Endophytic Diversity in Vitis vinifera with Different Vineyard Managements and Vitis sylvestris Populations from Northern Italy: A Comparative Study of Culture-Dependent and Amplicon Sequencing Methods
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Culture-Dependent Analysis
2.2.1. Validation of the Sample’s Sterilization Step by Challenge Tests
2.2.2. Endophyte Isolation
2.2.3. Fungal Identification
2.2.4. Bacterial Identification
2.2.5. Quantification of Isolation Frequency
2.3. Microbiome Signature
2.3.1. DNA Extraction
2.3.2. Library Preparation and MinION Sequencing
2.4. Statistical Analysis
2.4.1. Semi-Quantitative
2.4.2. Quantitative
3. Results and Discussions
3.1. Endophytic Population Isolated with Culture-Dependent Methods and Their Identification
Endophyte Prevalence in Different Grapevine Organs Under Various Vineyard Management Practices
3.2. Metabarcoding Analysis of Endophytic Community
3.2.1. Bacterial Diversity Across Vineyard Practices in Grapevine Leaves
Comparison Between Metabarcoding and Culture-Dependent Approach for Bacterial Population
3.2.2. Fungal Diversity Across Vineyard Practices in Grapevine Leaves
Comparison Between Metabarcoding and Culture-Dependent Approach for Fungal Population
3.2.3. Core Microbiome
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dumitriu, G.D.; Teodosiu, C.; Cotea, V.V. Management of Pesticides from Vineyard to Wines: Focus on Wine Safety and Pesticides Removal by Emerging Technologies. In Grapes and Wine; IntechOpen: London, UK, 2022; pp. 1–27. [Google Scholar]
- European Union. Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Off. J. Eur. Union 2009, 309. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0128 (accessed on 4 August 2023).
- The UN Agenda 2030 for Sustainable Development. Agenzia per la Coesione Territoriale. 2015. Available online: https://www.agenziacoesione.gov.it/comunicazione/agenda-2030-per-lo-sviluppo-sostenibile/ (accessed on 4 August 2023).
- European Commission. 2023. Available online: https://agriculture.ec.europa.eu/news/using-less-chemical-pesticides-european-commission-publishes-toolbox-good-practices-2023-02-28_en?prefLang=it (accessed on 28 March 2023).
- Compant, S.; Mitter, B.; Colli-Mull, J.G.; Gangl, H.; Sessitsch, A. Endophytes of Grapevine Flowers, Berries, and Seeds: Identification of Cultivable Bacteria, Comparison with Other Plant Parts, and Visualization of Niches of Colonization. Microb. Ecol. 2011, 62, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Bruisson, S.; Zufferey, M.; L’Haridon, F.; Trutmann, E.; Anand, A.; Dutartre, A.; De Vrieze, M.; Weisskopf, L. Endophytes and Epiphytes From the Grapevine Leaf Microbiome as Potential Biocontrol Agents Against Phytopathogens. Front. Microbiol. 2019, 10, 2726. [Google Scholar] [CrossRef] [PubMed]
- Morales-Cedeño, L.R.; Orozco-Mosqueda, M.d.C.; Loeza-Lara, P.D.; Parra-Cota, F.I.; de los Santos-Villalobos, S.; Santoyo, G. Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiol. Res. 2021, 242, 126612. [Google Scholar] [CrossRef]
- Latz, M.A.C.; Jensen, B.; Collinge, D.B.; Jørgensen, H.J.L. Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecol. Divers. 2018, 11, 555–567. [Google Scholar] [CrossRef]
- Cordero-Bueso, G.; Mangieri, N.; Maghradze, D.; Foschino, R.; Valdetara, F.; Cantoral, J.M.; Vigentini, I. Wild grape-associated yeasts as promising biocontrol agents against Vitis vinifera fungal pathogens. Front. Microbiol. 2017, 8, 2025. [Google Scholar] [CrossRef]
- Campisano, A.; Antonielli, L.; Pancher, M.; Yousaf, S.; Pindo, M.; Pertot, I. Bacterial endophytic communities in the grapevine depend on pest management. PLoS ONE 2014, 9, e112763. [Google Scholar] [CrossRef]
- Marasco, R.; Rolli, E.; Fusi, M.; Michoud, G.; Daffonchio, D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome 2018, 6, 3. [Google Scholar] [CrossRef]
- Pancher, M.; Ceol, M.; Corneo, P.E.; Longa, C.M.O.; Yousaf, S.; Pertot, I.; Campisano, A. Fungal endophytic communities in grapevines (Vitis vinifera L.) Respond to Crop Management. Appl. Environ. Microbiol. 2012, 78, 4308–4317. [Google Scholar] [CrossRef]
- Deyett, E.; Rolshausen, P.E. Endophytic microbial assemblage in grapevine. FEMS Microbiol. Ecol. 2020, 96, fiaa053. [Google Scholar] [CrossRef]
- West, E.R.; Cother, E.J.; Steel, C.C.; Ash, G.J. The characterization and diversity of bacterial endophytes of grapevine. Can. J. Microbiol. 2010, 56, 209–216. [Google Scholar] [CrossRef]
- Vionnet, L.; De Vrieze, M.; Dutartre, A.; Gfeller, A.; Lüthi, A.; L’Haridon, F.; Weisskopf, L. Microbial life in the grapevine: What can we expect from the leaf microbiome? OENO One 2018, 52, 219–224. [Google Scholar] [CrossRef]
- Bulgari, D.; Casati, P.; Quaglino, F.; Bianco, P.A. Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiol. 2014, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Gao, L.; Chang, P.; Li, Z. Endophytic fungal community in grape is correlated to foliar age and domestication. Ann. Microbiol. 2020, 70, 30. [Google Scholar] [CrossRef]
- Hall, M.E.; Wilcox, W.F. Identification and frequencies of endophytic microbes within healthy grape berries. Am. J. Enol. Vitic. 2019, 70, 212–219. [Google Scholar] [CrossRef]
- Wijekoon, C.; Quill, Z. Fungal endophyte diversity in table grapes. Can. J. Microbiol. 2021, 67, 29–36. [Google Scholar] [CrossRef]
- Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil. Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef]
- Pacifico, D.; Squartini, A.; Crucitti, D.; Barizza, E.; Lo Schiavo, F.; Muresu, R.; Carimi, F.; Zottini, M. The Role of the Endophytic Microbiome in the Grapevine Response to Environmental Triggers. Front. Plant Sci. 2019, 10, 1256. [Google Scholar] [CrossRef] [PubMed]
- Biagini, B.; De Lorenzis, G.; Imazio, S.; Failla, O.; Scienza, A. Italian wild grapevine (Vitis vinifera L. subsp. sylvestris) population: Insights into eco-geographical aspects and genetic structure. Tree Genet. Genomes 2014, 10, 1369–1385. [Google Scholar] [CrossRef]
- Querol, A.; Barrio, E.; Huerta, T.; Ramon, D. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl. Environ. Microbiol. 1992, 58, 2948–2953. [Google Scholar] [CrossRef]
- Vigentini, I.; De Lorenzis, G.; Picozzi, C.; Imazio, S.; Merico, A.; Galafassi, S.; Piškur, J.; Foschino, R. Intraspecific variations of Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation of the intron splice site profiles. Int. J. Food Microbiol. 2012, 157, 6–15. [Google Scholar] [CrossRef]
- Packeiser, H.; Lim, C.; Balagurunathan, B.; Wu, J.; Zhao, H. An extremely simple and effective colony PCR procedure for bacteria, yeasts, and microalgae. Appl. Biochem. Biotechnol. 2013, 169, 695–700. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [PubMed]
- Kulišová, M.; Vrublevskaya, M.; Lovecká, P.; Vrchotová, B.; Stránská, M.; Kolařík, M.; Kolouchová, I. Fungal endophytes of Vitis vinifera—Plant growth promotion factors. Agriculture 2021, 11, 1250. [Google Scholar] [CrossRef]
- Sahu, P.K.; Tilgam, J.; Mishra, S.; Hamid, S.; Gupta, A.; Jayalakshmi, K.; Verma, S.K.; Kharwar, R.N. Surface sterilization for isolation of endophytes: Ensuring what (not) to grow. J. Basic Microbiol. 2022, 62, 647–668. [Google Scholar] [CrossRef]
- Devi, R.; Verma, R.; Dhalaria, R.; Kumar, A.; Kumar, D.; Puri, S.; Thakur, M.; Chauhan, S.; Chauhan, P.P.; Nepovimova, E.; et al. A systematic review on endophytic fungi and its role in the commercial applications. Planta 2023, 257, 70. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Ahari, A.B.; Sampaio, J.P.; Arzanlou, M. Biodiversity of epiphytic and endophytic yeasts on grape berries in Iran. Nova Hedwig. 2020, 110, 137–156. [Google Scholar] [CrossRef]
- Hatamzadeh, S.; Rahnama, K.; Nasrollahnejad, S.; Fotouhifar, K.B.; Hemmati, K.; White, J.F.; Taliei, F. Isolation and identification of L-asparaginase-producing endophytic fungi from the Asteraceae family plant species of Iran. PeerJ 2020, 2020, e8309. [Google Scholar] [CrossRef]
- Varanda, C.M.R.; Oliveira, M.; Materatski, P.; Landum, M.; Clara, M.I.E.; Félix, M.d.R. Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biol. 2016, 120, 1525–1536. [Google Scholar] [CrossRef]
- Musetti, R.; Vecchione, A.; Stringher, L.; Borselli, S.; Zulini, L.; Marzani, C.; D’Ambrosio, M.; Di Toppi, L.S.; Pertot, I. Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology. 2006, 96, 689–698. [Google Scholar] [CrossRef]
- Bozoudi, D.; Tsaltas, D. The multiple and versatile roles of Aureobasidium pullulans in the vitivinicultural sector. Fermentation 2018, 4, 85. [Google Scholar] [CrossRef]
- Galli, V.; Romboli, Y.; Barbato, D.; Mari, E.; Venturi, M.; Guerrini, S.; Granchi, L. Indigenous Aureobasidium pullulans strains as biocontrol agents of Botrytis cinerea on grape berries. Sustainability 2021, 13, 9389. [Google Scholar] [CrossRef]
- Pinto, C.; Custódio, V.; Nunes, M.; Songy, A.; Rabenoelina, F.; Courteaux, B.; Clément, C.; Gomes, A.C.; Fontaine, F. Understand the potential role of Aureobasidium pullulans, a resident microorganism from grapevine, to prevent the infection caused by Diplodia seriata. Front. Microbiol. 2018, 9, 3047. [Google Scholar] [CrossRef] [PubMed]
- Martini, M.; Musetti, R.; Grisan, S.; Polizzotto, R.; Borselli, S.; Pavan, F.; Osler, R. DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis. 2009, 93, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wei, R.; Wang, L.; Yang, C.; Li, H.; Wang, H. Diversity and dynamics of microbial ecosystem on berry surface during the ripening of Ecolly (Vitis vinifera L.) grape in Wuhai, China. World J. Microbiol. Biotechnol. 2021, 37, 214. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef]
- Bulgari, D.; Minio, A.; Casati, P.; Quaglino, F.; Delledonne, M.; Bianco, P.A. Curtobacterium sp. genome sequencing underlines plant growth promotion-related traits. Genome Announc. 2014, 2, e00592-14. [Google Scholar] [CrossRef]
- Ivanytsia, T.; Strashnova, I. Quantity and biological properties of the bacterium Pantoea agglomerans isolated from diferent grape varieties in Odesa region. Microbiol. Biotechnol. 2018, 43, 50–64. [Google Scholar]
- Haidar, R.; Yacoub, A.; Roudet, J.; Fermaud, M.; Rey, P. Application methods and modes of action of Pantoea agglomerans and Paenibacillus sp., to control the grapevine trunk disease-pathogen, Neofusicoccum parvum. OENO One 2021, 55, 1–16. [Google Scholar] [CrossRef]
- Campisano, A.; Pancher, M.; Puopolo, G.; Puddu, A.; Lòpez-Fernàndez, S.; Biagini, B.; Yousaf, S.; Pertot, I. Diversity in endophyte populations reveals functional and taxonomic diversity between wild and domesticated grapevines. Am. J. Enol. Vitic. 2015, 66, 12–21. [Google Scholar] [CrossRef]
- Stielow, J.B.; Lévesque, C.A.; Seifert, K.A.; Meyer, W.; Irinyi, L.; Smits, D.; Renfurm, R.; Verkley, G.J.M.; Groenewald, M.; Chaduli, D.; et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia Mol. Phylogeny Evol. Fungi 2015, 35, 242–263. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Malacrinò, A.; Wisniewski, M.; Cacciola, S.O.; Schena, L. Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biol. Control 2018, 120, 1–10. [Google Scholar] [CrossRef]
- Mota-Gutierrez, J.; Ferrocino, I.; Rantsiou, K.; Cocolin, L. Metataxonomic comparison between internal transcribed spacer and 26S ribosomal large subunit (LSU) rDNA gene. Int. J. Food Microbiol. 2019, 290, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Hassler, H.B.; Probert, B.; Moore, C.; Lawson, E.; Jackson, R.W.; Russell, B.T.; Richards, V.P. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. Microbiome 2022, 10, 104. [Google Scholar] [CrossRef]
- Papik, J.; Folkmanova, M.; Polivkova-Majorova, M.; Suman, J.; Uhlik, O. The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnol. Adv. 2020, 44, 107614. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Narsing Rao, M.P.; Gao, Y.; Li, X.; Gao, R.; Xie, Y.; Li, Q.; Li, W. Insights into the endophytic bacterial community comparison and their potential role in the dimorphic seeds of halophyte Suaeda glauca. BMC Microbiol. 2021, 21, 143. [Google Scholar] [CrossRef]
- Marzano, M.; Fosso, B.; Manzari, C.; Grieco, F.; Intranuovo, M.; Cozzi, G.; Mulè, G.; Scioscia, G.; Valiente, G.; Tullo, A.; et al. Complexity and dynamics of the winemaking bacterial communities in berries, musts, and wines from apulian grape cultivars through time and space. PLoS ONE 2016, 11, e0157383. [Google Scholar] [CrossRef] [PubMed]
- Parrella, G.; Scassillo, L.; Giorgini, M. Evidence for a new genetic variant in the Bemisia tabaci species complex and the prevalence of the biotype Q in southern Italy. J. Pest Sci. 2012, 85, 227–238. [Google Scholar] [CrossRef]
- Leveau, J.H.J.; Tech, J.J. Grapevine microbiomics: Bacterial diversity on grape leaves and berries revealed by high-throughput sequence analysis of 16S rRNA amplicons. Acta Hortic. 2011, 905, 31–42. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Zhang, Z.; Shu, C.; Zhu, J.; Li, Y.; Zhang, J. Diversity of ‘Cabernet Sauvignon’ Grape Epidermis and Environmental Bacteria in Wineries from Different Sub-Regions of the Eastern Foothills of Helan Mountain, Ningxia. Foods 2024, 13, 252. [Google Scholar] [CrossRef]
- Guzzon, R.; Bertoldi, D.; Roman, T.; Zanzotti, R.; Franciosi, E. Spatial and Seasonal Structure of Bacterial Communities Within Alpine Vineyards: Trentino as a Case Study. Microb. Ecol. 2023, 85, 108–120. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, J. Bioinformatic and Statistical Analysis of Microbiome Data: From Raw Sequences to Advanced Modeling with QIIME 2 and R; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Knight, R.; Vrbanac, A.; Taylor, B.C.; Aksenov, A.; Callewaert, C.; Debelius, J.; Gonzalez, A.; Kosciolek, T.; McCall, L.I.; McDonald, D.; et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 2018, 16, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Aleynova, O.A.; Nityagovsky, N.N.; Dubrovina, A.S.; Kiselev, K.V. The Biodiversity of Grapevine Bacterial Endophytes of Vitis amurensis Rupr. Plants 2022, 11, 1128. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Sekhar, A.C. Cultivation Versus Molecular Analysis of Banana (Musa sp.) Shoot-Tip Tissue Reveals Enormous Diversity of Normally Uncultivable Endophytic Bacteria. Microb. Ecol. 2017, 73, 885–899. [Google Scholar] [CrossRef]
- Ayogu, P.; Teixeira, A.; Gerós, H.; Martins, V. Identification of grape berry indigenous epiphytic yeasts with in vitro and in vivo antagonistic activity towards pathogenic fungi. OENO One 2023, 57, 253–264. [Google Scholar] [CrossRef]
- Fadiji, A.E.; Babalola, O.O. Metagenomics methods for the study of plant-associated microbial communities: A review. J. Microbiol. Methods. 2020, 170, 105860. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, F.X.; Zeng, Z.; Xu, M.; Sun, F.; Yang, L.; Bi, X.; Lin, Y.; Gao, Y.J.; Hao, H.X.; et al. Advances in Metagenomics and Its Application in Environmental Microorganisms. Front. Microbiol. 2021, 12, 766364. [Google Scholar] [CrossRef]
- Aleynova, O.A.; Nityagovsky, N.N.; Ananev, A.A.; Suprun, A.R.; Ogneva, Z.V.; Dneprovskaya, A.A.; Beresh, A.A.; Dubrovina, A.S.; Chebukin, P.A.; Kiselev, K.V. Bacterial and Fungal Endophytes of Grapevine Cultivars Growing in Primorsky Krai of Russia. Horticulturae 2023, 9, 1257. [Google Scholar] [CrossRef]
- Bettenfeld, P.; Cadena i Canals, J.; Jacquens, L.; Fernandez, O.; Fontaine, F.; van Schaik, E.; Courty, P.E.; Trouvelot, S. The microbiota of the grapevine holobiont: A key component of plant health. J. Adv. Res. 2022, 40, 1–15. [Google Scholar] [CrossRef]
- Wooley, J.C.; Ye, Y. Metagenomics: Facts and artifacts, and computational challenges. J. Comput. Sci. Technol. 2010, 25, 71–81. [Google Scholar] [CrossRef]
- Neu, A.T.; Allen, E.E.; Roy, K. Defining and quantifying the core microbiome: Challenges and prospects. Proc. Natl. Acad. Sci. USA 2021, 118, e2104429118. [Google Scholar] [CrossRef]
- Knapp, D.G.; Lázár, A.; Molnár, A.; Vajna, B.; Karácsony, Z.; Váczy, K.Z.; Kovács, G.M. Above-ground parts of white grapevine Vitis vinifera cv. Furmint share core members of the fungal microbiome. Environ. Microbiol. Rep. 2021, 13, 509–520. [Google Scholar] [CrossRef] [PubMed]
Species | Conduction | Location | Cultivar | Lat/Long (°) | Approach |
---|---|---|---|---|---|
V. vinifera | Abandoned | Franciacorta | Chardonnay | 45.5913902 | c, nc |
10.1714237 | |||||
Conventional (IPM) | Chardonnay | 45.588739 | c, nc | ||
9.934696 | |||||
Conventional (IPM) | Chardonnay | 45.61212 | c | ||
10.01243 | |||||
Biodynamic | Chardonnay | 45.581510 | c, nc | ||
10.016529 | |||||
Organic | Chardonnay | 45.656949 | c, nc | ||
10.009343 | |||||
Resistant to P. viticola | Riccagioia | Mgaloblishvili | 44.982173 | c | |
Resistant to P. viticola | Kamuri Shavi | 9.0917069 | c | ||
V. vinifera ssp. sylvestris | wild | Montalto | - | 44.973866 | c, nc |
9.2224803 | |||||
wild | Monte Fenera | - | 45.707653 | c, nc | |
8.310986 |
Region | N° | Primers | PCR Conditions |
---|---|---|---|
16S rRNA gene | First amplification | 8F (5′-AGAGTTTGATCCTGG-3′) | Id: 98 °C for 30 s |
D: 98 °C for 10 s | |||
A: 56 °C for 30 s | |||
1492r (5′-GGTTACCTTGTTACG-3′) | E: 72 °C for 45 s | ||
Fe: 72 °C for 5 m | |||
Cr: 33 cycles | |||
Second amplification with adaptors | 8F_ONT (5′-TTTCTGTTGGTGCTGATATTGCAGAGTTTGATCCTGGCTCAG-3′) | Id: 98 °C for 30 s | |
D: 98 °C for 10 s | |||
A: 63 °C for 30 s | |||
1492r_ONT (5′-ACTTGCCTGTGCCTCTATCTTCGGTTACCTTGTTACGACTT-3′) | E: 72 °C for 45 s | ||
Fe: 72 °C for 5 m | |||
Cr: 20 cycles | |||
ITS1-NL4 region | First amplification | ITSY1 (5′-TCGGTAGGTGAACCT-3′) | Id: 98 °C for 30 s, |
D: 98 °C for 10 s | |||
A: 54 °C for 1 m | |||
NL4 (5′-GGTCCGTGTTTCAAGACGG-3′) | E: 72 °C for 1 m | ||
Fe: 72 °C for 5 m | |||
Cr: 30 cycles | |||
Second amplification with adaptors | Ad-ITSY1 (5′-TTTCTGTTGGTGCTGATATTGCTCCGTAGGTGAACCTGCGG-3′) | Id: 98 °C for 30 s | |
D: 98 °C for 10 s | |||
A: 68 °C for 1 m | |||
Ad-NL4 (5′-ATCTGCCTGTCGCTCTATCTTCGGTCCGTGTTTCAAGACGG-3′) | E: 72 °C for 1 m | ||
Fe: 72 °C for 5 m | |||
Cr: 25 cycles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizzi, S.; Conti, A.; Di Canito, A.; Casagrande Pierantoni, D.; Foschino, R.; Setati, M.E.; Vigentini, I. Endophytic Diversity in Vitis vinifera with Different Vineyard Managements and Vitis sylvestris Populations from Northern Italy: A Comparative Study of Culture-Dependent and Amplicon Sequencing Methods. Biology 2025, 14, 293. https://doi.org/10.3390/biology14030293
Pizzi S, Conti A, Di Canito A, Casagrande Pierantoni D, Foschino R, Setati ME, Vigentini I. Endophytic Diversity in Vitis vinifera with Different Vineyard Managements and Vitis sylvestris Populations from Northern Italy: A Comparative Study of Culture-Dependent and Amplicon Sequencing Methods. Biology. 2025; 14(3):293. https://doi.org/10.3390/biology14030293
Chicago/Turabian StylePizzi, Simona, Angela Conti, Alessandra Di Canito, Debora Casagrande Pierantoni, Roberto Foschino, Mathabatha Evodia Setati, and Ileana Vigentini. 2025. "Endophytic Diversity in Vitis vinifera with Different Vineyard Managements and Vitis sylvestris Populations from Northern Italy: A Comparative Study of Culture-Dependent and Amplicon Sequencing Methods" Biology 14, no. 3: 293. https://doi.org/10.3390/biology14030293
APA StylePizzi, S., Conti, A., Di Canito, A., Casagrande Pierantoni, D., Foschino, R., Setati, M. E., & Vigentini, I. (2025). Endophytic Diversity in Vitis vinifera with Different Vineyard Managements and Vitis sylvestris Populations from Northern Italy: A Comparative Study of Culture-Dependent and Amplicon Sequencing Methods. Biology, 14(3), 293. https://doi.org/10.3390/biology14030293