Soil Nematodes Regulate Ecosystem Multifunctionality Under Different Zokor Mounds in Qinghai–Tibet Alpine Grasslands
Abstract
Simple Summary
Abstract
1. Introduction
2. Study Areas and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Soil Physicochemical Analysis
2.4. Identification of Soil Nematode Communities
2.5. Calculation of Nematode Ecological Function Index and Metabolic Footprint
2.6. Calculation of Soil Ecosystem Multifunctionality
2.7. Data Processing
3. Results and Analysis
3.1. Soil Nematode Community Composition
3.2. Metabolic Footprint and Flora Analysis of Soil Nematodes
3.3. Soil Ecosystem Multifunctionality
3.4. Relationship Between Soil Nematodes and Ecosystem Multifunctionality
4. Discussion
4.1. Effects of Zokor Mounds with Different Vegetation on the Composition of Soil Nematode Communities
4.2. Effects of Zokor Mounds with Different Vegetation on the Metabolic Footprint of Soil Nematodes
4.3. Effects of Zokor Mounds with Different Vegetation on Soil Ecosystem Functions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef]
- Trew, B.T.; Maclean, I.M. Vulnerability of global biodiversity hotspots to climate change. Glob. Ecol. Biogeogr. 2021, 30, 768–783. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Zhang, X.; Zhou, J.; Jia, Z.; Ma, J.; Yao, W.; Tu, Y.; Sun, Z.; Wei, Y. Ecological barriers: An approach to ecological conservation and restoration in China. Ambio 2024, 53, 1077–1091. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Feng, B.; Zhou, J.; Hu, L.; Liu, Z.; Yang, Y.; Yang, S.; Ni, J.; Bai, W.; Zhao, S. Land Use and Ecosystem Service Value Spatiotemporal Dynamics, Topographic Gradient Effect and Their Driving Factors in Typical Alpine Ecosystems of the East Qinghai-Tibet Plateau: Implications for Conservation and Development. Ecol. Evol. 2025, 15, e71125. [Google Scholar] [CrossRef]
- Gao, X.; Dong, S. Mitigation strategies for climate change to promote restoration of alpine grassland. In Grassland Degradation, Restoration and Sustainable Management of Global Alpine Area; Elsevier: Amsterdam, The Netherlands, 2025; pp. 479–508. [Google Scholar] [CrossRef]
- Jiang, M.; Li, H.; Zhang, W.; Liu, J.; Zhang, Q. Effects of climate change and grazing on the soil organic carbon stock of alpine wetlands on the Tibetan Plateau from 2000 to 2018. Catena 2024, 238, 107870. [Google Scholar] [CrossRef]
- Noss, R.F.; Cartwright, J.M.; Estes, D.; Witsell, T.; Elliott, K.G.; Adams, D.S.; Albrecht, M.A.; Boyles, R.P.; Comer, P.J.; Doffitt, C. Science Needs of Southeastern Grassland Species of Conservation Concern: A Framework for Species Status Assessments; Open-File Report 2021–1047; U.S. Geological Survey: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, X.; Zhou, C.; Shao, X.; Shi, Z.; Li, H.; Su, H.; Qin, R.; Chang, T.; Hu, X. Alpine grassland degradation and its restoration in the Qinghai–Tibet plateau. Grasses 2023, 2, 31–46. [Google Scholar] [CrossRef]
- Jin, X.; Jin, H.; Luo, D.; Sheng, Y.; Wu, Q.; Wu, J.; Wang, W.; Huang, S.; Li, X.; Liang, S. Impacts of permafrost degradation on hydrology and vegetation in the source area of the Yellow River on Northeastern Qinghai-Tibet Plateau, Southwest China. Front. Earth Sci. 2022, 10, 845824. [Google Scholar] [CrossRef]
- Dreelin, R.A.; Boyce, A.J.; Jones, H.P. Keystone effects of prairie dogs (Cynomys spp.) on grassland birds: Current knowledge and future directions. Conserv. Sci. Pract. 2025, 7, e70004. [Google Scholar] [CrossRef]
- Yang, D.; Pang, X.P.; Jia, Z.F.; Guo, Z.G. Effect of plateau zokor on soil carbon and nitrogen concentrations of alpine meadows. Catena 2021, 207, 105625. [Google Scholar] [CrossRef]
- Li, C.; Li, X.; Yang, Y.; Shi, Y.; Zhang, J. Comparative responses of carbon flux components in recovering bare patches of degraded alpine meadow in the Source Zone of the Yellow River. Sci. Total Environ. 2024, 908, 168343. [Google Scholar] [CrossRef]
- Palmer, B.J.; Valentine, L.E.; Lohr, C.A.; Daskalova, G.N.; Hobbs, R.J. Burrowing by translocated boodie (Bettongia lesueur) populations alters soils but has limited effects on vegetation. Ecol. Evol. 2021, 11, 2596–2615. [Google Scholar] [CrossRef]
- Peterson, E.K.; Jones, C.D.; Sandmeier, F.C.; Rivas, A.P.A.; Back, C.A.; Canney, A.; Fender, J.; Gomez, M.; Gorski, J.; Heintzelman, N. Drought influences biodiversity in a semi-arid shortgrass prairie in southeastern Colorado. J. Arid Environ. 2021, 195, 104633. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Zhang, L. A bibliometric analysis of research trends and hotspots in alpine grassland degradation on the Qinghai-Tibet Plateau. PeerJ 2023, 11, e16210. [Google Scholar] [CrossRef]
- Molina-García, A.; García-Hernández, J.; Soto-Jiménez, M.F.; Páez-Osuna, F.; Jara-Marini, M.E. Mercury and selenium biomagnification in a coastal food web from the Gulf of California influenced by agriculture and shrimp aquaculture. Environ. Sci. Pollut. Res. 2021, 28, 56175–56187. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Bardgett, R.D.; Vitousek, P.M.; Maestre, F.T.; Williams, M.A.; Eldridge, D.J.; Lambers, H.; Neuhauser, S.; Gallardo, A.; García-Velázquez, L. Changes in belowground biodiversity during ecosystem development. Proc. Natl. Acad. Sci. USA 2019, 116, 6891–6896. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Singh, B.K.; Maestre, F.T. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 2017, 20, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Qi, J.; Jin, C.; Liu, Y.; Wang, Y.; Pan, H.; Chen, S.; Liang, C.; Peng, Z.; Chen, B. Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. Glob. Change Biol. 2022, 28, 6653–6664. [Google Scholar] [CrossRef] [PubMed]
- Biswal, D. Nematodes as ghosts of land use past: Elucidating the roles of soil nematode community studies as indicators of soil health and land management practices. Appl. Biochem. Biotechnol. 2022, 194, 2357–2417. [Google Scholar] [CrossRef]
- Van Den Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Traunspurger, W.; Wardle, D.A.; De Goede, R.G.; Adams, B.J.; Ahmad, W.; Andriuzzi, W.S. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Maring, L.; Prokop, G.; Brils, J.; Bender, J.; Bispo, A.; Helming, K. Systems knowledge for sustainable soil and land management. Sci. Total Environ. 2022, 822, 153389. [Google Scholar] [CrossRef]
- Liu, S.; Plaza, C.; Ochoa-Hueso, R.; Trivedi, C.; Wang, J.; Trivedi, P.; Zhou, G.; Piñeiro, J.; Martins, C.S.; Singh, B.K. Litter and soil biodiversity jointly drive ecosystem functions. Glob. Change Biol. 2023, 29, 6276–6285. [Google Scholar] [CrossRef]
- Wang, J.; Shi, X.; Lucas-Borja, M.E.; Guo, Q.; Mao, J.; Tan, Y.; Zhang, G. Soil nematode abundances drive agroecosystem multifunctionality under short-term elevated CO2 and O3. Glob. Change Biol. 2023, 29, 1618–1627. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.; Ma, X.; Ahmad, I.; Kamran, M.; Dong, Z.; Cai, T.; Jia, Q.; Ren, X.; Zhang, P. Planting patterns and deficit irrigation strategies to improve wheat production and water use efficiency under simulated rainfall conditions. Front. Plant Sci. 2017, 8, 1408. [Google Scholar] [CrossRef]
- Wang, X.; Wang, R.; Gao, J. Precipitation and soil nutrients determine the spatial variability of grassland productivity at large scales in China. Front. Plant Sci. 2022, 13, 996313. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Bremner, J. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Bremner, J. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Bender, M.; Wood, C. Total phosphorus in soil. In Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters; Southern Cooperative Series Bulletin 396; North Carolina State University: Raleigh, NC, USA, 2000; Volume 45. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Eckert, D.; Watson, M. Integrating the mehlich-3 extractant into existing soil test interpretation schemes. Commun. Soil Sci. Plant Anal. 1996, 27, 1237–1249. [Google Scholar] [CrossRef]
- Bongers, T. De Nematoden van Nederland: Een Identificatietabel voor de in Nederland Aangetroffen Zoetwater-En Bodembewonende Nematoden; Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging: Utrecht, The Netherlands, 1988. [Google Scholar]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.; Freckman, D.W.; Georgieva, S. Feeding habits in soil nematode families and genera—An outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar] [PubMed]
- Ferris, H. Form and function: Metabolic footprints of nematodes in the soil food web. Eur. J. Soil Biol. 2010, 46, 97–104. [Google Scholar] [CrossRef]
- Zhang, X.; Guan, P.; Wang, Y.; Li, Q.; Zhang, S.; Zhang, Z.; Bezemer, T.M.; Liang, W. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biol. Biochem. 2015, 80, 118–126. [Google Scholar] [CrossRef]
- Stevnbak, K.; Maraldo, K.; Georgieva, S.; Bjørnlund, L.; Beier, C.; Schmidt, I.K.; Christensen, S. Suppression of soil decomposers and promotion of long-lived, root herbivorous nematodes by climate change. Eur. J. Soil Biol. 2012, 52, 1–7. [Google Scholar] [CrossRef]
- Maestre, F.T.; Quero, J.L.; Gotelli, N.J.; Escudero, A.; Ochoa, V.; Delgado-Baquerizo, M.; García-Gómez, M.; Bowker, M.A.; Soliveres, S.; Escolar, C. Plant species richness and ecosystem multifunctionality in global drylands. Science 2012, 335, 214–218. [Google Scholar] [CrossRef]
- Cesarz, S.; Ruess, L.; Jacob, M.; Jacob, A.; Schaefer, M.; Scheu, S. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil Biol. Biochem. 2013, 62, 36–45. [Google Scholar] [CrossRef]
- Wu, H.; Chen, Y.; Ganjurjav, H.; Zhao, J. Effects of Rodent Isolation on Plant Community Structure and Greenhouse Gas Emission in the Alpine Grassland of the Qinghai–Tibet Plateau. Sustainability 2024, 16, 4943. [Google Scholar] [CrossRef]
- Yang, Y.; Hua, R.; Leng, H.; Yao, J.; Yang, J.; Yang, K. Effect of bioturbation by plateau pika (Ochotona curzoniae) on soil carbon and nitrogen stocks in alpine meadows. Glob. Ecol. Conserv. 2025, 59, e03559. [Google Scholar] [CrossRef]
- Yeates, G.W. Nematodes as soil indicators: Functional and biodiversity aspects. Biol. Fertil. Soils 2003, 37, 199–210. [Google Scholar] [CrossRef]
- Scott, I.; Sutherland, I. Gastrointestinal Nematodes of Sheep and Cattle: Biology and Control; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Liu, P.; Zhou, H.; Chen, Z.; Suonan, J. Plant-soil mediated effects of long-term warming on soil nematodes of alpine meadows on the qinghai–Tibetan plateau. Biology 2022, 11, 1596. [Google Scholar] [CrossRef]
- Ma, B.; Sheng, X.; Zhou, J.; Nielsen, U.N.; Wang, X.; Ma, M. Phosphorus addition ameliorates soil micro-food web simplification due to nitrogen enrichment but does not restore nematode community composition. Soil Biol. Biochem. 2024, 195, 109447. [Google Scholar] [CrossRef]
- Zhang, Z.; Chu, B.; Hua, L.; Dong, R.; Dong, K.; Cai, X.; Liu, J.; Gan, R.; Dong, L.; Zhang, J. Grazing reduced vegetation biomass and root nutrition related to plateau zokor creating mounds in summer on the Tibetan Plateau. Ecol. Eng. 2024, 209, 107404. [Google Scholar] [CrossRef]
- Dorrough, J.; Val, J.; Travers, S.K.; Wilson, B.; Eldridge, D.J.; Carrillo, Y.; Nielsen, U.N.; Powell, J.R.; Wilks, G.; McPherson, P. Integrated analysis of aboveground and belowground indicators support a comprehensive evaluation of ecosystem recovery. Restor. Ecol. 2023, 31, e13987. [Google Scholar] [CrossRef]
- Nizamani, M.M.; Hughes, A.C.; Qureshi, S.; Zhang, Q.; Tarafder, E.; Das, D.; Acharya, K.; Wang, Y.; Zhang, Z.-G. Microbial biodiversity and plant functional trait interactions in multifunctional ecosystems. Appl. Soil Ecol. 2024, 201, 105515. [Google Scholar] [CrossRef]
- Wang, Y.P.; Huang, Y.; Augusto, L.; Goll, D.S.; Helfenstein, J.; Hou, E. Toward a global model for soil inorganic phosphorus dynamics: Dependence of exchange kinetics and soil bioavailability on soil physicochemical properties. Glob. Biogeochem. Cycles 2022, 36, e2021GB007061. [Google Scholar] [CrossRef] [PubMed]
- Msimbira, L.A.; Smith, D.L. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Front. Sustain. Food Syst. 2020, 4, 106. [Google Scholar] [CrossRef]
- Ferris, H.; Griffiths, B.S.; Porazinska, D.L.; Powers, T.O.; Wang, K.-H.; Tenuta, M. Reflections on plant and soil nematode ecology: Past, present and future. J. Nematol. 2012, 44, 115–126. [Google Scholar]
- Johnson, S.N.; Benefer, C.M.; Frew, A.; Griffiths, B.S.; Hartley, S.E.; Karley, A.J.; Rasmann, S.; Schumann, M.; Sonnemann, I.; Robert, C.A. New frontiers in belowground ecology for plant protection from root-feeding insects. Appl. Soil Ecol. 2016, 108, 96–107. [Google Scholar] [CrossRef]
- Xing, W.; Lu, X.; Geng, S.; Ding, J.; Bai, Y. Mechanisms underlying the negative effects of nitrogen addition on soil nematode communities in global grassland ecosystems. Geoderma 2023, 436, 116564. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Nian, L.; Li, L.; Liu, X.; Wang, Q. Soil Nematodes Regulate Ecosystem Multifunctionality Under Different Zokor Mounds in Qinghai–Tibet Alpine Grasslands. Biology 2025, 14, 1200. https://doi.org/10.3390/biology14091200
Zhang X, Nian L, Li L, Liu X, Wang Q. Soil Nematodes Regulate Ecosystem Multifunctionality Under Different Zokor Mounds in Qinghai–Tibet Alpine Grasslands. Biology. 2025; 14(9):1200. https://doi.org/10.3390/biology14091200
Chicago/Turabian StyleZhang, Xiaodong, Lili Nian, Liangliang Li, Xuelu Liu, and Qi Wang. 2025. "Soil Nematodes Regulate Ecosystem Multifunctionality Under Different Zokor Mounds in Qinghai–Tibet Alpine Grasslands" Biology 14, no. 9: 1200. https://doi.org/10.3390/biology14091200
APA StyleZhang, X., Nian, L., Li, L., Liu, X., & Wang, Q. (2025). Soil Nematodes Regulate Ecosystem Multifunctionality Under Different Zokor Mounds in Qinghai–Tibet Alpine Grasslands. Biology, 14(9), 1200. https://doi.org/10.3390/biology14091200