Accumulation and Subcellular Distribution Patterns of Carbamazepine in Hydroponic Vegetables
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Cultivation
2.3. Plant Uptake and Transport Experiment
2.4. Quantitative Radioautographic Imaging
2.5. Subcellular Distribution
2.6. Safranin O and Fast Green Staining
2.7. Data Analysis
3. Results and Discussion
3.1. Mass Balance in the Water-Plant System
3.2. Distribution and Accumulation Trend of Carbamazepine in Plant Organs
3.3. Distribution of Carbamazepine in Different Leaf Sections
3.4. Quantitative Radioautographic Imaging of 14C-Carbamazepine
3.5. Subcellular Distribution of Carbamazepine in Chinese Flowering Cabbage Cells
3.6. Influencing Factors
3.6.1. Physicochemical Properties of Organic Pollutants
3.6.2. Cultivation Time
3.6.3. Plant Lipid Content
3.6.4. Plant Xylem
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PPCPs | Pharmaceutical and Personal Care Products |
CBZ | carbamazepine |
POPOP | 1,4-di(5-phenyloxazole-2-yl) |
PPO | 5-diphenyloxazole |
LSC | liquid scintillation counter |
RCF | root concentration factor |
References
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Preciado, D.; Jiménez-Cartagena, C.; Matamoros, V.; Bayona, J.M. Screening of 47 organic microcontaminants in agricultural irrigation waters and their soil loading. Water Res. 2011, 45, 221–231. [Google Scholar]
- Meyer, M.F.; Powers, S.M.; Hampton, S.E. An evidence synthesis of pharmaceuticals and personal care products (PPCPs) in the environment: Imbalances among compounds, sewage treatment techniques, and ecosystem types. Environ. Sci. Technol. 2019, 53, 12961–12973. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; O’Flynn, D.; White, B.; Holland, L.; Parle-McDermott, A.; Lawler, J.; McCloughlin, T.; Harold, D.; Huerta, B.; Regan, F. Monitoring of emerging contaminants of concern in the aquatic environment: A review of studies showing the application of effect-based measures. Anal. Methods 2021, 13, 5120–5143. [Google Scholar]
- Williams, M.; Kookana, R.S.; Mehta, A.; Yadav, S.K.; Tailor, B.L.; Maheshwari, B. Emerging contaminants in a river receiving untreated wastewater from an Indian urban centre. Sci. Total Environ. 2019, 647, 1256–1265. [Google Scholar]
- Tang, Y.; Zhong, Y.; Li, H.; Huang, Y.; Guo, X.; Yang, F.; Wu, Y. Contaminants of emerging concern in aquatic environment: Occurrence, monitoring, fate, and risk assessment. Water Environ. Res. 2020, 92, 1811–1817. [Google Scholar]
- Wu, X.; Conkle, J.L.; Ernst, F.; Gan, J. Treated wastewater irrigation: Uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environ. Sci. Technol. 2014, 48, 11286–11293. [Google Scholar] [CrossRef]
- Fu, Q.; Malchi, T.; Carter, L.J.; Li, H.; Gan, J.; Chefetz, B. Pharmaceutical and personal care products: From wastewater treatment into agro-food systems. Environ. Sci. Technol. 2019, 53, 14083–14090. [Google Scholar]
- Calderón-Preciado, D.; Matamoros, V.; Bayona, J.M. Occurrence and potential crop uptake of emerging contaminants and related compounds in an agricultural irrigation network. Sci. Total Environ. 2011, 412–413, 14–19. [Google Scholar] [CrossRef]
- Knight, E.R.; Carter, L.J.; McLaughlin, M.J. Bioaccumulation, uptake, and toxicity of carbamazepine in soil-plant systems. Environ. Toxicol. Chem. 2018, 37, 1122–1130. [Google Scholar]
- Löffler, D.; Römbke, J.; Meller, M.; Ternes, T.A. Environmental fate of pharmaceuticals in water/sediment systems. Environ. Sci. Technol. 2005, 39, 5209–5218. [Google Scholar] [PubMed]
- Jurado, A.; López-Serna, R.; Vázquez-Suné, E.; Carrera, J.; Pujades, E.; Petrovic, M.; Barceló, D. Occurrence of carbamazepine and five metabolites in an urban aquifer. Chemosphere 2014, 115, 47–53. [Google Scholar] [PubMed]
- Li, J.; Dodgen, L.; Ye, Q.; Gan, J. Degradation kinetics and metabolites of carbamazepine in soil. Environ. Sci. Technol. 2013, 47, 3678–3684. [Google Scholar] [PubMed]
- Ferrari, B.; Paxeus, N.; Lo, G.R.; Pollio, A.; Garric, J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Saf. 2003, 55, 359–370. [Google Scholar]
- Paltiel, O.; Fedorova, G.; Tadmor, G.; Kleinstern, G.; Maor, Y.; Chefetz, B. Human exposure to wastewater-derived pharmaceuticals in fresh produce: A randomized controlled trial focusing on carbamazepine. Environ. Sci. Technol. 2016, 50, 4476–4482. [Google Scholar]
- Lindberg, R.H.; Östman, M.; Olofsson, U.; Grabic, R.; Fick, J. Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system. Water Res. 2014, 58, 221–229. [Google Scholar]
- Briggs, G.G.; Bromilow, R.H.; Evans, A.A. Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic. Sci. 1982, 13, 495–504. [Google Scholar]
- Trapp, S. Modelling uptake into roots and subsequent translocation of neutral and ionisable organic compounds. Pest Manag. Sci. 2000, 56, 767–778. [Google Scholar]
- Dodgen, L.K.; Ueda, A.; Wu, X.; Parker, D.R.; Gan, J. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs. Environ. Pollut. 2015, 198, 144–153. [Google Scholar]
- Miller, E.L.; Nason, S.L.; Karthikeyan, K.G.; Pedersen, J.A. Root Uptake of pharmaceuticals and personal care product ingredients. Environ. Sci. Technol. 2016, 50, 525–541. [Google Scholar]
- Mackuľak, T.; Mosný, M.; Škubák, J.; Grabic, R.; Birošová, L. Fate of psychoactive compounds in wastewater treatment plant and the possibility of their degradation using aquatic plants. Environ. Toxicol. Pharmacol. 2015, 39, 969–973. [Google Scholar] [PubMed]
- Chen, Y.; Nie, E.; Zheng, X.; Ye, Q.; Li, H.; Wang, H. Uptake, subcellular distribution and metabolism of 14C-caffeine in leafy vegetables from water. J. Hazard. Mater. 2021, 414, 125501. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, F.; Ding, L.; Zhang, G.; Bai, B.; Han, Y.; Xiao, L.; Song, Y.; Li, Y.; Wan, S.; et al. Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling. J. Hazard. Mater. 2023, 443, 130384. [Google Scholar]
- Chen, Y.; Lu, Y.; Nie, E.; Akhtar, K.; Zhang, S.; Ye, Q.; Wang, H. Uptake, translocation and accumulation of the fungicide benzene kresoxim-methyl in Chinese flowering cabbage (Brassica campastris var. parachinensis) and water spinach (Ipomoea aquatica). Environ. Pollut. 2020, 264, 114815. [Google Scholar]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species: A review. Sci. Total Environ. 2018, 636, 477–486. [Google Scholar]
- Zhang, D.Q.; Hua, T.; Gersberg, R.M.; Zhu, J.; Ng, W.J.; Tan, S.K. Carbamazepine and naproxen: Fate in wetland mesocosms planted with Scirpus validus. Chemosphere 2013, 91, 14–21. [Google Scholar]
- Carter, L.J.; Harris, E.; Williams, M.; Ryan, J.J.; Kookana, R.S.; Boxall, A.B.A. Fate and uptake of pharmaceuticals in soil–plant systems. J. Agric. Food Chem. 2014, 62, 816–825. [Google Scholar]
- Tejeda, A.; Torres-Bojorges, Á.X.; Zurita, F. Carbamazepine removal in three pilot-scale hybrid wetlands planted with ornamental species. Ecol. Eng. 2017, 98, 410–417. [Google Scholar]
- Wu, X.; Ernst, F.; Conkle, J.L.; Gan, J. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ. Int. 2013, 60, 15–22. [Google Scholar]
- Li, M.; Ding, T.; Wang, H.; Wang, W.; Li, J.; Ye, Q. Uptake and translocation of 14C-Carbamazepine in soil-plant systems. Environ. Pollut. 2018, 243, 1352–1359. [Google Scholar]
- Tanoue, R.; Sato, Y.; Motoyama, M.; Nakagawa, S.; Shinohara, R.; Nomiyama, K. Plant uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed wastewater. J. Agric. Food Chem. 2012, 60, 10203–10211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Feng, Y.; Liu, Y.; Chang, H.; Li, Z.; Xue, J. Uptake and translocation of organic pollutants in plants: A review. J. Integr. Agric. 2017, 16, 1659–1668. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, L. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 2004, 55, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Madmon, M.; Zvuluni, Y.; Mordehay, V.; Hindi, A.; Malchi, T.; Drug, E.; Shenker, M.; Weissberg, A.; Chefetz, B. Pharmacokinetics of the recalcitrant drug lamotrigine: Identification and distribution of metabolites in cucumber plants. Environ. Sci. Technol. 2023, 57, 20228–20237. [Google Scholar] [CrossRef]
- Ben Mordechay, E.; Tarchitzky, J.; Chen, Y.; Shenker, M.; Chefetz, B. Composted biosolids and treated wastewater as sources of pharmaceuticals and personal care products for plant uptake: A case study with carbamazepine. Environ. Pollut. 2018, 232, 164–172. [Google Scholar] [CrossRef]
- Ning, D.; Wang, H.; Zhuang, Y. Induction of functional cytochrome P450 and its involvement in degradation of benzoic acid by Phanerochaete chrysosporium. Biodegradation 2010, 21, 297–308. [Google Scholar] [CrossRef]
- Ghannoum, M.; Yates, C.; Galvao, T.F.; Sowinski, K.M.; Vo, T.H.; Coogan, A.; Gosselin, S.; Lavergne, V.; Nolin, T.D.; Hoffman, R.S. Extracorporeal treatment for carbamazepine poisoning: Systematic review and recommendations from the EXTRIP workgroup. Clin. Toxicol. 2014, 52, 993–1004. [Google Scholar] [CrossRef]
- Shenker, M.; Harush, D.; Ben-Ari, J.; Chefetz, B. Uptake of carbamazepine by cucumber plants—A case study related to irrigation with reclaimed wastewater. Chemosphere 2011, 82, 905–910. [Google Scholar] [CrossRef]
- Chuang, Y.; Liu, C.; Sallach, J.B.; Hammerschmidt, R.; Zhang, W.; Boyd, S.A.; Li, H. Mechanistic study on uptake and transport of pharmaceuticals in lettuce from water. Environ. Int. 2019, 131, 104976. [Google Scholar] [CrossRef]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant uptake of pharmaceutical and personal care products from recycled water and biosolids: A review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, C.; Wang, X.; Qing, X.; Wang, P.; Zhang, Y.; Zhang, X.; Zhao, X. Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) by regulating root morphology and metal element uptake. Ecotoxicol. Environ. Saf. 2019, 173, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.; Chen, D.; Gao, Y.; Zhang, Y. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC Plant Biol. 2010, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Ju, C.; Zhang, H.; Yao, S.; Dong, S.; Cao, D.; Wang, F.; Fang, H.; Yu, Y. Uptake, translocation, and subcellular distribution of azoxystrobin in wheat plant (Triticum aestivum L.). J. Agric. Food Chem. 2019, 67, 6691–6699. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Nie, E.; Li, C.; Ye, Q.; Wang, H. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions. Environ. Pollut. 2017, 220, 400–406. [Google Scholar] [CrossRef]
- Chiou, C.T.; Sheng, G.; Manes, M. A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ. Sci. Technol. 2001, 35, 1437–1444. [Google Scholar] [CrossRef]
- Li, M.; Cheng, Y.; Ding, T.; Wang, H.; Wang, W.; Li, J.; Ye, Q. Phytotransformation and metabolic pathways of 14C-carbamazepine in carrot and celery. J. Agric. Food Chem. 2020, 68, 3362–3371. [Google Scholar] [CrossRef]
- Burken, J.G.; Schnoor, J.L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ. Sci. Technol. 1998, 32, 3379–3385. [Google Scholar] [CrossRef]
- Stottmeister, U.; Wießner, A.; Kuschk, P.; Kappelmeyer, U.; Kästner, M.; Bederski, O.; Müller, R.A.; Moormann, H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv. 2003, 22, 93–117. [Google Scholar] [CrossRef]
- Dietz, A.C.; Schnoor, J.L. Advances in phytoremediation. Environ. Health Perspect. 2001, 109, 163–168. [Google Scholar]
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef]
- Reinhold, D.; Vishwanathan, S.; Park, J.J.; Oh, D.; Michael Saunders, F. Assessment of plant-driven removal of emerging organic pollutants by duckweed. Chemosphere 2010, 80, 687–692. [Google Scholar] [PubMed]
- Dettenmaier, E.M.; Doucette, W.J.; Bugbee, B. Chemical hydrophobicity and uptake by plant roots. Environ. Sci. Technol. 2009, 43, 324–329. [Google Scholar] [PubMed]
- Matamoros, V.; Nguyen, L.X.; Arias, C.A.; Salvado, V.; Brix, H. Evaluation of aquatic plants for removing polar microcontaminants: A microcosm experiment. Chemosphere 2012, 88, 1257–1264. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Gersberg, R.M.; Hua, T.; Zhu, J.; Goyal, M.K.; Ng, W.J.; Tan, S.K. Fate of pharmaceutical compounds in hydroponic mesocosms planted with Scirpus validus. Environ. Pollut. 2013, 181, 98–106. [Google Scholar] [PubMed]
- Li, Y.; Chiou, C.T.; Li, H.; Schnoor, J.L. Improved prediction of the bioconcentration factors of organic contaminants from soils into plant/crop roots by related physicochemical parameters. Environ. Int. 2019, 126, 46–53. [Google Scholar]
- Briggs, G.G.; Bromilow, R.H.; Evans, A.A.; Williams, M. Relationships between lipophilicity and the distribution of non-ionised chemicals in barley shoots following uptake by the roots. Pestic. Sci. 1983, 14, 492–500. [Google Scholar]
- Schroll, R.; Bierling, B.; Cao, G.; Dörfler, U.; Lahaniati, M.; Langenbach, T.; Scheunert, I.; Winkler, R. Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere 1994, 28, 297–303. [Google Scholar]
- Richard, H.B.; Chamberlain, K.; Avis, A.E. Physicochemical aspects of phloem translocation of herbicides. Weed Sci. 1990, 38, 305–314. [Google Scholar]
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Res. 2002, 36, 5013–5022. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, S.; Chen, Y.; Zheng, N.; Chen, T.; Zhang, S.; Yu, Z.; Wang, H. Accumulation and Subcellular Distribution Patterns of Carbamazepine in Hydroponic Vegetables. Biology 2025, 14, 343. https://doi.org/10.3390/biology14040343
Yao S, Chen Y, Zheng N, Chen T, Zhang S, Yu Z, Wang H. Accumulation and Subcellular Distribution Patterns of Carbamazepine in Hydroponic Vegetables. Biology. 2025; 14(4):343. https://doi.org/10.3390/biology14040343
Chicago/Turabian StyleYao, Sihan, Yan Chen, Nan Zheng, Ting Chen, Sufen Zhang, Zhiyang Yu, and Haiyan Wang. 2025. "Accumulation and Subcellular Distribution Patterns of Carbamazepine in Hydroponic Vegetables" Biology 14, no. 4: 343. https://doi.org/10.3390/biology14040343
APA StyleYao, S., Chen, Y., Zheng, N., Chen, T., Zhang, S., Yu, Z., & Wang, H. (2025). Accumulation and Subcellular Distribution Patterns of Carbamazepine in Hydroponic Vegetables. Biology, 14(4), 343. https://doi.org/10.3390/biology14040343