Mucus Trail Proteins May Infer Reproductive Readiness for Land Snails
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Reference De Novo Transcriptome Assembly and Protein Annotation
2.3. Trail Mucus Collection and Protein Preparation
2.4. LC-MS/MS and Protein Identification
2.5. Reproduction Stage-Specific Tissue RNA-Seq Analysis
3. Results
3.1. Comparison of Reproductive- and Non-Reproductive-Stage Trail Mucus Proteins
3.2. Overview of Tissue RNA-Seq Data and Differential Gene Expression
3.3. Spatial and Temporal Gene Expression of Identified Secreted Proteins in Trail Mucus
4. Discussion
4.1. Proteins Detected in Non-Reproductive-Stage Trail Mucus
4.2. Proteins Detected in the Reproductive-Stage Trail Mucus
4.3. Genes Upregulated in the Albumen Gland at Reproductive Stage, Yet Not Identified in Trail Mucus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, G. The Biology and Ecology of White Snails (Mollusca:helicidae), Introduced Pests in Australia; CSIRO: Canberra, ACT, Australia, 1986. [Google Scholar]
- Murray, D.; Clarke, M.B.; Ronning, D.A. The Current and Potential Costs of Invertebrate Pests in Australia; GRDC: Hunters Hill, NSW, Australia, 2013. [Google Scholar]
- Cowie, R.H. The Life-cycle and productivity of the land snail Theba pisana (Mollusca: Helicidae). J. Anim. Ecol. 1984, 53, 311–325. [Google Scholar] [CrossRef]
- Baker, G.H. Production of eggs and young Snails by adult Theba pisana (Muller) and Cernuella virgata (Da Costa) (Mollusca, Helicidae) in laboratory cultures and field populations. Australian J. Zool. 1991, 39, 673–679. [Google Scholar] [CrossRef]
- Baker, G.; Perry, K.; Brodie, H. Managing Snails—Latest Research Findings and Recommendations; GRDC: Canberra, ACT, Australia, 2018. [Google Scholar]
- Baker, G.H. Helicidae and Hygromiidae as pests in cereal crops and pastures in Southern Australia. In Molluscs as Crop Pests; CABI Publishing: Wallingford, UK, 2002; pp. 193–216. [Google Scholar]
- Baker, G.; Hopkins, D. Bash ’em, Burn’em, Bait’em—Integrated Snail Management in Crops and Pastures; GRDC, SARDI & SAGIT: Australia, 2003. [Google Scholar]
- McCormick, A.L.; Karlsson, M.; Ochoa, C.F.; Proffit, M.; Bengtsson, M.; Zuluaga, M.V.; Fukumoto, T.; Oehlschlager, C.; Prado, A.M.; Witzgall, P. Mating disruption of Guatemalan potato moth Tecia solanivora by attractive and non-attractive pheromone blends. J. Chem. Ecol. 2012, 38, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Suckling, D.M.; Sullivan, T.E.S. Communication disruption of light brown apple moth (Epiphyas postvittana) using a four-component sex pheromone blend. Crop Prot. 2012, 42, 327–333. [Google Scholar] [CrossRef]
- Ng, T.P.T.; Saltin, S.H. Snails and their trails: The multiple functions of trail-following in gastropods. Biol. Rev. 2013, 88, 683–700. [Google Scholar] [CrossRef]
- Ng, T.P.T.; Davies, M.S. Mucus trail following as a mate-searching strategy in mangrove littorinid snails. Anim. Behav. 2011, 82, 459–465. [Google Scholar] [CrossRef]
- Cummins, S.F.; Nichols, A.E.; Warso, C.J.; Nagle, G.T. Aplysia seductin is a water-borne protein pheromone that acts in concert with attractin to stimulate mate attraction. Peptides 2005, 26, 351–359. [Google Scholar] [CrossRef]
- Cummins, S.F.; Schein, C.H.; Xu, Y.; Braun, W.; Nagle, G.T. Molluscan attractins, a family of water-borne protein pheromones with interspecific attractiveness. Peptides 2005, 26, 121–129. [Google Scholar] [CrossRef]
- Cummins, S.F.; Xie, F.; de Vries, M.R.; Annangudi, S.P.; Misra, M.; Degnan, B.M.; Sweedler, J.V.; Nagle, G.T.; Schein, C.H. Aplysia temptin—The ’glue’ in the water-borne attractin pheromone complex. FEBS J. 2007, 274, 5425–5437. [Google Scholar] [CrossRef]
- Cummins, S.F.; Nichols, A.E.; Schein, C.H.; Nagle, G.T. Newly identified water-borne protein pheromones interact with attractin to stimulate mate attraction in Aplysia. Peptides 2006, 27, 597–606. [Google Scholar] [CrossRef]
- Mukai, S.T.; Hoque, T. Cloning and characterization of a candidate nutritive glycoprotein from the albumen gland of the freshwater snail, Helisoma duryi (Mollusca: Pulmonata). Invertebr. Biol. 2004, 123, 83–92. [Google Scholar] [CrossRef]
- Davis, E.C. Investigation in the laboratory of mucous trail detection in the terrestrial pulmonate snail Mesodon thyroidus (Say, 1817) (Mollusca: Gastropoda: Polygyridae). Malacol. Bull. 2007, 22, 157–164. [Google Scholar] [CrossRef]
- Johnson, C.T.; Pearce, T.A. Do micro snails follow conspecific mucus trails? Experiments with Vallonia excentrica (Pulmonata: Valloniidae). Am. Malacol. Bull. 2013, 31, 51–55. [Google Scholar] [CrossRef]
- Liddon, J.; Dalesman, S. Trail following differs between wild and captive-reared snails, Lymnaea stagnalis. J. Molluscan Stud. 2015, 81, 299–302. [Google Scholar] [CrossRef]
- Holland, B.S.; Gousy-Leblanc, M. Strangers in the dark: Behavioral and biochemical evidence for trail pheromones in Hawaiian tree snails. Invertebr. Biol. 2018, 137, 124–132. [Google Scholar] [CrossRef]
- Baker, G.H. Interactions between the land snails Theba pisana and Cernuella virgata in the laboratory. J. Molluscan Stud. 2021, 87, eyaa038. [Google Scholar] [CrossRef]
- Pitt, S.J.; Graham, M.A. Antimicrobial properties of mucus from the brown garden snail Helix aspersa. Br. J. Biomed. Sci. 2015, 72, 174–181. [Google Scholar] [CrossRef]
- E-Kobon, T.; Thongararm, P.; Roytrakul, S.; Meesuk, L.; Chumnanpuen, P. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput. Struct. Biotechnol. J. 2016, 14, 49–57. [Google Scholar] [CrossRef]
- Pitt, S.J.; Hawthorne, J.A.; Garcia-Maya, M.; Alexandrovich, A.; Symonds, R.C.; Gunn, A. Identification and characterisation of anti—Pseudomonas aeruginosa proteins in mucus of the brown garden snail, Cornu aspersum. Br. J. Biomed. Sci. 2019, 76, 129–136. [Google Scholar] [CrossRef]
- Chalongkulasak, S.; E-kobon, T.; Chumnanpuen, P. Prediction of Antibacterial Peptides Against Propionibacterium acnes from the Peptidomes of Achatina fulica Mucus Fractions. Molecules 2022, 27, 2290. [Google Scholar] [CrossRef]
- Smith, A.M.; Quick, T.J.; St Peter, R.L. Differences in the Composition of Adhesive and Non-Adhesive Mucus from the Limpet Lottia limatula. Biol. Bull. 1999, 196, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Ballard, K.R.; Klein, A.H.; Hayes, R.A.; Wang, T.; Cummins, S.F. The protein and volatile components of trail mucus in the Common Garden Snail, Cornu aspersum. PLoS ONE 2021, 16, e0251565. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, A.R.; McDermott, M.B.; Pepi, L.E.; Liu, Z.L.; Barry, D.; Zhang, S.; Yang, X.; Chen, X.; Azadi, P.; Holford, M.; et al. Comparative mucomic analysis of three functionally distinct Cornu aspersum Secretions. Nat. Commun. 2023, 14, 5361. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhao, M.; Rotgans, B.A.; Ni, G.; Dean, J.F.; Nahrung, H.F.; Cummins, S.F. Proteomic analysis of the venom and venom sac of the woodwasp, Sirex noctilio—Towards understanding its biological impact. J. Proteom. 2016, 146, 195–206. [Google Scholar] [CrossRef]
- Hathaway, J.J.; Adema, C.M.; Stout, B.A.; Mobarak, C.D.; Loker, E.S. Identification of protein components of egg masses indicates parental investment in immunoprotection of offspring by Biomphalaria glabrata (gastropoda, mollusca). Dev. Comp. Immunol. 2010, 34, 425–435. [Google Scholar] [CrossRef]
- Fogarty, C.E.; Zhao, M.; McManus, D.P.; Duke, M.G.; Cummins, S.F.; Wang, T. Correction to: Comparative study of excretory-secretory proteins released by Schistosoma mansoni-resistant, susceptible and naive Biomphalaria glabrata. Parasit. Vectors 2022, 15, 421. [Google Scholar] [CrossRef]
- Lin, J.Y.; Ma, K.Y.; Bai, Z.Y.; Li, J.L. Molecular cloning and characterization of perlucin from the freshwater pearl mussel, Hyriopsis cumingii. Gene 2013, 526, 210–216. [Google Scholar] [CrossRef]
- Dodenhof, T.; Dietz, F.; Franken, S.; Grunwald, I.; Kelm, S. Splice variants of perlucin from Haliotis laevigata modulate the crystallisation of CaCO3. PLoS ONE 2014, 9, e97126. [Google Scholar] [CrossRef]
- Santos, C.A.; Sonoda, G.G.; Cortez, T.; Coutinho, L.L.; Andrade, S.C.S. Transcriptome Expression of Biomineralization Genes in Littoraria flava Gastropod in Brazilian Rocky Shore Reveals Evidence of Local Adaptation. Genome Biol. Evol. 2021, 13, evab050. [Google Scholar] [CrossRef]
- Whaite, A.; Klein, A.; Mitu, S.; Wang, T.; Elizur, A.; Cummins, S. The byssal-producing glands and proteins of the silverlip pearl oyster Pinctada maxima (Jameson, 1901). Biofouling 2022, 38, 186–206. [Google Scholar] [CrossRef]
- Yoo, H.Y.; Iordachescu, M.; Huang, J.; Hennebert, E.; Kim, S.; Rho, S.; Foo, M.; Flammang, P.; Zeng, H.; Hwang, D.; et al. Sugary interfaces mitigate contact damage where stiff meets soft. Nat. Commun. 2016, 7, 11923. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Ning, M. A typical C-type lectin, perlucin-like protein, is involved in the innate immune defense of whiteleg shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2020, 103, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Foulon, V.; Boudry, P.; Artigaud, S.; Guerard, F.; Hellio, C. In Silico Analysis of Pacific Oyster (Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement. Int. J. Mol. Sci. 2019, 20, 197. [Google Scholar] [CrossRef] [PubMed]
- Ehara, T.; Kitajima, S.; Kanzawa, N.; Tamiya, T.; Tsuchiya, T. Antimicrobial action of achacin is mediated by L-amino acid oxidase activity. FEBS Lett. 2002, 531, 509–512. [Google Scholar] [CrossRef]
- Petzelt, C.; Joswig, G.; Stammer, H.; Werner, D. Cytotoxic cyplasin of the sea hare, Aaplysia punctata, cDNA cloning, and expression of bioactive recombinants in insect cells. Neoplasia 2002, 4, 49–59. [Google Scholar] [CrossRef]
- Takamatsu, N.; Shiba, T.; Muramoto, K.; Kamiya, H. Molecular cloning of the defense factor in the albumen gland of the sea hare Aplysia kurodai. FEBS Lett. 1995, 377, 373–376. [Google Scholar] [CrossRef]
- Ota, Y.; Shimoya, K.; Zhang, Q.; Moriyama, A.; Chin, R.; Tenma, K.; Kimura, T.; Koyama, M.; Azuma, C.; Murata, Y. The expression of secretory leukocyte protease inhibitor (SLPI) in the fallopian tube: SLPI protects the acrosome reaction of sperm from inhibitory effects of elastase. Hum. Reprod. 2002, 17, 2517–2522. [Google Scholar] [CrossRef]
- Nagle, G.T.; de Jong-Brink, M.; Painter, S.D.; Li, K.W. Structure, localization and potential role of a novel molluscan trypsin inhibitor in Lymnaea. Eur. J. Biochem. 2001, 268, 1213–1221. [Google Scholar] [CrossRef]
- Sanchez, J.F.; Lescar, J.; Chazalet, V.; Audfray, A.; Gagnon, J.; Alvarez, R.; Breton, C.; Imberty, A.; Mitchell, E.P. Biochemical and structural analysis of Helix pomatia agglutinin. A hexameric lectin with a novel fold. J. Biol. Chem. 2006, 281, 20171–20180. [Google Scholar] [CrossRef]
- Ituarte, S.; Dreon, M.S.; Ceolin, M.; Heras, H. Agglutinating activity and structural characterization of scalarin, the major egg protein of the snail Pomacea scalaris (d’Orbigny, 1832). PLoS ONE 2012, 7, e50115. [Google Scholar] [CrossRef]
- Conus, S.; Simon, H.U. Cathepsins: Key modulators of cell death and inflammatory responses. Biochem. Pharmacol. 2008, 76, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Liu, X.; Hu, Y.H.; Sun, B.G. Expression characterization and activity analysis of a cathepsin B from Pacific abalone Haliotis discus hannai. Fish. Shellfish. Immunol. 2013, 34, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; Novoa, B.; Figueras, A. Genomic and transcriptomic identification of the cathepsin superfamily in the Mediterranean mussel Mytilus galloprovincialis. Dev. Comp. Immunol. 2022, 127, 104286. [Google Scholar] [CrossRef]
- Pila, E.A.; Peck, S.J.; Hanington, P.C. The protein pheromone temptin is an attractant of the gastropod Biomphalaria glabrata. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2017, 203, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Liu, Z.; Li, Z.; Qian, S.; Liu, X.; Li, J. The temptin gene of the clade Lophotrochozoa is involved in formation of the prismatic layer during biomineralization in molluscs. Int. J. Biol. Macromol. 2021, 188, 800–810. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballard, K.R.; Ventura, T.; Wang, T.; Elizur, A.; Cummins, S.F. Mucus Trail Proteins May Infer Reproductive Readiness for Land Snails. Biology 2025, 14, 294. https://doi.org/10.3390/biology14030294
Ballard KR, Ventura T, Wang T, Elizur A, Cummins SF. Mucus Trail Proteins May Infer Reproductive Readiness for Land Snails. Biology. 2025; 14(3):294. https://doi.org/10.3390/biology14030294
Chicago/Turabian StyleBallard, Kate R., Tomer Ventura, Tianfang Wang, Abigail Elizur, and Scott F. Cummins. 2025. "Mucus Trail Proteins May Infer Reproductive Readiness for Land Snails" Biology 14, no. 3: 294. https://doi.org/10.3390/biology14030294
APA StyleBallard, K. R., Ventura, T., Wang, T., Elizur, A., & Cummins, S. F. (2025). Mucus Trail Proteins May Infer Reproductive Readiness for Land Snails. Biology, 14(3), 294. https://doi.org/10.3390/biology14030294