Caffeine and Taurine from Energy Drinks—A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Short-Term Studies on Children
4. Short-Term Studies on Adolescents
5. Short-Term Studies on Students
6. Short-Term Studies on Athletes
7. Short-Term Studies on Animals
8. Long-Term Studies on Children
Compound | Children | Adolescents | Students | Athletes | References |
---|---|---|---|---|---|
Caffeine | Effective in treating patients with TTH or migraines | Barrier healing | Higher corrected QT interval | Improves alertness and cognitive performance | [37,75,80,81] |
Prevents UVB-induced skin cancer | Promotes wound healing | Therapeutic impact on renal cancer | Enhancesendurance | [77,82,83,84] | |
Taurine | Decreases blood pressure and ise antiarrhythmic | Positive effects on oxidative stress and inflammation | Helps shield the skin from damaging oxidative stress | May reduce tissue damage | [85,86,87] |
9. Long-Term Studies on Adolescents
Compound | Children | Adolescents | Students | Athletes | References |
---|---|---|---|---|---|
Caffeine | Detrimental effects on the neurological and cardiovascular systems | Affects the skin and other bodily functions | Increases systolic blood pressure | Increases the risk of heart problems | [14,90,95,96] |
Migraines | Obesity and dental enamel degradation | - | Weakened bone health | [74,96,97] | |
Taurine | Acute renal failure | Can induce coronary vasospasm | Gastrointestinal discomfort, including nausea or diarrhea | - | [78,98,99] |
Tubular necrosis | Slows down cellular senescence | Liver and renal dysfunctions | - | [78,99,100] |
10. Long-Term Studies on Students
11. Long-Term Studies on Athletes
12. Long-Term Studies on Animals
13. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Richards, G.; Smith, A.P. A review of energy drinks and mental health, with a focus on stress, anxiety, and depression. J. Caffeine Res. 2016, 6, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, S.L.; Díaz-Lara, J.; Pareja-Galeano, H.; Del Coso, J. Caffeinated drinks and physical performance in sport: A systematic review. Nutrients 2021, 13, 2944. [Google Scholar] [CrossRef] [PubMed]
- Assis, M.S.; Soares, A.C.; Sousa, D.N.; Eudes-Filho, J.; Faro, L.R.F.; Carneiro, F.P.; Carneiro, F.P.; Silva, M.V.; Motoyama, A.B.; Souza, G.M.R.; et al. Effects of caffeine on behavioural and cognitive deficits in rats. Basic Clin. Pharmacol. Toxicol. 2018, 123, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Pulcinelli, R.R.; de Paula, L.F.; Nietiedt, N.A.; Bandiera, S.; Hansen, A.W.; dos Reis Izolan, L.; Almeida, R.I.; Gomez, R. Taurine enhances voluntary alcohol intake and promotes anxiolytic-like behaviors in rats. Alcohol 2020, 88, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Herman, A. Caffeine’s mechanisms of action and its cosmetic use. Ski. Pharmacol. Physiol. 2012, 26, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Ouyang, S.H.; Tu, L.F.; Wang, X.; Yuan, W.L.; Wang, G.E.; Wu, Y.P.; Duan, W.J.; Yu, H.M.; Fang, Z.Z.; et al. Caffeine protects skin from oxidative stress-induced senescence through the activation of autophagy. Theranostics 2018, 8, 5713. [Google Scholar] [CrossRef]
- Yoshimura, T.; Manabe, C.; Inokuchi, Y.; Mutou, C.; Nagahama, T.; Murakami, S. Protective effect of taurine on UVB-induced skin aging in hairless mice. Biomed. Pharmacother. 2021, 141, 111898. [Google Scholar] [CrossRef]
- Bunch, K.T.; Peterson, M.B.; Smith, M.B.; Bunch, T.J. An Overview of the Risks of Contemporary Energy Drink Consumption and Their Active Ingredients on Cardiovascular Events. Curr. Cardiovasc. Risk Rep. 2023, 17, 39–48. [Google Scholar] [CrossRef]
- Walaszek, Z. Potential use of D-glucaric acid derivatives in cancer prevention. Cancer Lett. 1990, 54, 1–8. [Google Scholar] [CrossRef]
- Morita, N.; Walaszek, Z.; Kinjo, T.; Nishimaki, T.; Hanausek, M.; Slaga, T.J.; Mori, H.; Yoshimi, N. Effects of synthetic and natural in vivo inhibitors of β-glucuronidase on azoxymethane-induced colon carcinogenesis in rats. Mol. Med. Rep. 2008, 1, 741–746. [Google Scholar] [CrossRef]
- Tek, M.; Toptas, O.; Akkas, I.; Kazancioglu, H.O.; Firat, T.; Ezirganli, S.; Ozan, F. Effects of energy drinks on soft tissue healing. J. Craniofacial Surg. 2014, 25, 2084–2088. [Google Scholar] [CrossRef] [PubMed]
- Seifert, S.M.; Schaechter, J.L.; Hershorin, E.R.; Lipshultz, S.E. Health effects of energy drinks on children, adolescents, and young adults. Pediatrics 2011, 127, 511–528. [Google Scholar] [CrossRef] [PubMed]
- Cadoni, C.; Peana, A.T. Energy drinks at adolescence: Awareness or unawareness? Front. Behav. Neurosci. 2023, 17, 1080963. [Google Scholar] [CrossRef] [PubMed]
- Soós, R.; Gyebrovszki, Á.; Tóth, Á.; Jeges, S.; Wilhelm, M. Effects of caffeine and caffeinated beverages in children, adolescents and young adults: Short review. Int. J. Environ. Res. Public Health 2021, 18, 12389. [Google Scholar] [CrossRef]
- Pavlovic, N.; Miskulin, I.; Jokic, S.; Kovacevic, J.; Miskulin, M. Consumption of Energy Drinks among University Students in Eastern Croatia. Appl. Sci. 2023, 13, 1124. [Google Scholar] [CrossRef]
- Cholewa, K.; Czarnek, K.; Grzywacz, A.; Masiak, J. Energy Drink Use Disorder–a Review of the Literature. Teka Komisji Prawniczej PAN Oddział w Lublinie 2023, 16, 21–31. [Google Scholar] [CrossRef]
- Costantino, A.; Maiese, A.; Lazzari, J.; Casula, C.; Turillazzi, E.; Frati, P.; Fineschi, V. The dark side of energy drinks: A comprehensive review of their impact on the human body. Nutrients 2023, 15, 3922. [Google Scholar] [CrossRef]
- Kimura, M.; Ushijima, I.; Hiraki, M.; Ono, N. Enhancement of caffeine-induced locomotor hyperactivity produced by the combination with L-arginine or taurine in mice: Possible involvement of nitric oxide. Methods Find. Exp. Clin. Pharmacol. 2009, 31, 585–589. [Google Scholar] [CrossRef]
- Lin, F.J.; Pierce, M.M.; Sehgal, A.; Wu, T.; Skipper, D.C.; Chabba, R. Effect of taurine and caffeine on sleep–wake activity in Drosophila melanogaster. Nat. Sci. Sleep 2010, 2, 221–231. [Google Scholar] [CrossRef]
- Curran, C.P.; Marczinski, C.A. Taurine, caffeine, and energy drinks: Reviewing the risks to the adolescent brain. Birth Defects Res. 2017, 109, 1640–1648. [Google Scholar] [CrossRef]
- Kaziga, R.; Muchunguzi, C.; Achen, D.; Kools, S. Beauty is skin deep; the self-perception of adolescents and young women in construction of body image within the Ankole society. Int. J. Environ. Res. Public Health 2021, 18, 7840. [Google Scholar] [CrossRef] [PubMed]
- Ellison, R.C.; Singer, M.R.; Moore, L.L.; Nguyen, U.S.D.; Garrahie, E.J.; Marmor, J.K. Current caffeine intake of young children: Amount and sources. J. Am. Diet. Assoc. 1995, 95, 802–805. [Google Scholar] [CrossRef] [PubMed]
- Atik, A.; Harding, R.; De Matteo, R.; Kondos-Devcic, D.; Cheong, J.; Doyle, L.W.; Tolcos, M. Caffeine for apnea of prematurity: Effects on the developing brain. Neurotoxicology 2017, 58, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee consumption and health: Umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 359, j5024. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C. The suitability of caffeinated drinks for children: A systematic review of randomised controlled trials, observational studies and expert panel guidelines. J. Hum. Nutr. Diet. 2014, 27, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Mansour, B.; Amarah, W.; Nasralla, E.; Elias, N. Energy drinks in children and adolescents: Demographic data and immediate effects. Eur. J. Pediatr. 2019, 178, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Riera-Sampol, A.; Rodas, L.; Martínez, S.; Moir, H.J.; Tauler, P. Caffeine intake among undergraduate students: Sex differences, sources, motivations, and associations with smoking status and self-reported sleep quality. Nutrients 2022, 14, 1661. [Google Scholar] [CrossRef]
- Naderi, A.; de Oliveira, E.P.; Ziegenfuss, T.N.; Willems, M.T. Timing, optimal dose and intake duration of dietary supplements with evidence-based use in sports nutrition. J. Exerc. Nutr. Biochem. 2016, 20, 1–12. [Google Scholar] [CrossRef]
- Brown, J.; Villalona, Y.; Weimer, J.; Ludwig, C.P.; Hays, B.T.; Massie, L.; Marczinski, C.A.; Curran, C.P. Supplemental taurine during adolescence and early adulthood has sex-specific effects on cognition, behavior and neurotransmitter levels in C57BL/6J mice dependent on exposure window. Neurotoxicol. Teratol. 2020, 79, 106883. [Google Scholar] [CrossRef]
- Antony, S.; Peeyush Kumar, T.; Mathew, J.; Anju, T.R.; Paulose, C.S. Hypoglycemia induced changes in cholinergic receptor expression in the cerebellum of diabetic rats. J. Biomed. Sci. 2010, 17, 1–9. [Google Scholar] [CrossRef]
- Kurtz, J.A.; VanDusseldorp, T.A.; Doyle, J.A.; Otis, J.S. Taurine in sports and exercise. J. Int. Soc. Sports Nutr. 2021, 18, 39. [Google Scholar] [CrossRef] [PubMed]
- Heatherley, S.V.; Hancock, K.M.; Rogers, P.J. Psychostimulant and other effects of caffeine in 9-to 11-year-old children. J. Child Psychol. Psychiatry 2006, 47, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Temple, J.L. Caffeine use in children: What we know, what we have left to learn, and why we should worry. Neurosci. Biobehav. Rev. 2009, 33, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Alashqar, M.B. Caffeine in the treatment of atopic dermatitis and psoriasis: A review. SKIN J. Cutan. Med. 2019, 3, 59–71. [Google Scholar] [CrossRef]
- Wu, G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020, 52, 329–360. [Google Scholar] [CrossRef]
- Abebe, W.; Mozaffari, M.S. Role of taurine in the vasculature: An overview of experimental and human studies. Am. J. Cardiovasc. Dis. 2011, 1, 293–311. [Google Scholar]
- Alford, C.; Cox, H.; Wescott, R. The effects of red bull energy drink on human performance and mood. Amino Acids 2001, 21, 139–150. [Google Scholar] [CrossRef]
- Xu, H.; Gan, C.; Gao, Z.; Huang, Y.; Wu, S.; Zhang, D.; Wang, X.; Sheng, J. Caffeine targets SIRT3 to enhance SOD2 activity in mitochondria. Front. Cell Dev. Biol. 2020, 8, 822. [Google Scholar] [CrossRef]
- Martins, G.L.; Guilherme, J.P.L.F.; Ferreira, L.H.B.; de Souza-Junior, T.P.; Lancha, A.H., Jr. Caffeine and exercise performance: Possible directions for definitive findings. Front. Sports Act. Living 2020, 2, 202. [Google Scholar] [CrossRef]
- Riesenhuber, A.; Boehm, M.; Posch, M.; Aufricht, C. Diuretic potential of energy drinks. Amino Acids 2006, 31, 81–83. [Google Scholar] [CrossRef]
- Iheanacho, M.M.; Analike, R.A.; Meludu, S.C.; Ogbodo, E.C.; Onah, C.E. Short-term energy drink consumption influences plasma glucose, apolipoprotein B, body mass index and pulse rate among students. Discoveries 2022, 10, e159. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, R.; Cole, J.; Tallent, J.; Jeffries, O.; Theis, N.; Waldron, M. Physiological and thermoregulatory effects of oral taurine supplementation on exercise tolerance during forced convective cooling. Eur. J. Sport Sci. 2022, 22, 209–217. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on the safety of caffeine. EFSA J. 2015, 13, 4102. [Google Scholar]
- Musgrave, I.F.; Farrington, R.L.; Hoban, C.; Byard, R.W. Caffeine toxicity in forensic practice: Possible effects and under-appreciated sources. Forensic Sci. Med. Pathol. 2016, 12, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Nordt, S.P.; Vilke, G.M.; Clark, R.F.; Lee Cantrell, F.; Chan, T.C.; Galinato, M.; Nguyen, V.; Castillo, E.M. Energy drink use and adverse effects among emergency department patients. J. Community Health 2012, 37, 976–981. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.H.; O’Keefe, J.H.; Bhatti, S.K.; Patil, H.R.; DiNicolantonio, J.J.; Lucan, S.C.; Lavie, C.J. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 1043–1051. [Google Scholar] [CrossRef]
- Pennington, N.; Johnson, M.; Delaney, E.; Blankenship, M.B. Energy drinks: A new health hazard for adolescents. J. Sch. Nurs. 2010, 26, 352–359. [Google Scholar] [CrossRef]
- Mitchell, D.C.; Knight, C.A.; Hockenberry, J.; Teplansky, R.; Hartman, T.J. Beverage caffeine intakes in the US. Food Chem. Toxicol. 2014, 63, 136–142. [Google Scholar] [CrossRef]
- Orbeta, R.L.; Overpeck, M.D.; Ramcharran, D.; Kogan, M.D.; Ledsky, R. High caffeine intake in adolescents: Associations with difficulty sleeping and feeling tired in the morning. J. Adolesc. Health 2006, 38, 451–453. [Google Scholar] [CrossRef]
- Zhang, Y.; Coca, A.; Casa, D.J.; Antonio, J.; Green, J.M.; Bishop, P.A. Caffeine and diuresis during rest and exercise: A meta-analysis. J. Sci. Med. Sport 2015, 18, 569–574. [Google Scholar] [CrossRef]
- Andriessen, A. Prevention, recognition and treatment of dry skin conditions. Br. J. Nurs. 2013, 22, 26–30. [Google Scholar] [CrossRef]
- Augustin, M.; Wilsmann-Theis, D.; Körber, A.; Kerscher, M.; Itschert, G.; Dippel, M.; Staubach, P. Diagnosis and treatment of xerosis cutis–a position paper. J. Dtsch. Dermatol. Ges. 2019, 17, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Chtourou, H.; Trabelsi, K.; Ammar, A.; Shephard, R.J.; Bragazzi, N.L. Acute effects of an “Energy drink” on short-term maximal performance, reaction times, psychological and physiological parameters: Insights from a randomized double-blind, placebo-controlled, counterbalanced crossover trial. Nutrients 2019, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Gonzalez-Millán, C.; Salinero, J.J.; Abian-Vicen, J.; Areces, F.; Barbero-Alvarez, J.C.; Muñoz, V.; Portillo, L.J.; Gonzalez-Rave, J.M.; Del Coso, J. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids 2014, 46, 1385–1392. [Google Scholar] [CrossRef]
- Roustit, M.; Millet, C.; Blaise, S.; Dufournet, B.; Cracowski, J.L. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvasc. Res. 2010, 80, 505–511. [Google Scholar] [CrossRef]
- Iredahl, F.; Löfberg, A.; Sjöberg, F.; Farnebo, S.; Tesselaar, E. Non-invasive measurement of skin microvascular response during pharmacological and physiological provocations. PLoS ONE 2015, 10, e0133760. [Google Scholar] [CrossRef]
- Froiland, K.; Koszewski, W.; Hingst, J.; Kopecky, L. Nutritional supplement use among college athletes and their sources of information. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 104–120. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.J.; Jagim, A.R.; Camic, C.L.; Andre, M.J. Acute effects of a caffeine-containing supplement on anaerobic power and subjective measurements of fatigue in recreationally active men. J. Strength Cond. Res. 2018, 32, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Wesnes, K.A.; Brooker, H.; Watson, A.W.; Bal, W.; Okello, E. Effects of the Red Bull energy drink on cognitive function and mood in healthy young volunteers. J. Psychopharmacol. 2017, 31, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.C.; Candow, D.G.; Little, J.P.; Magnus, C.; Chilibeck, P.D. Effect of Red Bull energy drink on repeated Wingate cycle performance and bench-press muscle endurance. Int. J. Sport Nutr. Exerc. Metab. 2007, 17, 433–444. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef]
- Ward, R.; Bridge, C.A.; McNaughton, L.R.; Sparks, S.A. The effect of acute taurine ingestion on 4-km time trial performance in trained cyclists. Amino Acids 2016, 48, 2581–2587. [Google Scholar] [CrossRef]
- Rutherford, J.A.; Spriet, L.L.; Stellingwerff, T. The effect of acute taurine ingestion on endurance performance and metabolism in well-trained cyclists. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 322–329. [Google Scholar] [CrossRef]
- Crișan, M.; Munteanu, C.; Roșoriu, C.; Lang, C. Red bull induces biochemical changes in Wistar rat liver. Ann. Rom. Soc. Cell Biol. 2013, 18, 118. [Google Scholar]
- Crișan, M.; Munteanu, C.; Jula, C.; Lang, C.; Rosioru, C. Effects of Red Bull on cardiac muscle in physically trained and untrained Wistar rat. Ann. RSCB 2014, 19, 37–41. [Google Scholar]
- Valle, M.C.; Couto-Pereira, N.S.; Lampert, C.; Arcego, D.M.; Toniazzo, A.P.; Limberger, R.P.; Dallegrave, E.; Dalmaz, C.; Arbo, M.D.; Leal, M.B. Energy drinks and their component modulate attention, memory, and antioxidant defences in rats. Eur. J. Nutr. 2018, 57, 2501–2511. [Google Scholar] [CrossRef]
- Sudakov, S.; Medvedeva, O.F.; Rusakova, I.V.; Figurina, I.B. Effect of short-term and chronic caffeine intake on rats with various anxiety level. Bull. Exp. Biol. Med. 2001, 132, 1177–1179. [Google Scholar] [CrossRef]
- Takechi, R.; Mamo, J.; Das, S.; Graneri, L.; D’Alonzo, Z.; Nesbit, M.; Junaldi, E.; Lam, V. Short-term consumption of alcohol (vodka) mixed with energy drink (AMED) attenuated alcohol-induced cerebral capillary disturbances and neuroinflammation in adult wild-type mice. Nutr. Neurosci. 2022, 25, 2398–2407. [Google Scholar] [CrossRef]
- Krahe, T.E.; Filgueiras, C.C.; Quaresma, S.R.; Schibuola, H.G.; Abreu-Villaça, Y.; Manhães, A.C.; Ribeiro-Carvalho, A. Energy drink enhances the behavioral effects of alcohol in adolescent mice. Neurosci. Lett. 2017, 651, 102–108. [Google Scholar] [CrossRef]
- Nowaczewska, M.; Wiciński, M.; Kaźmierczak, W. The ambiguous role of caffeine in migraine headache: From trigger to treatment. Nutrients 2020, 12, 2259. [Google Scholar] [CrossRef]
- Lipton, R.B.; Diener, C.; Robbins, M.S.; Garas, S.Y.; Patel, K. Caffeine in the management of patients with headache. J. Headache Pain 2017, 18, 107. [Google Scholar] [CrossRef]
- Sánchez, E.; Betriu, À.; Arroyo, D.; López, C.; Hernández, M.; Rius, F.; Fernández, E.; Lecube, A. Skin autofluorescence and subclinical atherosclerosis in mild to moderate chronic kidney disease: A case-control study. PLoS ONE 2017, 12, e0170778. [Google Scholar] [CrossRef]
- Eny, K.M.; Orchard, T.J.; Miller, R.G.; Maynard, J.; Grant, D.M.; Costacou, T.; Cleary, P.A.; Braffett, B.H.; The DCCT/EDIC Research Group; Paterson, A.D. Caffeine consumption contributes to skin intrinsic fluorescence in type 1 diabetes. Diabetes Technol. Ther. 2015, 17, 726–734. [Google Scholar] [CrossRef]
- Li, P.; Haas, N.A.; Dalla-Pozza, R.; Jakob, A.; Oberhoffer, F.S.; Mandilaras, G. Energy Drinks and Adverse Health Events in Children and Adolescents: A Literature Review. Nutrients 2023, 15, 2537. [Google Scholar] [CrossRef]
- Ra, S.G.; Akazawa, N.; Choi, Y.; Matsubara, T.; Oikawa, S.; Kumagai, H.; Tanahashi, K.; Ohmori, H.; Maeda, S. Taurine supplementation reduces eccentric exercise-induced delayed onset muscle soreness in young men. Adv. Exp. Med. Biol. 2015, 803, 765–772. [Google Scholar] [CrossRef]
- Oyetakin-White, P.; Suggs, A.; Koo, B.; Matsui, M.S.; Yarosh, D.; Cooper, K.D.; Baron, E.D. Does poor sleep quality affect skin ageing? Clin. Exp. Dermatol. 2015, 40, 17–22. [Google Scholar] [CrossRef]
- Fletcher, E.A.; Lacey, C.S.; Aaron, M.; Kolasa, M.; Occiano, A.; Shah, S.A. Randomized controlled trial of high-volume energy drink versus caffeine consumption on ECG and hemodynamic parameters. J. Am. Heart Assoc. 2017, 6, e004448. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Q.; Li, Y.; Song, W.; Chen, A.; Liu, J.; Xuan, X. Collagen sponge prolongs taurine release for improved wound healing through inflammation inhibition and proliferation stimulation. Ann. Transl. Med. 2021, 9, 1010. [Google Scholar] [CrossRef]
- Xu, H.; Hu, L.; Liu, T.; Chen, F.; Li, J.; Xu, J.; Jiang, L.; Xiang, Z.; Wang, X.; Sheng, J. Caffeine targets G6PDH to disrupt redox homeostasis and inhibit renal cell carcinoma proliferation. Front. Cell Dev. Biol. 2020, 8, 556162. [Google Scholar] [CrossRef]
- Astorino, T.A.; Matera, A.J.; Basinger, J.; Evans, M.; Schurman, T.; Marquez, R. Effects of red bull energy drink on repeated sprint performance in women athletes. Amino Acids 2012, 42, 1803–1808. [Google Scholar] [CrossRef]
- Faghfouri, A.H.; Seyyed Shoura, S.M.; Fathollahi, P.; Shadbad, M.A.; Papi, S.; Ostadrahimi, A.; Faghfuri, E. Profiling inflammatory and oxidative stress biomarkers following taurine supplementation: A systematic review and dose-response meta-analysis of controlled trials. Eur. J. Clin. Nutr. 2022, 76, 647–658. [Google Scholar] [CrossRef]
- Marcinkiewicz, J.; Kontny, E. Taurine and inflammatory diseases. Amino Acids 2014, 46, 7–20. [Google Scholar] [CrossRef]
- Bedrosian, I.; Sofia, R.D.; Wolff, S.M.; Dinarello, C.A. Taurolidine, an analogue of the amino acid taurine, suppresses interleukin 1 and tumor necrosis factor synthesis in human peripheral blood mononuclear cells. Cytokine 1991, 3, 568–575. [Google Scholar] [CrossRef]
- Marcoux, D. Appearance, cosmetics, and body art in adolescents. Dermatol. Clin. 2000, 18, 667–673. [Google Scholar] [CrossRef]
- Tomanic, M.; Paunovic, K.; Lackovic, M.; Djurdjevic, K.; Nestorovic, M.; Jakovljevic, A.; Markovic, M. Energy Drinks and Sleep among Adolescents. Nutrients 2022, 14, 3813. [Google Scholar] [CrossRef]
- Kim, E.; Grover, L.M.; Bertolotti, D.; Green, T.L. Growth hormone rescues hippocampal synaptic function after sleep deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R1588–R1596. [Google Scholar] [CrossRef]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of caffeine on human health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Consistent dietary patterns identified from childhood to adulthood: The cardiovascular risk in Young Finns Study. Br. J. Nutr. 2005, 93, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Carraway-Stage, V.; Hovland, J.; Showers, C.; Díaz, S.; Duffrin, M.W. Food-based science curriculum yields gains in nutrition knowledge. J. Sch. Health 2015, 85, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Mistretta, A.; Turconi, G.; Cena, H.; Roggi, C.; Galvano, F. Nutrition knowledge and other determinants of food intake and lifestyle habits in children and young adolescents living in a rural area of Sicily, South Italy. Public Health Nutr. 2013, 16, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhou, Y.; Tang, L. Caffeine induces sustained apoptosis of human gastric cancer cells by activating the caspase-9/caspase-3 signalling pathway. Mol. Med. Rep. 2017, 16, 2445–2454. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Jones, G. Soft drink and milk consumption, physical activity, bone mass, and upper limb fractures in children: A population-based case-control study. Calcif. Tissue Int. 2004, 75, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, Y.; Lee, J.H. Association between energy drink intake, sleep, stress, and suicidality in Korean adolescents: Energy drink use in isolation or in combination with junk food consumption. Nutr. J. 2016, 15, 87. [Google Scholar] [CrossRef] [PubMed]
- Baum, M.; Weiss, M. The influence of a taurine containing drink on cardiac parameters before and after exercise measured by echocardiography. Amino Acids 2001, 20, 75–82. [Google Scholar] [CrossRef]
- Vidot, H.; Cvejic, E.; Carey, S.; Strasser, S.I.; McCaughan, G.W.; Allman-Farinelli, M.; Shackel, N.A. Randomised clinical trial: Oral taurine supplementation versus placebo reduces muscle cramps in patients with chronic liver disease. Aliment. Pharmacol. Ther. 2018, 48, 704–712. [Google Scholar] [CrossRef]
- Singh, P.; Gollapalli, K.; Mangiola, S.; Schranner, D.; Yusuf, M.A.; Chamoli, M.; Shi, S.L.; Bastos, B.L.; Nair, T.; Riermeier, A.; et al. Taurine deficiency as a driver of aging. Science 2023, 380, eabn9257. [Google Scholar] [CrossRef]
- De Sanctis, V.; Soliman, N.; Soliman, A.T.; Elsedfy, H.; Di Maio, S.; El Kholy, M.; Fiscina, B. Caffeinated energy drink consumption among adolescents and potential health consequences associated with their use: A significant public health hazard. Acta Biomed. Atenei Parm. 2017, 88, 222. [Google Scholar] [CrossRef]
- Duchan, E.; Patel, N.D.; Feucht, C. Energy drinks: A review of use and safety for athletes. Physician Sportsmed. 2010, 38, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Van Batenburg-Eddes, T.; Lee, N.C.; Weeda, W.D.; Krabbendam, L.; Huizinga, M. The potential adverse effect of energy drinks on executive functions in early adolescence. Front. Psychol. 2014, 5, 457. [Google Scholar] [CrossRef] [PubMed]
- Değim, Z.; Celebi, N.; Sayan, H.; Babül, A.; Erdoğan, D.; Take, G.Ü. An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids 2002, 22, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.Y.; Kim, H.M.; Jeong, H.J. The potential protective role of taurine against experimental allergic inflammation. Life Sci. 2017, 184, 18–24. [Google Scholar] [CrossRef]
- Bruser, D. Energy Drinks Suspected to Have Caused Deaths of 3 Canadians; Toronto Star: Toronto, ON, USA, 2012. [Google Scholar]
- Knight, C.A.; Knight, I.; Mitchell, D.C. Beverage caffeine intakes in young children in Canada and the US. Can. J. Diet. Pract. Res. 2006, 67, 96–99. [Google Scholar] [CrossRef]
- Kumar, A.; Jacson, J. Potential effects of excessive Energy drinks consumption in young people on long-term cardiovascular risks: Energy Drinks and Long-term Cardiovascular risks. Indian J. Pharm. Drugs Stud. 2022, 1, 80–84. [Google Scholar]
- Eichwald, T.; Solano, A.F.; Souza, J.; de Miranda, T.B.; Carvalho, L.B.; dos Santos Sanna, P.L.; da Silva, R.A.F.; Latini, A. Anti-Inflammatory Effect of Caffeine on Muscle under Lipopolysaccharide-Induced Inflammation. Antioxidants 2023, 12, 554. [Google Scholar] [CrossRef]
- Guta, R. Is taurine a pharmaconutrient. J. Pharmacol. Ther. Res 2018, 2, 18–20. [Google Scholar]
- Qaradakhi, T.; Gadanec, L.K.; McSweeney, K.R.; Abraham, J.R.; Apostolopoulos, V.; Zulli, A. The anti-inflammatory effect of taurine on cardiovascular disease. Nutrients 2020, 12, 2847. [Google Scholar] [CrossRef]
- Alsunni, A.A. Energy drink consumption: Beneficial and adverse health effects. Int. J. Health Sci. 2015, 9, 468. [Google Scholar] [CrossRef]
- Meredith, S.E.; Juliano, L.M.; Hughes, J.R.; Griffiths, R.R. Caffeine use disorder: A comprehensive review and research agenda. J. Caffeine Res. 2013, 3, 114–130. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, R.P.; Lima, F.D.; Carvalho, N.R.; Bresciani, G.; Royes, L.F. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr. Res. 2020, 80, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F.; Earle-Payne, K.; Kidd, M.T. Taurine as a natural antioxidant: From direct antioxidant effects to protective action in various toxicological models. Antioxidants 2021, 10, 1876. [Google Scholar] [CrossRef] [PubMed]
- Baliou, S.; Adamaki, M.; Ioannou, P.; Pappa, A.; Panayiotidis, M.I.; Spandidos, D.A.; Christodoulou, I.; Kyriakopoulos, A.M.; Zoumpourlis, V. Protective role of taurine against oxidative stress. Mol. Med. Rep. 2021, 24, 605. [Google Scholar] [CrossRef] [PubMed]
- Ignarro, L.J. Physiology and pathophysiology of nitric oxide. Kidney Int. Suppl. 1996, 55, S2–S5. [Google Scholar]
- William, R.; Watson, R.W.; Redmond, H.P.; Mc Carthy, J.; Bouchier-Hayes, D. Taurolidine, an antilipopolysaccharide agent, has immunoregulatory properties that are mediated by the amino acid taurine. J. Leukoc. Biol. 1995, 58, 299–306. [Google Scholar] [CrossRef]
- Caine, J.J.; Geracioti, T.D. Taurine, energy drinks, and neuroendocrine effects. Clevel. Clin. J. Med. 2016, 83, 895–904. [Google Scholar] [CrossRef]
- Munteanu, C.; Rosioru, C.; Tarba, C.; Lang, C. Long-term consumption of energy drinks induces biochemical and ultrastructural alterations in the heart muscle. Anatol. J. Cardiol. 2018, 19, 326–333. [Google Scholar] [CrossRef]
- Demirel, A.; Başgöze, S.; Çakıllı, K.; Aydın, Ü.; Şentürk, G.E.; Diker, V.Ö.; Ertürk, M. Histopathological changes in the myocardium caused by energy drinks and alcohol in the mid-term and their effects on skeletal muscle following ischemia-reperfusion in a rat model. Anatol. J. Cardiol. 2023, 27, 12. [Google Scholar] [CrossRef]
- Muxiddinovna, I.M. Effects of Energy Drinks on Biochemical and Sperm Parameters in Albino Rats. Cent. Asian J. Med. Nat. Sci. 2022, 3, 126–131. [Google Scholar]
- Adjene, J.; Emojevwe, V.; Idiapho, D. Effects of long-term consumption of energy drinks on the body and brain weights of adult Wistar rats. J. Exp. Clin. Anat. 2014, 13, 17–20. [Google Scholar] [CrossRef]
- Mancy, W.; Alogaiel, D.; Hanafi, M.; Zakaria, E. Effects of chronic consumption of energy drinks on liver and kidney of experimental rats. Trop. J. Pharm. Res. 2017, 16, 2849–2856. [Google Scholar] [CrossRef]
- Ali, L.Q. Histological and Physiological Studies on the Long-term Effect of Different Concentrations of Energy Drink (Tiger) on the Renal and Hepatic Systems of Young Mice. Baghdad Sci. J. 2019, 16, 816. [Google Scholar] [CrossRef]
- Graneri, L.; Lam, V.; D’Alonzo, Z.; Nesbit, M.; Mamo, J.C.L.; Takechi, R. The consumption of energy drinks induces blood-brain barrier dysfunction in wild-type mice. Front. Nutr. 2021, 8, 668514. [Google Scholar] [CrossRef]
- Alasehirli, B.; Inaloz, H.S.; Inaloz, S.S.; Unal, B.; Eralp, A.; Can, I. The Effects of Caffeine on Rat Skin. Int. Med. J. 2001, 8, 299–302. [Google Scholar]
- Supit, T.; Susilaningsih, N.; Prasetyo, A. Effects of Caffeine Consumption on Autologous Full-Thickness Skin Graft Healing in an Animal Model. Indian J. Plast. Surg. 2021, 54, 314–320. [Google Scholar] [CrossRef]
- Akdemir, O.; Hede, Y.; Zhang, F.; Lineaweaver, W.C.; Arslan, Z.; Songur, E. Effects of taurine on reperfusion injury. J. Plast. Reconstr. Aesthetic Surg. 2011, 64, 921–928. [Google Scholar] [CrossRef]
Compound | Children | Adolescents | Students | Athletes |
---|---|---|---|---|
Caffeine | ~2.5 mg/kg bw [25] | ~200 mg [26] | ~200 mg [27] | ~3.6 mg/kg bw [28] |
Taurine | ~100 mg [20] | ~3000 mg [29] | ~100 mg [30] | ~3000 mg [31] |
Compound | Children | Adolescents | Students | Athletes | References |
---|---|---|---|---|---|
Caffeine | Lower risk of cardiovascular disease | Systolic blood pressure raised | Promotes muscle fat oxidation | Improves alertness and cognitive performance | [24,26,35,37] |
Improved cognitive test scores | Preserves skin cells from solar radiation | Better glycogen sparing capacity | Enhances physical performance | [24,35,38,39] | |
Taurine | Prevents obesity | Natriuresis and diuresis | Increase in plasma glucose levels | Impacts exercise capacity | [21,40,41,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihaiescu, T.; Turti, S.; Souca, M.; Muresan, R.; Achim, L.; Prifti, E.; Papuc, I.; Munteanu, C.; Marza, S.M. Caffeine and Taurine from Energy Drinks—A Review. Cosmetics 2024, 11, 12. https://doi.org/10.3390/cosmetics11010012
Mihaiescu T, Turti S, Souca M, Muresan R, Achim L, Prifti E, Papuc I, Munteanu C, Marza SM. Caffeine and Taurine from Energy Drinks—A Review. Cosmetics. 2024; 11(1):12. https://doi.org/10.3390/cosmetics11010012
Chicago/Turabian StyleMihaiescu, Tania, Sabina Turti, Marius Souca, Raluca Muresan, Larisa Achim, Eftimia Prifti, Ionel Papuc, Camelia Munteanu, and Sorin Marian Marza. 2024. "Caffeine and Taurine from Energy Drinks—A Review" Cosmetics 11, no. 1: 12. https://doi.org/10.3390/cosmetics11010012
APA StyleMihaiescu, T., Turti, S., Souca, M., Muresan, R., Achim, L., Prifti, E., Papuc, I., Munteanu, C., & Marza, S. M. (2024). Caffeine and Taurine from Energy Drinks—A Review. Cosmetics, 11(1), 12. https://doi.org/10.3390/cosmetics11010012