appl. Nano Mater. 2025, 8, 12306–12313. [Google Scholar] [CrossRef]
- Ameta, R.K.; Soni, K.; Bhattarai, A. Recent advances in improving the bioavailability of hydrophobic/lipophilic drugs and their delivery via self-emulsifying formulations. Colloids Interfaces 2023, 7, 16. [Google Scholar] [CrossRef]
- Shin, D.H.; Cho, H.J.; Park, S.H.; Jeong, S.W.; Park, C.-W.; Han, K.; Chung, Y.B. HPLC analysis of ferulic acid and its pharmacokinetics after intravenous bolus administration in rats. J. Biomed. Transl. Res. 2016, 17, 1–7. [Google Scholar] [CrossRef]
- Kim, H.-B.; You, H.-S.; Ryu, S.-j.; Lee, H.-Y.; Baek, J.-S. Green synthesis of silver nanoparticles from mulberry leaf through hot melt extrusion: Enhanced antioxidant, antibacterial, anti-inflammatory, antidiabetic, and anticancer properties. Food Hydrocoll. Health 2024, 6, 100184. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, S.; Yan, B.; Chen, J.; Zhou, L.; Shan, L.; Wang, Y. Anti-proliferative, pro-apoptotic, anti-migrative and tumor-inhibitory effects and pleiotropic mechanism of theaflavin on B16F10 melanoma cells. Onco Targets Ther. 2021, 14, 1291–1304. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Sathiyaseelan, A.; Lu, Y.; Kim, K.M.; Wang, M.-H. Agar/carboxymethyl cellulose composite film loaded with hydroxyapatite nanoparticles for bone regeneration. Cellulose 2024, 31, 9319–9334. [Google Scholar] [CrossRef]
- Go, E.-J.; Ryu, B.-R.; Ryu, S.-J.; Kim, H.-B.; Lee, H.-T.; Kwon, J.-W.; Baek, J.-S.; Lim, J.-D. An enhanced water solubility and stability of anthocyanins in mulberry processed with hot melt extrusion. Int. J. Mol. Sci. 2021, 22, 12377. [Google Scholar] [CrossRef]
- Wang, W.; Kang, Q.; Liu, N.; Zhang, Q.; Zhang, Y.; Li, H.; Zhao, B.; Chen, Y.; Lan, Y.; Ma, Q. Enhanced dissolution rate and oral bioavailability of Ginkgo biloba extract by preparing solid dispersion via hot-melt extrusion. Fitoterapia 2015, 102, 189–197. [Google Scholar] [CrossRef]
- Saerens, L.; Vervaet, C.; Remon, J.P.; De Beer, T. Process monitoring and visualization solutions for hot-melt extrusion: A review. J. Pharm. Pharmacol. 2014, 66, 180–203. [Google Scholar] [CrossRef]
- Hofstetter, K.; Hinterstoisser, B.; Salmén, L. Moisture uptake in native cellulose–the roles of different hydrogen bonds: A dynamic FT-IR study using Deuterium exchange. Cellulose 2006, 13, 131–145. [Google Scholar] [CrossRef]
- Chen, J.; Li, L.; Zhou, X.; Li, B.; Zhang, X.; Hui, R. Structural characterization and α-glucosidase inhibitory activity of polysaccharides extracted from Chinese traditional medicine Huidouba. Int. J. Biol. Macromol. 2018, 117, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.S. Spectroscopy of Organic Compounds; Free Academy: Norwich, UK, 2008. [Google Scholar]
- Azad, M.O.K.; Kang, W.S.; Lim, J.D.; Park, C.H. Bio-fortification of Angelica gigas Nakai nano-powder using bio-polymer by hot melt extrusion to enhance the bioaccessibility and functionality of nutraceutical compounds. Pharmaceuticals 2019, 13, 3. [Google Scholar] [CrossRef]
- Azad, M.O.K.; Kim, W.W.; Jin, C.W.; Kang, W.S.; Park, C.H.; Cho, D.H. Development of a polymer-mediated soybean nanocomposite by hot melt extrusion to improve its functionality and antioxidant properties. Foods 2019, 8, 41. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Casimeer, S.C.; Ghidan, A.Y.; Al Antary, T.M.; Singaravelu, A. Exploration of antioxidant, antibacterial activities of green synthesized hesperidin loaded PLGA nanoparticles. Biointerface Res. Appl. Chem. 2021, 11, 14520–14528. [Google Scholar] [CrossRef]
- Eradati, N.; Tajabadi, F.; Ahmadi-Ashtiani, H.R.; Rezazadeh, S.; Taherian, M.; Rastegar, H. Optimization of Cleaning and Analytical Method for Determination of Arbutin, Hydroquinone and Kojic Acid in Cosmetic Products. J. Med. Plants 2020, 20, 50–59. [Google Scholar] [CrossRef]
- Lee, S.Y.; Nam, S.; Choi, Y.; Kim, M.; Koo, J.S.; Chae, B.-J.; Kang, W.-S.; Cho, H.-J. Fabrication and Characterizations of Hot-Melt Extruded Nanocomposites Based on Zinc Sulfate Monohydrate and Soluplus. Appl. Sci. 2017, 7, 902. [Google Scholar] [CrossRef]
- Lü, J.; Jiang, C.; Drabick, J.J.; Joshi, M.; Perimbeti, S. Angelica gigas Nakai (Korean Dang-gui) Root Alcoholic Extracts in Health Promotion and Disease Therapy—Active Phytochemicals and In Vivo Molecular Targets. Pharm. Res. 2025, 42, 25–47. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Guo, M.; Fu, Q.; He, Z. Application of hot melt extrusion to enhance the dissolution and oral bioavailability of oleanolic acid. Asian J. Pharm. Sci. 2017, 12, 66–72. [Google Scholar] [CrossRef]
HME-CO | |
---|---|
CO | 93.3 |
FA | 0.2 |
Lecithin | 3 |
Ascorbyl palmitate | 3.5 |
Total | 100 (%) |
HME-AG | |
---|---|
AG | 93.3 |
FA | 0.2 |
Lecithin | 3 |
Ascorbyl palmitate | 3.5 |
Total | 100 (%) |
Instrument | Agilent 1200 Series HPLC System | |
---|---|---|
Column | Kinetex 5 µm C18 100 Å LC Column 250 × 4.6 mm | |
Detector (Wavelength) | diode array detector (325 nm) | |
Solvent A | - | |
Solvent B | Water: Methanol (55: 45), pH 2.8 | |
Flow rate | 0.7 mL/min | |
Oven | 25 °C | |
Injection volume | 10 µL | |
Isocratic elution system | ||
Time (min) | %A | %B |
Initial | 0 | 100 |
10 m | 0 | 100 |
CO | HME-CO | AG | HME-AG | |
---|---|---|---|---|
Size (d. nm) | 752.3 ± 97.8 | 350.3 ± 39.9 | 746.1 ± 77.2 | 400.3 ± 47.3 |
CO | HME-CO | AG | HME-AG | |
---|---|---|---|---|
DPPH | 1304.3 ± 74.7 | 589.4 ± 13.7 | 606.8 ± 15.9 | 299.6 ± 21.2 |
ABTS | 778.2 ± 22.7 | 699.6 ± 19.4 | 862.7 ± 12.1 | 491.4 ± 8.4 |
CO | HME-CO | AG | HME-AG | |
---|---|---|---|---|
FA contents (μg/g) | 330.1 ± 7.4 | 7479.6 ± 170.4 | 528.5 ± 2.9 | 2339.2 ± 21.8 |
Melanin production rate (%) | 68.4 ± 3.2 | 39.9 ± 0.5 | 66.4 ± 4.3 | 44.8 ± 4.8 |
Wound closure rate (%) (48 h) | 89.1 ± 1.2 | 96.2 ± 0.3 | 81.4 ± 1.5 | 98.2 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, Y.-N.; You, H.-S.; Jang, S.-H.; Baek, J.-S. Eco-Friendly Enhancement of Ferulic Acid-Rich Extracts from Cnidium officinale and Angelica gigas via Hot-Melt Extrusion for Skin Brightening and Regeneration. Cosmetics 2025, 12, 197. https://doi.org/10.3390/cosmetics12050197
Jeon Y-N, You H-S, Jang S-H, Baek J-S. Eco-Friendly Enhancement of Ferulic Acid-Rich Extracts from Cnidium officinale and Angelica gigas via Hot-Melt Extrusion for Skin Brightening and Regeneration. Cosmetics. 2025; 12(5):197. https://doi.org/10.3390/cosmetics12050197
Chicago/Turabian StyleJeon, Yoo-Na, Han-Sol You, So-Hee Jang, and Jong-Suep Baek. 2025. "Eco-Friendly Enhancement of Ferulic Acid-Rich Extracts from Cnidium officinale and Angelica gigas via Hot-Melt Extrusion for Skin Brightening and Regeneration" Cosmetics 12, no. 5: 197. https://doi.org/10.3390/cosmetics12050197
APA StyleJeon, Y.-N., You, H.-S., Jang, S.-H., & Baek, J.-S. (2025). Eco-Friendly Enhancement of Ferulic Acid-Rich Extracts from Cnidium officinale and Angelica gigas via Hot-Melt Extrusion for Skin Brightening and Regeneration. Cosmetics, 12(5), 197. https://doi.org/10.3390/cosmetics12050197