Viral Fragments in the Urine Proteome: New Clues to the Cause of Fever
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Patient Samples
2.2. Processing of Urine Samples
2.3. LC-MS/MS Tandem Mass Spectrometry Analysis
2.4. Data Analysis
3. Results
3.1. Analysis of Urinary Proteome in Single Patients
3.1.1. Analysis of Urinary Proteome in Patient F1
3.1.2. Analysis of Urinary Proteome in Patient F2
3.1.3. Analysis of Urinary Proteome in Patient F3
3.1.4. Analysis of Urinary Proteome in Patient F4
3.1.5. Analysis of Urinary Proteome in Patient F5
3.1.6. Analysis of Urinary Proteome in Patient F6
3.1.7. Analysis of Urinary Proteome in Patient F7
3.1.8. Analysis of Urinary Proteome in Patient F8
3.1.9. Analysis of Urinary Proteome in Patient F9
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unger, M.; Karanikas, G.; Kerschbaumer, A.; Winkler, S.; Aletaha, D. Fever of unknown origin (FUO) revised. Wien. Klin. Wochenschr. 2016, 128, 796–801. [Google Scholar] [CrossRef] [PubMed]
- Mulders-Manders, C.; Simon, A.; Bleeker-Rovers, C. Fever of unknown origin. Clin. Med. 2015, 15, 280–284. [Google Scholar]
- Zhou, G.; Zhou, Y.; Lv, X.; Zhong, C.; Ye, H.; Liu, Z.; Liu, Y. Retrospective analysis of 1641 cases of classic fever of unknown origin. Ann. Transl. Med. 2020, 8, 690. [Google Scholar] [PubMed]
- Kentsis, A.; Monigatti, F.; Dorff, K.; Campagne, F.; Bachur, R.; Steen, H. Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteom. Clin. Appl. 2009, 3, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y. Now is the time to test early urinary biomarkers in large—Scale human samples. Sci. China Life Sci. 2019, 62, 851–853. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Gao, Y. Early disease biomarkers can be found using animal models urine proteomics. Expert Rev. Proteom. 2021, 18, 363–378. [Google Scholar]
- Balhara, N.; Devi, M.; Balda, A.; Phour, M.; Giri, A. Urine; a new promising biological fluid to act as a non-invasive biomarker for different human diseases. URINE 2023, 5, 40–52. [Google Scholar]
- Ames, R.P.; Sobota, J.T.; Reagan, R.L.; Karon, M. Virus-like particles and cytopathic activity in urine of patients with leukemia. Blood 1966, 28, 465–478. [Google Scholar] [CrossRef] [PubMed]
- Cvjetkovic, I.H.; Radovanov, J.; Kovacevic, G.; Turkulov, V.; Patić, A. Diagnostic value of urine qRT-PCR for the diagnosis of West Nile virus neuroinvasive disease. Diagn. Microbiol. Infect. Dis. 2023, 107, 115920. [Google Scholar] [CrossRef] [PubMed]
- Chavan, S.; Mangalaparthi, K.K.; Singh, S.; Renuse, S.; Vanderboom, P.M.; Madugundu, A.K.; Budhraja, R.; McAulay, K.; Grys, T.E.; Rule, A.D.; et al. Mass Spectrometric Analysis of Urine from COVID-19 Patients for Detection of SARS-CoV-2 Viral Antigen and to Study Host Response. J. Proteome Res. 2021, 20, 3404–3413. [Google Scholar] [PubMed]
- Niedrig, M.; Patel, P.; El Wahed, A.A.; Schädler, R.; Yactayo, S. Find the right sample: A study on the versatility of saliva and urine samples for the diagnosis of emerging viruses. BMC Infect. Dis. 2018, 18, 707. [Google Scholar]
- Mohandas, S.; Balan, S.; Mourya, D.T. Urinary immunoglobulins in viral diagnosis: An overview. Indian. J. Med. Res. 2022, 155, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Aebersold, R.; Mann, M. Mass-Spectrometric exploration of proteome structure and function. Nature 2016, 537, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Santana, L.F.E.; Rodrigues, M.S.; Silva, M.P.A.; Brito, R.J.V.C.D.; Nicacio, J.M.; Duarte, R.M.S.D.C.; Gomes, O.V. Fever of unknown origin—A literature review. Rev. Assoc. Med. Bras. (1992) 2019, 65, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Barton, E.S.; White, D.W.; Cathelyn, J.S.; Brett-McClellan, K.A.; Engle, M.; Diamond, M.S.; Miller, V.L.; Virgin, H.W. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 2007, 447, 326–329. [Google Scholar] [PubMed]
- White, D.W.; Beard, R.S.; Barton, E.S. Immune modulation during latent herpesvirus infection. Immunol. Rev. 2012, 245, 189–208. [Google Scholar] [PubMed]
- Stockdale, S.R.; Hill, C. Progress and prospects of the healthy human gut virome. Curr. Opin. Virol. 2021, 51, 164–171. [Google Scholar] [PubMed]
- Gillet, L.C.; Navarro, P.; Tate, S.; Röst, H.; Selevsek, N.; Reiter, L.; Bonner, R.; Aebersold, R. Targeted data extraction of the MS/MS spectra generated by data—Independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell Proteom. 2012, 11, O111.016717. [Google Scholar]
- Patowary, A.; Chauhan, R.K.; Singh, M.; Kv, S.; Periwal, V.; Kp, K.; Sapkal, G.N.; Bondre, V.P.; Gore, M.M.; Sivasubbu, S.; et al. De novo identification of viral pathogens from cell culture hologenomes. BMC Res. Notes 2012, 5, 11. [Google Scholar] [CrossRef] [PubMed]
- Pinault, L.; Chabrière, E.; Raoult, D.; Fenollar, F. Direct identification of pathogens in urine by use of a specific matrix—Assisted laser desorption ionization–time of flight spectrum database. J. Clin. Microbiol. 2019, 57, e01678-18. [Google Scholar] [CrossRef] [PubMed]
Patient Number | Sex | Age | Body Temperature/°C |
---|---|---|---|
F1 | female | 60 | 38.8 |
F2 | female | 81 | 38.4 |
F3 | male | 60 | 37.3 |
F4 | male | 73 | 37.8 |
F5 | male | 72 | 36.0 |
F6 | male | 64 | 36.6 |
F7 | male | 32 | 36.5 |
F8 | male | 71 | 36.8 |
F9 | female | 53 | 36.6 |
F10 | male | 88 | 36.8 |
F11 | female | 32 | 36.9 |
Virus Name | Specific Peptide Sequence |
---|---|
Monkeypox virus | VGIAGLK |
Salivirus A (isolate Human/Nigeria/NG-J1/2007) | ASVNSLLSGMVRTDVTR |
Human herpesvirus 8 type P (isolate GK18) | PGVILLTK |
Middle East respiratory syndrome-related coronavirus (isolate United Kingdom/H123990006/2012) | GTPVLQLK |
Rotavirus A (isolate RVA/Human/Sweden/1076/1983/G2P2A [6]) | SNISSISVWTDVSEQITGSSDSVRNISTQTSAISK |
Orf virus (strain NZ2) | VVFTDLLIK |
Human herpesvirus 2 (strain HG52) | PGAPAVPR |
Human adenovirus E serotype 4 | ALVLALR |
Influenza A virus (strain A/Seal/Massachusetts/1/1980 H7N7) | NWTCTSITQNNTTLIENTYVNNTTVINK |
Human coronavirus NL63 | SGVIVFK |
Parainfluenza virus 5 (strain W3) | LLLFCLR |
Nipah virus | GALEIYK |
Hepatitis C virus genotype 2k (isolate VAT96) | TIVAPDK |
Virus Name | Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 | Patient 6 | Patient 7 | Patient 8 | Patient 9 | Control | |
---|---|---|---|---|---|---|---|---|---|---|---|
Monkeypox virus | MS quantification value | 2,738,302.75 | 3,802,856.11 | 12,595,255.00 | 3,519,523.00 | 3,191,716.06 | 10,065,084.50 | 306,045.00 | 4,309,394.50 | 2,067,200.25 | 459,814.31 ± 171,566.22 |
FC | 5.96 | 8.27 | 27.39 | 7.65 | 6.94 | 21.89 | 0.67 | 9.37 | 4.50 | ||
Salivirus A (isolate Human/Nigeria/NG-J1/2007) | MS quantification value | 12,365,827.50 | 8,541,840.75 | 51,978.11 | 9382.64 | 0.00 | 223,416.01 | 304.56 | 0.00 | 0.00 | 2883.12 ± 3915.48 |
FC | 4289.04 | 2962.71 | 18.03 | 3.25 | 0.00 | 77.49 | 0.11 | 0.00 | 0.00 | ||
Human herpesvirus 8 type P (isolate GK18) | MS quantification value | 0.00 | 0.00 | 0.00 | 16,418.64 | 14,868.52 | 0.00 | 14,055.57 | 0.00 | 7850.39 | 16,092.09 ± 27,391.52 |
FC | 0.00 | 0.00 | 0.00 | 1.02 | 0.92 | 0.00 | 0.87 | 0.00 | 0.49 | ||
Middle East respiratory syndrome-related coronavirus (isolate United Kingdom/H123990006/2012) | MS quantification value | 3,382,280.50 | 2,808,975.00 | 1,555,474.63 | 3,117,784.50 | 2,753,179.38 | 10,178,591.50 | 2,562,041.25 | 4,424,595.25 | 4,309,881.75 | 1,935,426.25 ± 796,447.76 |
FC | 1.75 | 1.45 | 0.80 | 1.61 | 1.42 | 5.26 | 1.32 | 2.29 | 2.23 | ||
Rotavirus A (isolate RVA/Human/Sweden/1076/1983/G2P2A [6]) | MS quantification value | 308,864.81 | 384,464.02 | 7309.42 | 41,916.95 | 0.00 | 0.00 | 0.00 | 123,758.55 | 0.00 | 19,126.31 ± 26,602.19 |
FC | 16.15 | 20.10 | 0.38 | 2.19 | 0.00 | 0.00 | 0.00 | 6.47 | 0.00 | ||
Orf virus (strain NZ2) | MS quantification value | 0.00 | 0.00 | 44,459.50 | 44,381.72 | 0.00 | 0.00 | 0.00 | 139,657.54 | 0.00 | 13,868.03 ± 15,622.77 |
FC | 0.00 | 0.00 | 3.21 | 3.20 | 0.00 | 0.00 | 0.00 | 10.07 | 0.00 | ||
Human herpesvirus 2 (strain HG52) | MS quantification value | 76,640.70 | 67,577.19 | 310,337.05 | 398,069.67 | 499,946.47 | 459,889.58 | 399,616.72 | 860,762.31 | 340,831.09 | 1,029,598.3 ± 538,036.5 |
FC | 0.07 | 0.07 | 0.30 | 0.39 | 0.49 | 0.45 | 0.39 | 0.84 | 0.33 | ||
Human adenovirus E serotype 4 | MS quantification value | 85,753.20 | 123,977.40 | 344,412.55 | 157,878.00 | 303,869.02 | 299,514.16 | 270,137.13 | 178,808.48 | 603,185.19 | 379,161.97 ± 116,428.47 |
FC | 0.23 | 0.33 | 0.91 | 0.42 | 0.80 | 0.79 | 0.71 | 0.47 | 1.59 | ||
Influenza A virus (strain A/Seal/Massachusetts/1/1980 H7N7) | MS quantification value | 20,849.96 | 575,262.92 | 1,752,701.19 | 605,113.64 | 1,594,873.06 | 1,284,293.31 | 3,942,530.13 | 187,962.47 | 278,336.00 | 489,780.51 ± 630,111.83 |
FC | 0.04 | 1.17 | 3.58 | 1.24 | 3.26 | 2.62 | 8.05 | 0.38 | 0.57 | ||
Human coronavirus NL63 | MS quantification value | 9238.28 | 6341.42 | 17,251.37 | 10,991.15 | 25,059.81 | 25,759.21 | 0.00 | 3385.14 | 19,464.56 | 99,478.54 ± 228,469.17 |
FC | 0.09 | 0.06 | 0.17 | 0.11 | 0.25 | 0.26 | 0.00 | 0.03 | 0.20 | ||
Parainfluenza virus 5 (strain W3) | MS quantification value | 156,499.11 | 98,796.96 | 3050.19 | 0.00 | 12,137.38 | 104,264.56 | 0.00 | 4075.66 | 6342.66 | 6302.82 ± 6816.75 |
FC | 24.83 | 15.68 | 0.48 | 0.00 | 1.93 | 16.54 | 0.00 | 0.65 | 1.01 | ||
Nipah virus | MS quantification value | 0.00 | 0.00 | 70,359.71 | 112,531.22 | 42,610.40 | 30,541.92 | 210,497.63 | 104,041.38 | 26,420.79 | 101,837.97 ± 31,989.54 |
FC | 0.00 | 0.00 | 0.69 | 1.11 | 0.42 | 0.30 | 2.07 | 1.02 | 0.26 | ||
Hepatitis C virus genotype 2k (isolate VAT96) | MS quantification value | 56,127.11 | 34,428.87 | 44,677.84 | 35,668.85 | 36,808.56 | 39,774.97 | 83,172.13 | 51,449.09 | 30,233.20 | 60,591.68 ± 18,991.17 |
FC | 0.93 | 0.57 | 0.74 | 0.59 | 0.61 | 0.66 | 1.37 | 0.85 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Su, Y.; Zhao, C.; Gao, Y. Viral Fragments in the Urine Proteome: New Clues to the Cause of Fever. Biology 2025, 14, 318. https://doi.org/10.3390/biology14040318
Yang M, Su Y, Zhao C, Gao Y. Viral Fragments in the Urine Proteome: New Clues to the Cause of Fever. Biology. 2025; 14(4):318. https://doi.org/10.3390/biology14040318
Chicago/Turabian StyleYang, Minhui, Yan Su, Chenyang Zhao, and Youhe Gao. 2025. "Viral Fragments in the Urine Proteome: New Clues to the Cause of Fever" Biology 14, no. 4: 318. https://doi.org/10.3390/biology14040318
APA StyleYang, M., Su, Y., Zhao, C., & Gao, Y. (2025). Viral Fragments in the Urine Proteome: New Clues to the Cause of Fever. Biology, 14(4), 318. https://doi.org/10.3390/biology14040318