Impact of Lifestyle on Differences in Skin Hydration of Selected Body Areas in Young Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Corneometry
- Constant temperature and humidity in the room—the recommended temperature is 20 degrees, and the optimum humidity is between 40% and 60%.
- Measurements were not taken in direct lamplight or sunlight, as heat radiation can cause inaccurate measurements.
- The test persons were not directly measured after intense physical activity and, as recommended by the manufacturer, had time to rest for a while so that their blood circulation could regain an appropriate level; the measurement was carried out on hairless skin.
2.3. Study Procedures
2.4. Statistical Analysis
3. Results
3.1. Skin Hydration
3.2. Condition of the Skin on the Face and Facial Skin Care Habits
3.3. Condition of the Skin on the Neck and Neck Skin
3.4. Neckline Skin Habits
3.5. Leg Skin Habits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Verdier-Sévrain, S.; Bonté, F. Skin hydration: A review on its molecular mechanisms. J. Cosmet. Dermatol. 2007, 6, 75–82. [Google Scholar] [CrossRef]
- Boireau-Adamezyk, E.; Baillet-Guffroy, A.; Stamatas, G.N. The stratum corneum water content and natural moisturization factor composition evolve with age and depend on body site. Int. J. Dermatol. 2021, 60, 834–839. [Google Scholar] [CrossRef]
- Gunnarsson, M.; Mojumdar, E.H.; Topgaard, D.; Sparr, E. Extraction of natural moisturizing factor from the stratum corneum and its implication on skin molecular mobility. J. Colloid Interface Sci. 2021, 604, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Dolivo, D.; Rodrigues, A.; Sun, L.; Galiano, R.; Mustoe, T.; Hong, S.J. Reduced hydration regulates pro-inflammatory cytokines via CD14 in barrier function-impaired skin. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166482. [Google Scholar] [CrossRef] [PubMed]
- John, A.J.U.K.; Del Galdo, F.; Gush, R.; Worsley, P.R. An evaluation of mechanical and biophysical skin parameters at different body locations. Ski. Res. Technol. 2023, 29, e13292. [Google Scholar] [CrossRef] [PubMed]
- Noszczyk, M. Diagnostyka kosmetologiczna skóry. In Kosmetologia Pielęgniarska i Lekarska; PZWL: Warsaw, Poland, 2013; pp. 16–17. [Google Scholar]
- Ridd, M.J.; Gaunt, D.M.; Guy, R.H.; Redmond, N.M.; Garfield, K.; Hollinghurst, S.; Ball, N.; Shaw, L.; Purdy, S.; Metcalfe, C. Comparison of patient (POEM), observer (EASI, SASSAD, TIS) and corneometry measures of emollient effectiveness in children with eczema: Findings from the COMET feasibility trial. Br. J. Dermatol. 2018, 179, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Hua, W.; Fan, L.M.; Dai, R.; Luan, M.; Xie, H.; Li, A.Q.; Li, L. Comparison of two series of non-invasive instruments used for the skin physiological properties measurements: The DermaLab® from Cortex Technology vs. the series of detectors from Courage & Khazaka. Ski. Res. Technol. 2017, 23, 70–78. [Google Scholar] [CrossRef]
- Holm, E.A.; Wulf, H.C.; Thomassen, L.; Jemec, G.B. Instrumental assessment of atopic eczema: Validation of transepidermal water loss, stratum corneum hydration, erythema, scaling, and edema. J. Am. Acad. Dermatol. 2006, 55, 772–780. [Google Scholar] [CrossRef]
- Courage + Khazaka Electronic GmbH. Brochure Corneometer® CM 825. Available online: https://www.courage-khazaka.de/en/downloads-en/item/prospekt-cm825-e (accessed on 14 May 2023).
- Courage + Khazaka Electronic GmbH. Prospekt Basisgeräte und Software MPA CTplus. Available online: https://www.courage-khazaka.de/en/component/zoo/item/prospekt-mpa?Itemid=258 (accessed on 14 May 2023).
- Ma, L.; Niu, Y.; Yuan, C.; Bai, T.; Yang, S.; Wang, M.; Li, Y.; Shao, L. The Characteristics of the Skin Physiological Parameters and Facial Microbiome of “Ideal Skin” in Shanghai Women. Clin. Cosmet. Investig. Dermatol. 2023, 16, 325–337. [Google Scholar] [CrossRef]
- Palma, L.; Marques, L.T.; Bujan, J.; Rodrigues, L.M. Dietary water affects human skin hydration and biomechanics. Clin. Cosmet. Investig. Dermatol. 2015, 8, 413–421. [Google Scholar] [CrossRef]
- Akdeniz, M.; Tomova-Simitchieva, T.; Dobos, G.; Blume-Peytavi, U.; Kottner, J. Does dietary fluid intake affect skin hydration in healthy humans? A systematic literature review. Ski. Res. Technol. 2018, 24, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Celoria, V.; Rosset, F.; Pala, V.; Dapavo, P.; Ribero, S.; Quaglino, P.; Mastorino, L. The Skin Microbiome and Its Role in Psoriasis: A Review. Psoriasis 2023, 13, 71–78. [Google Scholar] [CrossRef]
- Lee, T.Y.; Kim, K.B.; Han, S.K.; Jeong, S.H.; Dhong, E.S. Skin Hydration Level as a Predictor for Diabetic Wound Healing: A Retrospective Study. Plast. Reconstr. Surg. 2019, 143, 848e–856e. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.K.; Md Nor, N.; Kamaruddin, N.A.; Jamil, A.; Safian, N. Comparison of transepidermal water loss and skin hydration in diabetics and nondiabetics. Clin. Exp. Dermatol. 2021, 46, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Namgoong, S.; Yang, J.P.; Han, S.K.; Lee, Y.N.; Dhong, E.S. Influence of Peripheral Neuropathy and Microangiopathy on Skin Hydration in the Feet of Patients With Diabetes Mellitus. Wounds 2019, 31, 173–178. [Google Scholar] [PubMed]
- Hon, K.L.; Lam, P.H.; Ng, W.G.; Kung, J.S.; Cheng, N.S.; Lin, Z.X.; Chow, C.M.; Leung, T.F. Age, sex, and disease status as determinants of skin hydration and transepidermal water loss among children with and without eczema. Hong Kong Med. J. 2020, 26, 19–26. [Google Scholar] [CrossRef]
- Wang, S.; Shen, C.; Zhao, M.; Jiao, L.; Tian, J.; Wang, Y.; Ma, L.; Man, M.Q. Either transepidermal water loss rates or stratum corneum hydration levels can predict quality of life in children with atopic dermatitis. Pediatr. Investig. 2021, 5, 277–280. [Google Scholar] [CrossRef]
- Palma, M.L.; Monteiro, C.; Tavares, L.; Bujan, M.J.; Rodrigues, L.M. Relationship between the dietary intake of water and skin hydration. Biomed. Biopharm. Res. 2012, 9, 173–181. [Google Scholar] [CrossRef]
- Palma, M.L.; Tavares, L.; Fluhr, J.W.; Bujan, M.J.; Rodrigues, L.M. Positive impact of dietary water on in vivo epidermal water physiology. Ski. Res. Technol. 2015, 21, 413–418. [Google Scholar] [CrossRef]
- Boelsma, E.; van de Vijver, L.P.; Goldbohm, R.A.; Klöpping-Ketelaars, I.A.; Hendriks, H.F.; Roza, L. Human skin condition and its associations with nutrient concentrations in serum and diet. Am. J. Clin. Nutr. 2003, 77, 348–355. [Google Scholar] [CrossRef]
- Mac-Mary, S.; Creidi, P.; Marsaut, D.; Courderot-Masuyer, C.; Cochet, V.; Gharbi, T.; Guidicelli-Arranz, D.; Tondu, F.; Humbert, P. Assessment of effects of an additional dietary natural mineral water uptake on skin hydration in healthy subjects by dynamic barrier function measurements and clinic scoring. Ski. Res. Technol. 2006, 12, 199–205. [Google Scholar] [CrossRef]
- Douladiris, N.; Vakirlis, E.; Vassilopoulou, E. Atopic Dermatitis and Water: Is There an Optimum Water Intake Level for Improving Atopic Skin? Children 2023, 10, 273. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.H.; James, L.J.; Shirreffs, S.M.; Maughan, R.J. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J. Appl. Physiol. 2017, 122, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Oizumi, R.; Sugimoto, Y.; Aibara, H. The association between activity levels and skin moisturising function in adults. Dermatol. Rep. 2021, 13, 8811. [Google Scholar] [CrossRef] [PubMed]
- Valpaços, C.; Leclerc-Mercier, S.; Lopes, L.; Svoboda, D.; Miranda, D.; Correia, P.; Junior, J.; Fernandes, E.; Francois-Newton, V.; Mandary, M.B.; et al. Benefits of the Dermocosmetic Mineral 89 Probiotic Fractions Adjunct to Topical Retinoids for Anti-Aging Benefits. Clin. Cosmet. Investig. Dermatol. 2023, 16, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Bravo, B.; Correia, P.; Gonçalves Junior, J.E.; Sant’Anna, B.; Kerob, D. Benefits of topical hyaluronic acid for skin quality and signs of skin aging: From literature review to clinical evidence. Dermatol. Ther. 2022, 35, e15903. [Google Scholar] [CrossRef] [PubMed]
- Baldi, M.; Reynaud, R.; Lefevre, F.; Fleury, M.; Scandolera, A.; Maramaldi, G. Synergistic use of bioactive agents for the management of different skin conditions: An overview of biological activities. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 1450–1466. [Google Scholar] [CrossRef]
- Darlenski, R.; Hristakieva, E.; Aydin, U.; Gancheva, D.; Gancheva, T.; Zheleva, A.; Gadjeva, V.; Fluhr, J.W. Epidermal barrier and oxidative stress parameters improve during in 311 nm narrow band UVB phototherapy of plaque type psoriasis. J. Dermatol. Sci. 2018, 91, 28–34. [Google Scholar] [CrossRef]
- Cortés, H.; Mendoza-Muñoz, N.; Galván-Gil, F.A.; Magaña, J.J.; Lima, E.; González-Torres, M.; Leyva-Gómez, G. Comprehensive mapping of human body skin hydration: A pilot study. Ski. Res. Technol. 2019, 25, 187–193. [Google Scholar] [CrossRef]
- Camilion, J.V.; Khanna, S.; Anasseri, S.; Laney, C.; Mayrovitz, H.N. Physiological, Pathological, and Circadian Factors Impacting Skin Hydration. Cureus 2022, 14, e27666. [Google Scholar] [CrossRef]
- Samadi, A.; Yazdanparast, T.; Shamsipour, M.; Hassanzadeh, H.; Hashemi Orimi, M.; Firooz, R.; Firooz, A. Stratum corneum hydration in healthy adult humans according to the skin area, age and sex: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
Number | Mean ± SD | Range (Min–Max) | |
---|---|---|---|
Neck left | 48 | 41.7 ± 11.3 | 14.8–69.0 |
Neck middle | 48 | 49.2 ± 12 | 24.4–72.1 |
Neck right | 48 | 47.2 ± 8.2 | 26.6–67.7 |
Cheek | 40 | 92.00 ± 27.63 | 8.7–118.2 |
Forehead | 40 | 91.20 ± 26.68 | 3.2–119.5 |
Chin | 40 | 106.06 ± 21.06 | 32.6–119.6 |
Right clavicle | 42 | 55.1 ± 12.93 | 5–73.1 |
Left clavicle | 42 | 51.84 ± 10.00 | 29.6–70.4 |
Sternum | 42 | 53.55 ± 16.3 | 0.9–86 |
Thigh | 42 | 31.09 ± 6.89 | 14.6–55.9 |
Shank | 42 | 33.54 ± 6.28 | 14–45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Załęcki, P.; Rogowska, K.; Wąs, P.; Łuczak, K.; Wysocka, M.; Nowicka, D. Impact of Lifestyle on Differences in Skin Hydration of Selected Body Areas in Young Women. Cosmetics 2024, 11, 13. https://doi.org/10.3390/cosmetics11010013
Załęcki P, Rogowska K, Wąs P, Łuczak K, Wysocka M, Nowicka D. Impact of Lifestyle on Differences in Skin Hydration of Selected Body Areas in Young Women. Cosmetics. 2024; 11(1):13. https://doi.org/10.3390/cosmetics11010013
Chicago/Turabian StyleZałęcki, Piotr, Karolina Rogowska, Paulina Wąs, Kamila Łuczak, Marta Wysocka, and Danuta Nowicka. 2024. "Impact of Lifestyle on Differences in Skin Hydration of Selected Body Areas in Young Women" Cosmetics 11, no. 1: 13. https://doi.org/10.3390/cosmetics11010013
APA StyleZałęcki, P., Rogowska, K., Wąs, P., Łuczak, K., Wysocka, M., & Nowicka, D. (2024). Impact of Lifestyle on Differences in Skin Hydration of Selected Body Areas in Young Women. Cosmetics, 11(1), 13. https://doi.org/10.3390/cosmetics11010013