Early Holocene Quantitative Summer Temperature Reconstructions in SE Lithuania Inferred from Chironomidae Data
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Coring and Sampling
2.3. Chronostratigraphy
2.4. Chironomidae Analysis
2.5. Numerical Methods
3. Results
3.1. Chironomidae Assemblages
3.2. Statistical Analysis
3.3. Chironomid-Inferred Palaeotemperatures (TJul)
4. Discussion
4.1. Climatic Variation and Related Environmental Changes
4.2. Temperature (TJul) Variations During the Early Holocene in a Regional Context
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brooks, S.J.; Langdon, P.G.; Heiri, O. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology; Technical Guide; Quaternary Research Association: London, UK, 2007; ISBN 978-0-907780-71-7. [Google Scholar]
- Watson, J.E.; Brooks, S.J.; Whitehouse, N.J.; Reimer, P.J.; Birks, H.J.B.; Turney, C. Chironomid-Inferred Late-Glacial Summer Air Temperatures from Lough Nadourcan, Co. Donegal, Ireland. J. Quat. Sci. 2010, 25, 1200–1210. [Google Scholar] [CrossRef]
- Plociennik, M.; Self, A.; Birks, H.J.B.; Brooks, S.J. Chironomidae (Insecta: Diptera) Succession in Żabieniec Bog and Its Palaeo-Lake (Central Poland) through the Late Weichselian and Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 307, 150–167. [Google Scholar] [CrossRef]
- Heiri, O. Holocene Palaeolimnology of Swiss Mountain Lakes Reconstructed Using Subfossil Chironomid Remains: Past Climate and Prehistoric Human Impact on Lake Ecosystems. Ph.D. Thesis, Bern University, Bern, Switzerland, 2001. [Google Scholar]
- Lang, B.; Brooks, S.J.; Bedford, A.; Jones, R.T.; Birks, H.J.B.; Marshall, J.D. Regional Consistency in Lateglacial Chironomid-Inferred Temperatures from Five Sites in North-West England. Quat. Sci. Rev. 2010, 29, 1528–1538. [Google Scholar] [CrossRef]
- Battarbee, R.W. Palaeolimnological Approaches to Climate Change, with Special Regard to the Biological Record. Quat. Sci. Rev. 2000, 19, 107–124. [Google Scholar] [CrossRef]
- Brooks, S.J. Fossil Midges (Diptera: Chironomidae) as Palaeoclimatic Indicators for the Eurasian Region. Quat. Sci. Rev. 2006, 25, 1894–1910. [Google Scholar] [CrossRef]
- Walker, I.R.; Cwynar, L.C. Midges and Palaeotemperature Reconstruction—The North American Experience. Quat. Sci. Rev. 2006, 25, 1911–1925. [Google Scholar] [CrossRef]
- Eggermont, H.; Heiri, O. The Chironomid-Temperature Relationship: Expression in Nature and Palaeoenvironmental Implications. Biol. Rev. 2012, 87, 430–456. [Google Scholar] [CrossRef]
- Luoto, T.P.; Kaukolehto, M.; Weckström, J.; Korhola, A.; Väliranta, M. New Evidence of Warm Early-Holocene Summers in Subarctic Finland Based on an Enhanced Regional Chironomid-Based Temperature Calibration Model. Quat. Res. 2014, 81, 50–62. [Google Scholar] [CrossRef]
- Walker, I.R.; Levesque, A.J.; Cwynar, L.C.; Lotter, A.F. An Expanded Surface-Water Palaeotemperature Inference Model for Use with Fossil Midges from Eastern Canada. J. Paleolimnol. 1997, 18, 165–178. [Google Scholar] [CrossRef]
- Cwynar, L.C.; Levesque, A.J. Chironomid Evidence for Late-Glacial Climatic Reversals in Maine. Quat. Res. 1995, 43, 405–413. [Google Scholar] [CrossRef]
- Porinchu, D.F.; MacDonald, G.M.; Bloom, A.M.; Moser, K.A. Late Pleistocene and Early Holocene Climate and Limnological Changes in the Sierra Nevada, California, USA Inferred from Midges (Insecta: Diptera: Chironomidae). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 198, 403–422. [Google Scholar] [CrossRef]
- Brodersen, K.P.; Anderson, N.J. Distribution of Chironomids (Diptera) in Low Arctic West Greenland Lakes: Trophic Conditions, Temperature and Environmental Reconstruction. Freshw. Biol. 2002, 47, 1137–1157. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F. Holocene and Lateglacial Summer Temperature Reconstruction in the Swiss Alps Based on Fossil Assemblages of Aquatic Organisms: A Review. Boreas 2005, 34, 506–516. [Google Scholar] [CrossRef]
- Velle, G.; Brooks, S.J.; Birks, H.J.B.; Willassen, E. Chironomids as a Tool for Inferring Holocene Climate: An Assessment Based on Six Sites in Southern Scandinavia. Quat. Sci. Rev. 2005, 24, 1429–1462. [Google Scholar] [CrossRef]
- Velle, G.; Brodersen, K.P.; Birks, H.J.B.; Willassen, E. Midges as Quantitative Temperature Indicator Species: Lessons for Palaeoecology. Holocene 2010, 20, 989–1002. [Google Scholar] [CrossRef]
- Brooks, S.J.; Birks, H.J.B. Chironomid-Inferred Air Temperatures from Lateglacial and Holocene Sites in North-West Europe: Progress and Problems. Quat. Sci. Rev. 2001, 20, 1723–1741. [Google Scholar] [CrossRef]
- Larocque, I.; Hall, R.I.; Grahn, E. Chironomids as Indicators of Climate Change: A 100-lake Training Set from a Subarctic Region of Northern Sweden (Lapland). J. Paleolimnol. 2001, 26, 307–322. [Google Scholar] [CrossRef]
- Porinchu, D.F.; MacDonald, G.M. The Use and Application of Freshwater Midges (Chironomidae: Insecta: Diptera) in Geographical Research. Prog. Phys. Geogr. Earth Environ. 2003, 27, 378–422. [Google Scholar] [CrossRef]
- Gouw-Bouman, M.T.I.J.; Van Asch, N.; Engels, S.; Hoek, W.Z. Late Holocene Ecological Shifts and Chironomid-Inferred Summer Temperature Changes Reconstructed from Lake Uddelermeer, The Netherlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 535, 109366. [Google Scholar] [CrossRef]
- Larocque, I.; Hall, R. Chironomids as Quantitative Indicators of Mean July Air Temperature: Validation by Comparison with Century-Long Meteorological Records from Northern Sweden. J. Paleolimnol. 2003, 29, 475–493. [Google Scholar] [CrossRef]
- Armitage, P.D.; Cranston, P.S.; Pinder, L.C.V. (Eds.) Chironomidae: Biology and Ecology of Non-Biting Midges; Springer-Science+Business Media, B.V.: Dordrecht, The Netherlands, 2012; ISBN 978-0-412-45260-4. [Google Scholar]
- Williams, J.W.; Post, D.M.; Cwynar, L.C.; Lotter, A.F.; Levesque, A.J. Rapid and Widespread Vegetation Responses to Past Climate Change in the North Atlantic Region. Geology 2002, 30, 971–974. [Google Scholar] [CrossRef]
- Medeiros, A.S.; Chipman, M.L.; Francis, D.R.; Hamerlík, L.; Langdon, P.; Puleo, P.J.K.; Schellinger, G.; Steigleder, R.; Walker, I.R.; Woodroffe, S.; et al. A Continental-Scale Chironomid Training Set for Reconstructing Arctic Temperatures. Quat. Sci. Rev. 2022, 294, 107728. [Google Scholar] [CrossRef]
- Luoto, T.P. Subfossil Chironomidae (Insecta: Diptera) along a Latitudinal Gradient in Finland: Development of a New Temperature Inference Model. J. Quat. Sci. 2009, 24, 150–158. [Google Scholar] [CrossRef]
- Luoto, T.P.; Kultti, S.; Nevalainen, L.; Sarmaja-Korjonen, K. Temperature and effective moisture variability in southern Finland during the Holocene quantified with midge-based calibration models. J. Quat. Sci. 2010, 25, 1317–1326. [Google Scholar] [CrossRef]
- Luoto, T.; Kotrys, B.; Płóciennik, M. East European Chironomid-Based Calibration Model for Past Summer Temperature Reconstructions. Clim. Res. 2019, 77, 63–76. [Google Scholar] [CrossRef]
- Hošek, J.; Pokorný, P.; Kubovčík, V.; Horáček, I.; Žáčková, P.; Kadlec, J.; Rojik, F.; Lisá, L.; Bučkuliaková, S. Late Glacial Climatic and Environmental Changes in Eastern-Central Europe: Correlation of Multiple Biotic and Abiotic Proxies from the Lake Švarcenberk, Czech Republic. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 396, 155–172. [Google Scholar] [CrossRef]
- Druzhinina, O.; Stančikaitė, M.; Kublitskiy, Y.; Nazarova, L.; Syrykh, L.; Gedminienė, L.; Vaikutienė, G.; Subetto, D. The Late Pleistocene-Early Holocene Palaeoenvironmental Evolution in the SE Baltic Region: A Multi-Proxy Palaeolimnological Approach Based on the Kamyshovoe Lake Record. In Field Symposium of the INQUA PeriBaltic Working Group “From Weichselian Ice-Sheet Dynamics to Holocene Land Use Development in Western Pomerania and Mecklenburg”; GFZ German Research Centre for Geosciences: Potsdam, Germany, 2019; Volume STR 19, pp. 23–24. [Google Scholar] [CrossRef]
- Baig, J.; Gavin, D.G.; Walker, I.; Porinchu, D. Chironomid-Inferred Postglacial Temperature Reconstruction from Gold Lake, Oregon, USA. Quat. Res. 2025, 125, 104–117. [Google Scholar] [CrossRef]
- Pawlowski, D.; Płóciennik, M.; Brooks, S.J.; Luoto, T.P.; Milecka, K.; Nevalainen, L.; Peyron, O.; Self, A.; Zieliński, T. A Multiproxy Study of Younger Dryas and Early Holocene Climatic Conditions from the Grabia River Paleo-Oxbow Lake (Central Poland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 438, 34–50. [Google Scholar] [CrossRef]
- Kotrys, B.; Płóciennik, M.; Sydor, P.; Brooks, S.J. Expanding the Swiss-Norwegian Chironomid Training Set with Polish Data. Boreas 2020, 49, 89–107. [Google Scholar] [CrossRef]
- Heiri, O.; Brooks, S.J.; Renssen, H.; Bedford, A.; Hazekamp, M.; Ilyashuk, B.; Jeffers, E.S.; Lang, B.; Kirilova, E.; Kuiper, S.; et al. Validation of Climate Model-Inferred Regional Temperature Change for Late-Glacial Europe. Nat. Commun. 2014, 5, 4914. [Google Scholar] [CrossRef] [PubMed]
- Veski, S.; Seppä, H.; Stančikaitė, M.; Zernitskaya, V.; Reitalu, T.; Gryguc, G.; Heinsalu, A.; Stivrins, N.; Amon, L.; Vassiljev, J.; et al. Quantitative Summer and Winter Temperature Reconstructions from Pollen and Chironomid Data between 15 and 8 Ka BP in the Baltic–Belarus Area. Quat. Int. 2015, 388, 4–11. [Google Scholar] [CrossRef]
- Bakumenko, V.; Poska, A.; Płóciennik, M.; Gasteviciene, N.; Kotrys, B.; Luoto, T.P.; Belle, S.; Veski, S. Chironomidae-based Inference Model for Mean July Air Temperature Reconstructions in the Eastern Baltic Area. Boreas 2024, 53, 401–414. [Google Scholar] [CrossRef]
- Šeirienė, V.; Gastevičienė, N.; Luoto, T.P.; Gedminienė, L.; Stančikaitė, M. The Lateglacial and Early Holocene Climate Variability and Vegetation Dynamics Derived from Chironomid and Pollen Records of Lieporiai Palaeolake, North Lithuania. Quat. Int. 2021, 605–606, 55–64. [Google Scholar] [CrossRef]
- Šeirienė, V.; Kühl, N.; Kisielienė, D. Quantitative Reconstruction of Climate Variability during the Eemian (Merkinė) and Weichselian (Nemunas) in Lithuania. Quat. Res. 2014, 82, 229–235. [Google Scholar] [CrossRef]
- Gedminienė, L.; Spiridonov, A.; Stančikaitė, M.; Skuratovič, Ž.; Vaikutienė, G.; Daumantas, L.; Salonen, J.S. Temporal and Spatial Climate Changes in the Mid-Baltic Region in the Late Glacial and the Holocene: Pollen-Based Reconstructions. CATENA 2025, 252, 108851. [Google Scholar] [CrossRef]
- Taminskas, J.; Pileckas, M.; Šimanauskienė, R.; Linkevičienė, R. Wetland Classification and Inventory in Lithuania. Baltica 2012, 25, 33–44. [Google Scholar] [CrossRef]
- Natkevičaitė-Ivanauskienė, M. Botaninė Geografija ir Fitocenologijos Pagrindai (Botanical Geography with Backgrounds of Phytocenology); Mokslas: Vilnius, Lithuania, 1983; pp. 152–154. [Google Scholar]
- Bitinas, A. New Insights into the Last Deglaciation of the South-Eastern Flank of the Scandinavian Ice Sheet. Quat. Sci. Rev. 2012, 44, 69–80. [Google Scholar] [CrossRef]
- Grigaitė, O. Lietuvos Aukštapelkių Augmenijos Charakteristika (Characteristics of the Highmoor Vegetation). Ph.D. Thesis, Institute of Botany, Vilnius, Lithuania, 1993. [Google Scholar]
- Edvardsson, J.; Baužienė, I.; Lamentowicz, M.; Šimanauskienė, R.; Tamkevičiūtė, M.; Taminskas, J.; Linkevičienė, R.; Skuratovič, Ž.; Corona, C.; Stoffel, M. A Multi-Proxy Reconstruction of Moisture Dynamics in a Peatland Ecosystem: A Case Study from Čepkeliai, Lithuania. Ecol. Indic. 2019, 106, 105484. [Google Scholar] [CrossRef]
- Stančikaitė, M.; Gedminienė, L.; Edvardsson, J.; Stoffel, M.; Corona, C.; Gryguc, G.; Uogintas, D.; Zinkutė, R.; Skuratovič, Ž.; Taraškevičius, R. Holocene Vegetation and Hydroclimatic Dynamics in SE Lithuania—Implications from a Multi-Proxy Study of the Čepkeliai Bog. Quat. Int. 2019, 501, 219–239. [Google Scholar] [CrossRef]
- Gannon, J.E. Two Counting Cells for the Enumeration of Zooplankton Micro-Crustacea. Trans. Am. Microsc. Soc. 1971, 90, 486–490. [Google Scholar] [CrossRef]
- Wiederholm, T. Chironomidae of the Holarctic Region. Keys and Diagnoses. Part 1: Larva; Entomologica Scandinavica Supplement: Lund, Sweden, 1983; Volume 19. [Google Scholar]
- Larocque-Tobler, I. The Polish Sub-Fossil Chironomids. Palaeontologia Electronica. 2014. Available online: https://palaeo-electronica.org/content/in-press/637-chironomid-identification (accessed on 15 September 2025).
- Grimm, E.C. Tilia Version 1.0. 1; Illinois State Museum, Research and Collections Center: Springfield, IL, USA, 2007. [Google Scholar]
- Grimm, E.C. CONISS: A FORTRAN 77 Program for Stratigraphically Constrained Cluster Analysis by the Method of Incremental Sum of Squares. Comput. Geosci. 1987, 13, 13–35. [Google Scholar] [CrossRef]
- Hill, M.O.; Gauch, H.G. Detrended Correspondence Analysis: An Improved Ordination Technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Luoto, T.P.; Nevalainen, L. Quantifiying climate changes of the common era for Finland. Clim. Dyn. 2017, 49, 2557–2567. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.R-project.org/ (accessed on 25 October 2025).
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix (Version 95). 2024. Available online: https://github.com/taiyun/corrplot (accessed on 26 October 2025).
- Wickham, H. Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- South, A. rnaturalearth: World Map Data from Natural Earth. R Package Version 0.1.0. 2017. Available online: https://cran.r-project.org/package=rnaturalearth (accessed on 25 October 2025).
- South, A. rnaturalearthdata: World Vector Map Data from Natural Earth Used in ‘Rnaturalearth’. R Package Version 0.1.0. 2017. Available online: https://cran.r-project.org/package=rnaturalearthdata (accessed on 26 October 2025).
- Langdon, P.; Barber, K.E.; Morriss, S.H. Reconstructing Climate and Environmental Change in Northern England through Chironomid and Pollen Analyses: Evidence from Talkin Tarn, Cumbria. J. Paleolimnol. 2004, 32, 197–213. [Google Scholar] [CrossRef]
- Walker, I.R.; Fernando, C.H.; Paterson, C.G. Associations of Chironomidae (Diptera) of Shallow, Acid, Humic Lakes and Bog Pools in Atlantic Canada, and a Comparison with an Earlier Paleoecological Investigation. Hydrobiologia 1985, 120, 11–22. [Google Scholar] [CrossRef]
- Ilyashuk, E.A.; Ilyashuk, B.P. Analysis of chironomid remains from lake sediments in paleoecological reconstruction. Water Resour. 2004, 31, 203–214. [Google Scholar] [CrossRef]
- Magny, M.; Vannière, B.; de Beaulieu, J.-L.; Bégeot, C.; Heiri, O.; Millet, L.; Peyron, O.; Walter-Simonnet, A.-V. Early-Holocene Climatic Oscillations Recorded by Lake-Level Fluctuations in West-Central Europe and in Central Italy. Quat. Sci. Rev. 2007, 26, 1951–1964. [Google Scholar] [CrossRef]
- Millet, L.; Millet, L. Les Assemblages de Chironomidae, Marqueurs des Changements de l’Environnement et du Climat Pendant le Pléniglaciaire et le Tardiglaciaire: Etude de Trois Séquences Lacustres: Bergsee (Forêt Noire, Allemagne), Lautrey (Jura, France), Accesa (Toscane, Italie). Ph.D. Thesis, Verlag Nicht Ermittelbar, Paris, France, 2004. [Google Scholar]
- Gandouin, E.; Ponel, P.; Andrieu-Ponel, V.; Franquet, E.; de Beaulieu, J.-L.; Reille, M.; Guiter, F.; Brulhet, J.; Lallier-Vergès, E.; Kéravis, D.; et al. Past Environment and Climate Changes at the Last Interglacial/Glacial Transition (Les Échets, France) Inferred from Subfossil Chironomids (Insecta). Comptes Rendus Géosci. 2007, 339, 337. [Google Scholar] [CrossRef]
- Henrikson, L.; Olofsson, J.B.; Oscarson, H.G. The Impact of Acidification on Chironomidae (Diptera) as Indicated by Subfossil Stratification. Hydrobiologia 1982, 86, 223–229. [Google Scholar] [CrossRef]
- Brodin, Y.W. The Postglacial History of Lake Flarken, Southern Sweden, Interpreted from Subfossil Insect Remains. Int. Rev. Hydrobiol. 1986, 71, 371–432. [Google Scholar] [CrossRef]
- Björck, S.; Muscheler, R.; Kromer, B.; Andresen, C.S.; Heinemeier, J.; Johnsen, S.J.; Conley, D.; Koç, N.; Spurk, M.; Veski, S. High-Resolution Analyses of an Early Holocene Climate Event May Imply Decreased Solar Forcing as an Important Climate Trigger. Geology 2001, 29, 1107. [Google Scholar] [CrossRef]
- Fleitmann, D.; Mudelsee, M.; Burns, S.J.; Bradley, R.S.; Kramers, J.; Matter, A. Evidence for a Widespread Climatic Anomaly at around 9.2 Ka before Present. Paleoceanography 2008, 23. [Google Scholar] [CrossRef]
- Walker, I.R.; MacDonald, G.M. Distributions of Chironomidae (Insecta: Diptera) and Other Freshwater Midges with Respect to Treeline, Northwest Territories, Canada. Arct. Alp. Res. 1995, 27, 258–263. [Google Scholar] [CrossRef]
- Moller Pillot, H. Chironomidae Larvae, Vol. 2: Chironomini: Biology and Ecology of the Chironomini; Brill: Leiden, The Netherlands, 2009; ISBN 978-90-04-27804-2. [Google Scholar]
- Björck, S.; Kromer, B.; Johnsen, S.; Bennike, O.; Hammarlund, D.; Lemdahl, G.; Possnert, G.; Rasmussen, T.L.; Wohlfarth, B.; Hammer, C.U.; et al. Synchronized Terrestrial Atmospheric Deglacial Records Around the North Atlantic. Science 1996, 274, 1155–1160. [Google Scholar] [CrossRef]
- Björck, S.; Rundgren, M.; Ingólfsson, Ó.; Funder, S. The Preboreal Oscillation around the Nordic Seas: Terrestrial and Lacustrine Responses. J. Quat. Sci. 1997, 12, 455–465. [Google Scholar] [CrossRef]
- Alley, R.; Agustsdottir, A. The 8k Event: Cause and Consequences of a Major Holocene Abrupt Climate Change. Quat. Sci. Rev. 2005, 24, 1123–1149. [Google Scholar] [CrossRef]
- Fletcher, W.J.; Sánchez Goñi, M.F.; Naughton, F.; Seppä, H. Greenlandian Stage (Early Holocene, 11.7–8.2 Ka). In European Glacial Landscapes; Palacios, D., Hughes, P.D., Jomelli, V., Tanarro, L.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 73–87. ISBN 978-0-323-99712-6. [Google Scholar]
- Spiridonov, A.; Vaikutienė, G.; Stankevič, R.; Druzhinina, O.; Šeirienė, V.; Subetto, D.; Kublitsky, J.; Stančikaitė, M. Response of Freshwater Diatoms to Cold Events in the Late Pleistocene and Early Holocene (SE Baltic Region). Quat. Int. 2021, 589, 112–123. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gastevičienė, N.; Kluczynska, G.; Šeirienė, V. Early Holocene Quantitative Summer Temperature Reconstructions in SE Lithuania Inferred from Chironomidae Data. Biology 2025, 14, 1692. https://doi.org/10.3390/biology14121692
Gastevičienė N, Kluczynska G, Šeirienė V. Early Holocene Quantitative Summer Temperature Reconstructions in SE Lithuania Inferred from Chironomidae Data. Biology. 2025; 14(12):1692. https://doi.org/10.3390/biology14121692
Chicago/Turabian StyleGastevičienė, Neringa, Gražyna Kluczynska, and Vaida Šeirienė. 2025. "Early Holocene Quantitative Summer Temperature Reconstructions in SE Lithuania Inferred from Chironomidae Data" Biology 14, no. 12: 1692. https://doi.org/10.3390/biology14121692
APA StyleGastevičienė, N., Kluczynska, G., & Šeirienė, V. (2025). Early Holocene Quantitative Summer Temperature Reconstructions in SE Lithuania Inferred from Chironomidae Data. Biology, 14(12), 1692. https://doi.org/10.3390/biology14121692

