Next Article in Journal
Introduction to the Special Issue “Artificial Intelligence Knowledge Representation”
Previous Article in Journal
Review of Kalman Filter Employment in the NAIRU Estimation
Previous Article in Special Issue
Measuring the Change Towards More Sustainable Mobility: MUV Impact Evaluation Approach
Article Menu

Export Article

Open AccessCommunication

Sustainability Assessment of Asset Management Decisions for Wastewater Infrastructure Systems—Implementation of a System Dynamics Model

1
Center for Advancement of Trenchless Technology (CATT), University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
2
Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
3
Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
*
Author to whom correspondence should be addressed.
Systems 2019, 7(3), 34; https://doi.org/10.3390/systems7030034
Received: 5 May 2019 / Revised: 26 June 2019 / Accepted: 5 July 2019 / Published: 10 July 2019
  |  
PDF [9693 KB, uploaded 10 July 2019]
  |  

Abstract

The goal of this case study is to demonstrate the application and utility of a developed System Dynamics (SD) model to assess the sustainability of strategic decisions for managing the wastewater collection (WWC) pipe network system for a medium-size municipality in Southern Ontario. Two asset management scenarios, suggested by the research-partnered municipality, are adapted based on the acceptable maximum fraction of pipes in the worst condition (ICG5) being equal to (1) 10% of the network-length/year, and (2) the initial 2.8% of network-length/year for the entire life cycle of the asset. The urban densification scenarios are restricted to a 50% urban densification rate. The least maximum rehabilitation rates of 1.41% and 1.85% of network length/year are found necessary to keep the ICG5 pipes fractions below the selected 10% and 2.8% thresholds, respectively. The maximum and minimum user fee-hike rates for WWC and wastewater treatment (WWT) services are adjusted to support the financial self-sustainability aspect. Results from the SD model, as presented over a 100 year simulation period, show that an accelerated rehabilitation strategy will have a lower financial cost with the lowest greenhouse gas (GHG) emissions. This study highlights the implications of integrating asset management of wastewater-collection and -treatment systems. Applying such an integrated SD model will help decision makers to forecast the future trends related to social, economic, and environmental performances of wastewater infrastructure systems, and evaluate the behavior of interrelated and complex WWC and WWT systems to find synergistic cost-saving opportunities while at the same time improve sustainability. View Full-Text
Keywords: rehabilitation; wastewater collection pipe-network; asset management; system dynamics; sustainability assessment rehabilitation; wastewater collection pipe-network; asset management; system dynamics; sustainability assessment
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Mohammadifardi, H.; Knight, M.A.; Unger, A.A.J. Sustainability Assessment of Asset Management Decisions for Wastewater Infrastructure Systems—Implementation of a System Dynamics Model. Systems 2019, 7, 34.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Systems EISSN 2079-8954 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top