Comparative Evaluation of Chlorella vulgaris and Anabaena variabilis for Phycoremediation of Polluted River Water: Spotlighting Heavy Metals Detoxification
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Analysis of River Water
2.2. Microalgal and Cyanobacterial Species, Culture Medium, and Culturing Conditions
2.3. Phycoremediation Experimental Set Up
2.4. Analytical Procedures
2.5. Determination of Microalgal and Cyanobacterial Growth
2.6. Phycoremediation Efficiency
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Raw River Water
3.2. Pollutant Removal Efficacy of C. vulgaris and A. variabilis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Latif, M.B.; Khalifa, M.A.K.; Hoque, M.M.M.; Ahammed, M.S.; Islam, A.; Kabir, M.H.; Tusher, T.R. Appraisal of surface water quality in vicinity of industrial areas and associated ecological and human health risks: A study on the Bangshi river in Bangladesh. Toxin Rev. 2022, 41, 1148–1162. [Google Scholar] [CrossRef]
- Kabir, M.H.; Tusher, T.R.; Hossain, M.S.; Islam, M.S.; Shammi, R.S.; Kormoker, T.; Proshad, R.; Islam, M. Evaluation of spatio-temporal variations in water quality and suitability of an ecologically critical urban river employing water quality index and multivariate statistical approaches: A study on Shitalakhya river, Bangladesh. Hum. Ecol. Risk Assess. 2021, 27, 1388–1415. [Google Scholar] [CrossRef]
- Uddin, M.J.; Jeong, Y.-K. Urban River pollution in Bangladesh during last 40 years: Potential public health and ecological risk, present policy, and future prospects toward smart water management. Heliyon 2021, 7, e06107. [Google Scholar] [CrossRef]
- Narayanan, M.; Prabhakaran, M.; Natarajan, D.; Kandasamy, S.; Raja, R.; Carvalho, I.S.; Ashokkumar, V.; Chinnathambi, A.; Alharbi, S.A.; Devarayan, K.; et al. Phycoremediation potential of Chlorella sp. on the polluted Thirumanimutharu river water. Chemosphere 2021, 277, 130246. [Google Scholar] [CrossRef]
- Thai-Hoang, L.; Thong, T.; Loc, H.T.; Van, P.T.T.; Thuy, P.T.P.; Thuoc, T.L. Influences of anthropogenic activities on water quality in the Saigon River, Ho Chi Minh City. J. Water Health 2022, 20, 491–504. [Google Scholar] [CrossRef]
- Priya, A.K.; Jalil, A.A.; Vadivel, S.; Dutta, K.; Rajendran, S.; Fujii, M.; Soto-Moscoso, M. Heavy metal remediation from wastewater using microalgae: Recent advances and future trends. Chemosphere 2022, 305, 135375. [Google Scholar] [CrossRef] [PubMed]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2022, 10, 8434. [Google Scholar] [CrossRef] [PubMed]
- Proshad, R.; Islam, S.; Tusher, T.R.; Zhang, D.; Khadka, S.; Gao, J.; Kundu, S. Appraisal of heavy metal toxicity in surface water with human health risk by a novel approach: A study on an urban river in vicinity to industrial areas of Bangladesh. Toxin Rev. 2021, 40, 803–819. [Google Scholar] [CrossRef]
- Rani, L.; Srivastav, A.L.; Kaushal, J.; Grewal, A.S.; Madhav, S. Heavy metal contamination in the river ecosystem. In Ecological Significance of River Ecosystems; Madhav, S., Kanhaiya, S., Srivastav, A., Singh, V., Singh, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 37–50. [Google Scholar]
- Issa, H.M.; Alshatteri, A.H. Impacts of wastewater discharge from Kalar city on Diyala-Sirwan river water quality, Iraq: Pollution evaluation, health risks of heavy metals contamination. Appl. Water Sci. 2021, 11, 73. [Google Scholar] [CrossRef]
- Soni, R.; Pal, A.K.; Tripathi, P.; Jha, P.K.; Tripathi, V. Physicochemical analysis of wastewater discharge and impact on Ganges River of major cities of North India. Water Supply 2022, 22, 6157. [Google Scholar] [CrossRef]
- Krishnamoorthy, N.; Unpaprom, Y.; Ramaraj, R.; Maniam, G.P.; Govindan, N.; Arunachalam, T.; Paramasivan, B. Recent advances and future prospects of electrochemical processes for microalgae harvesting. J. Environ. Chem. Eng. 2021, 9, 105875. [Google Scholar] [CrossRef]
- Tang, C.-C.; Tian, Y.; Liang, H.; Zuo, W.; Wang, Z.-W.; Zhang, J.; He, Z.-W. Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor. Bioresour. Technol. 2018, 250, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ummalyma, S.B.; Pandey, A.; Sukumaran, R.K.; Sahoo, D. Bioremediation by microalgae: Current and emerging trends for effluents treatments for value addition of waste streams. In Biosynthetic Technology and Environmental Challenges, 1st ed.; Varjani, S.J., Parameswaran, B., Kumar, S., Khare, S.K., Eds.; Springer Nature: Singapore, 2018; pp. 355–375. [Google Scholar]
- Srimongkol, P.; Sangtanoo, P.; Songserm, P.; Watsuntorn, W.; Karnchanatat, A. Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Front. Bioeng. Biotechnol. 2022, 10, 904046. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.-H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Environ. 2023, 13, 100205. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Bayo, A.; Morales, V.; Rodríguez, R.; Vicente, G.; Bautista, L.F. Cultivation of microalgae and cyanobacteria: Effect of operating conditions on growth and biomass composition. Molecules 2020, 25, 2834. [Google Scholar] [CrossRef] [PubMed]
- Kulal, D.K.; Loni, P.C.; Dcosta, C.; Some, S.; Kalambate, P.K. Cyanobacteria: As a promising candidate for heavy-metals removal. In Advances in Cyanobacterial Biology; Singh, P.K., Kumar, A., Singh, V.K., Shrivastava, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 291–300. [Google Scholar]
- Ummalyma, S.B.; Singh, A. Biomass production and phycoremediation of microalgae cultivation in polluted river water. Bioresour. Technol. 2022, 351, 126948. [Google Scholar] [CrossRef] [PubMed]
- Möllers, K.B.; Cannella, D.; Jørgensen, H.; Frigaard, N.-U. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol. Biofuels 2014, 7, 64. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; El-Shouny, W.A.; Osman, M.E.; El-Gammal, E.W. Treatment of sewage and industrial wastewater effluents by the cyanobacteria Nostoc muscorum and Anabaena subcylinderica. J. Water Chem. Technol. 2014, 36, 190–197. [Google Scholar] [CrossRef]
- Verma, K.; Kumar, P.K.; Krishna, S.V.; Himabindu, V. Phycoremediation of sewage-contaminated lake water using microalgae-bacteria co-culture. Water Air Soil Pollut. 2020, 231, 1–16. [Google Scholar] [CrossRef]
- Priyadharshini, S.D.; Babu, P.S.; Manikandan, S.; Subbaiya, R.; Govarthanan, M.; Karmegam, N. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. Environ. Pollut. 2021, 290, 117989. [Google Scholar] [CrossRef]
- Al-Jabri, H.; Das, P.; Khan, S.; Thaher, M.; AbdulQuadir, M. Treatment of wastewaters by microalgae and the potential applications of the produced biomass—A review. Water 2021, 13, 27. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Yadav, A.P.S.; Dwivedi, V.; Kumar, S.; Kushwaha, A.; Goswami, L.; Reddy, B.S. Cyanobacterial extracellular polymeric substances for heavy metal removal: A mini review. J. Compos. Sci. 2021, 5, 1. [Google Scholar] [CrossRef]
- Li, F.; Amenorfenyo, D.K.; Zhang, Y.; Zhang, N.; Li, C.; Huang, X. Cultivation of Chlorella vulgaris in membrane-treated industrial distillery wastewater: Growth and wastewater treatment. Front. Environ. Sci. 2021, 9, 770633. [Google Scholar] [CrossRef]
- Koul, B.; Sharma, K.; Shah, M.P. Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environ. Technol. Innov. 2022, 25, 102040. [Google Scholar] [CrossRef]
- Venkatesan, S.; Prabakaran, M.; Narayanan, M.; Anusha, P.; Srinivasan, R.; Natarajan, D.; Paulraj, B.; Devarayan, K.; Sukumaran, M. In-situ and ex-situ phycoremediation competence of innate Scenedesmus sp. on polluted Thirumanimuthar river water. Chem. Sci. Rev. Lett. 2020, 9, 839–852. [Google Scholar]
- Hasan, M.K.; Shahriar, A.; Jim, K.U. Water pollution in Bangladesh and its impact on public health. Heliyon 2019, 5, e02145. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.A.S.; Hossain, M.E.; Majed, N. Assessment of physicochemical properties and comparative pollution status of the Dhaleshwari River in Bangladesh. Earth 2021, 2, 41. [Google Scholar] [CrossRef]
- Tareq, S.M.; Rahaman, M.S.; Rikta, S.Y.; Islam, S.N.; Sultana, M.S. Seasonal variations in water quality of the Ganges and Brahmaputra River, Bangladesh. Jahangirnagar Univ. Environ. Bull. 2013, 2, 71–82. [Google Scholar] [CrossRef]
- Huq, S.M.I.; Alam, M.D. A Handbook on Analysis of Soil, Plant and Water, XII ed.; BACER-DU: Dhaka, Bangladesh, 2005. [Google Scholar]
- Patil, P.N.; Sawant, D.V.; Deshmukh, R.N. Physico-chemical parameters for testing of water—A review. Int. J. Environ. Sci. 2012, 3, 1194–1207. [Google Scholar]
- Kotteswari, M.; Murugesan, S.; Ranjith, K.R. Phycoremediation of dairy effluent by using the microalgae Nostoc sp. Int. J. Environ. Res. Dev. 2012, 2, 35–43. [Google Scholar]
- Talukder, A.H.; Mahmud, S.; Lira, S.A.; Aziz, M.A. Phycoremediation of textile industry effluent by cyanobacteria (Nostoc muscorum and Anabaena variabilis). Biores. Comm. 2015, 1, 124–127. [Google Scholar]
- Kabir, F.; Gulfraz, M.; Raja, G.K.; Inam-ul-Haq, M.; Ahmad, M.S.; Nasir, M.F.; Awais, M.; Batool, I. Nutrients utilization and biomass production by microalgae culture development in wastewater. Int. J. Biosci. 2018, 12, 460–469. [Google Scholar]
- ECR (Environment Conservation Rules). Environment conservation rules 1997, Bangladesh. Ministry of Environment and Forest (MoEF), Government of the People’s Republic of Bangladesh. Available online: https://faolex.fao.org/docs/pdf/bgd19918.pdf (accessed on 30 April 2023).
- Rahman, M.H.; Ferdouse, J.; Ullah, A.K.M.A.; Hossain, M.T. Water quality assessment and identification of novel bacterial strains in the Halda river water of Bangladesh. Air. Soil Water Res. 2022, 15, 1–15. [Google Scholar]
- Ahn, M.K.; Chilakala, R.; Han, C.; Thenepalli, T. Removal of hardness from water samples by a carbonation process with a closed pressure reactor. Water 2018, 10, 54. [Google Scholar] [CrossRef]
- Hasan, M.F.; Nur-E-Alam, M.; Salam, M.A.; Rahman, H.; Paul, S.C.; Rak, A.E.; Ambade, B.; Islam, A.R.M.T. Health risk and water quality assessment of surface water in urban river of Bangladesh. Sustainability 2021, 13, 6832. [Google Scholar] [CrossRef]
- Jing, S.; Podola, B.; Melkonian, M. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: An experimental study. J. Appl. Phycol. 2007, 19, 417–423. [Google Scholar]
- El-Sheekh, M.M.; Farghl, A.A.; Galal, H.R.; Bayoumi, H.S. Bioremediation of different types of polluted water using microalgae. Rend. Lincei. 2016, 27, 401–410. [Google Scholar] [CrossRef]
- Ajayan, K.V.; Selvaraju, M.; Unnikannan, P.; Sruthi, P. Phycoremediation of tannery wastewater using microalgae Scenedesmus species. Int. J. Phytoremediation 2015, 17, 907–916. [Google Scholar] [CrossRef]
- Kumar, P.K.; Krishna, S.V.; Naidu, S.S.; Verma, K.; Bhagawan, D.; Himabindu, V. Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: Comparative study. Carbon Resour. Convers. 2019, 2, 126–133. [Google Scholar] [CrossRef]
- Deb, D.; Mallick, N.; Bhadoria, P.B.S. A waste-to-wealth initiative exploiting the potential of Anabaena variabilis for designing an integrated biorefinery. Sci. Rep. 2022, 12, 9478. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Zhao, Q.; Wei, W.; Sun, Y. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresour. Technol. 2015, 185, 269–275. [Google Scholar] [CrossRef]
- Wirth, R.; Pap, B.; Böjti, T.; Shetty, P.; Lakatos, G.; Bagi, Z.; Kovács, K.L.; Maróti, G. Chlorella vulgaris and its phycosphere in wastewater: Microalgae-bacteria interactions during nutrient removal. Front. Bioeng. Biotechnol. 2020, 8, 557572. [Google Scholar] [CrossRef]
- Zepernick, B.N.; Gann, E.R.; Martin, R.M.; Pound, H.L.; Krausfeldt, L.E.; Chaffin, J.D.; Wilhelm, S.W. Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom. Front. Microbiol. 2021, 12, 598736. [Google Scholar] [CrossRef]
- Peng, J.; Kumar, K.; Gross, M.; Kunetz, T.; Wen, Z. Removal of total dissolved solids from wastewater using a revolving algal biofilm reactor. Water Environ. Res. 2020, 92, 766–778. [Google Scholar] [CrossRef] [PubMed]
- Ayed, H.B.A.-B.; Taidi, B.; Ayadi, H.; Pareau, D.; Stambouli, M. Magnesium uptake by the green microalga Chlorella vulgaris in batch cultures. J. Microbiol. Biotechnol. 2016, 26, 503–510. [Google Scholar] [CrossRef]
- Tang, C.-C.; Zhang, X.-Y.; Wang, R.; Wang, T.-T.; He, Z.-W.; Wang, X.C. Calcium ions-effect on performance, growth and extracellular nature of microalgal-bacterial symbiosis system treating wastewater. Environ. Res. 2022, 207, 112228. [Google Scholar] [CrossRef]
- Wang, X.-X.; Wu, Y.-H.; Zhang, T.-Y.; Xu, X.-Q.; Dao, G.-H.; Hu, H.-Y. Simultaneous nitrogen, phosphorus, and hardness removal from reverse osmosis concentrate by microalgae cultivation. Water Res. 2016, 94, 215–224. [Google Scholar] [CrossRef]
- Moondra, N.; Jariwala, N.D.; Christian, R.A. Microalgae based wastewater treatment: A shifting paradigm for the developing nations. Int. J. Phytoremediation 2021, 23, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Mowla, D.; Esmaeilzadeh, F.; Ghasemi, Y. Cultivation of microalgae in a power plant wastewater for sulfate removal and biomass production: A batch study. J. Environ. Chem. Eng. 2018, 6, 2812–2820. [Google Scholar] [CrossRef]
- Rajamani, S.; Siripornadulsil, S.; Falcao, V.; Torres, M.; Colepicolo, P.; Sayre, R. Phycoremediation of heavy metals using transgenic microalgae. In Transgenic Microalgae as Green Cell Factories; Advances in Experimental Medicine and Biology; León, R., Galván, A., Fernández, E., Eds.; Springer: New York, NY, USA, 2007; Volume 616, pp. 99–109. [Google Scholar]
- Hellebust, J.A.; Ahmad, I. Regulation of nitrogen assimilation in green microalgae. Biol. Ocenogr. 1989, 6, 241–255. [Google Scholar]
- Mera, R.; Torres, E.; Abalde, J. Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: Implications for the optimization of algal culture media. J. Phycol. 2016, 52, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Kotrba, P. Microbial biosorption of metals- General introduction. In Microbial Biosorption of Metals; Kotrba, P., Mackova, M., Urbánek, V., Eds.; Springer Nature: Berlin, Germany, 2011; pp. 1–6. [Google Scholar]
- Ahmad, A.; Bhat, A.H.; Buang, A. Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modelling. J. Clean. Prod. 2018, 171, 1361–1375. [Google Scholar] [CrossRef]
- Gaur, N.; Dhankhar, R. Removal of Zn2+ ions from aqueous solution using Anabaena variabilis: Equilibrium and kinetic studies. Int. J. Environ. Res. 2009, 384, 605–616. [Google Scholar]
- Wang, L.; Liu, J.; Filipiak, M.; Mungunkhuyag, K.; Jedynak, P.; Burczyk, J.; Fu, P.; Malec, P. Fast and efficient cadmium biosorption by Chlorella vulgaris K-01 strain: The role of cell walls in metal sequestration. Algal Res. 2021, 60, 103497. [Google Scholar] [CrossRef]
- Brinza, L.; Dring, M.J.; Gavrilescu, M. Marine micro and macro algal species as biosorbents for heavy metals. Environ. Eng. Manag. J. 2007, 6, 237–251. [Google Scholar] [CrossRef]
- Ankit; Bauddh, K.; Korstad, J. Phycoremediation: Use of algae to sequester heavy metals. Hydrobiology 2022, 1, 21. [Google Scholar] [CrossRef]
Parameters | Observed Values (n = 5) | Bangladesh Standards |
---|---|---|
pH | 6.97 ± 0.12 | 6.5–8.5 [38] |
EC (µS/cm) | 1573.93 ± 32.79 | 800–1000 [39] |
TDS (mg/L) | 935.55 ± 24.00 | 500 [39] |
BOD (mg/L) | 17.06 ± 1.35 | 6 or less [38] |
Ca2+ (mg/L) | 84.04 ± 3.14 | 123 as total hardness (sum of Ca2+ and Mg2+) [33] |
Mg2+ (mg/L) | 69.54 ± 3.55 | |
SO42− (mg/L) | 117.62 ± 4.50 | 200 [2] |
Zn (mg/L) | 0.35 ± 0.04 | 5 [41] |
Cr (mg/L) | 0.81 ± 0.03 | 0.1 [41] |
Mn (mg/L) | 0.65 ± 0.04 | 0.05 [41] |
Parameters | Before Phycoremediation | After 20 days of Phycoremediation (n = 5) | ||
---|---|---|---|---|
W-CV (% +/−) | W-AV (% +/−) | W-C (% +/−) | ||
pH | 6.97 ± 0.12 | 8.07 ± 0.17 (+15.78%) a | 8.28 ± 0.11 (+18.79%) b | 7.45 ± 0.11 (+6.89%) c |
EC (µS/cm) | 1573.93 ± 32.79 | 1388.10 ± 35.79 (−11.81%) a | 1014.63 ± 45.80 (−35.54%) b | 1496.46 ± 26.45 (−4.92%) c |
TDS (mg/L) | 935.55 ± 24.00 | 684.24 ± 65.07 (−26.86%) a | 633.70 ± 6.20 (−32.26%) b | 869.23 ± 28.74 (−7.09%) c |
BOD (mg/L) | 17.06 ± 1.35 | 8.97 ± 0.68 (−47.42%) a | 7.24 ± 0.74 (−57.56%) b | 13.24 ± 1.39 (−22.39%) c |
Ca2+ (mg/L) | 84.04 ± 3.14 | 31.11 ± 2.81 (−62.98%) a | 48.63 ± 2.23 (−42.13%) b | 79.09 ± 2.87 (−5.89%) c |
Mg2+ (mg/L) | 69.54 ± 3.55 | 19.22 ± 2.43 (−72.36%) a | 25.40 ± 2.72 (−63.47%) b | 62.14 ± 5.04 (−10.64%) c |
SO42− (mg/L) | 117.62 ± 4.50 | 55.04 ± 1.87 (−53.21%) a | 38.77 ± 2.68 (−67.04%) b | 107.30 ± 3.30 (−8.77%) c |
Zn (mg/L) | 0.35 ± 0.04 | 0.10 ± 0.02 (−71.43%) a | 0.04 ± 0.02 (−88.57%) b | 0.30 ± 0.05 (−14.29%) c |
Cr (mg/L) | 0.81 ± 0.03 | 0.07 ± 0.02 (−91.38%) a | 0.24 ± 0.03 (−70.37%) b | 0.76 ± 0.02 (−6.17%) c |
Mn (mg/L) | 0.65 ± 0.04 | 0.05 ± 0.02 (−92.31%) a | 0.16 ± 0.03 (−75.38%) b | 0.60 ± 0.03 (−7.69%) c |
Type of Polluted Waters | Microalgae/ Cyanobacteria | pH | EC | TDS | BOD | Ca2+ | Mg2+ | SO42− | Zn | Cr | Mn | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|
River water | C. vulgaris | 15.78 | 11.81 | 26.86 | 47.42 | 62.98 | 72.36 | 53.21 | 71.43 | 91.38 | 92.31 | This study |
A. variabilis | 18.79 | 35.54 | 32.26 | 57.56 | 42.13 | 63.47 | 67.04 | 88.57 | 70.37 | 75.38 | ||
River water | Chlorella sp. | 21.60 | 34.50 | 9.94 | 7.32 | 39.73 | 20.93 | 8.74 | - | - | - | [4] |
River water | Scenedesmus sp. | 14–20 | 32 | 32 | 27.83 | 70.26 | 33.93 | 43.61 | - | - | - | [29] |
Textile wastewater | A. variabilis | 36.51 | 57.14 | 41.18 | 56.36 | 15.69 | 22.97 | 31.67 | 45.71 | - | - | [36] |
N. muscorum | 28.58 | 54.29 | 37.25 | 54.55 | 13.73 | 18.92 | 23.33 | 43.57 | - | - | ||
Sewage water | C. vulgaris | - | - | 33.47–68.42 | 83.17–90.63 | 75.12–98.10 | 58.46–84.23 | - | 14.94–64.96 | 21.74–66.46 | 100 | [43] |
C. salina | - | - | 24.68–42.17 | 87.01–90.75 | 64.94–96.20 | 4.20–58.75 | - | 15.16–28.52 | 5.13–30.59 | 89.94–93.71 | ||
Tannery wastewater | Scenedesmus sp. | 48.21 | - | - | 35 | - | - | - | 65–98 | 81.2–96 | - | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahammed, M.S.; Baten, M.A.; Ali, M.A.; Mahmud, S.; Islam, M.S.; Thapa, B.S.; Islam, M.A.; Miah, M.A.; Tusher, T.R. Comparative Evaluation of Chlorella vulgaris and Anabaena variabilis for Phycoremediation of Polluted River Water: Spotlighting Heavy Metals Detoxification. Biology 2023, 12, 675. https://doi.org/10.3390/biology12050675
Ahammed MS, Baten MA, Ali MA, Mahmud S, Islam MS, Thapa BS, Islam MA, Miah MA, Tusher TR. Comparative Evaluation of Chlorella vulgaris and Anabaena variabilis for Phycoremediation of Polluted River Water: Spotlighting Heavy Metals Detoxification. Biology. 2023; 12(5):675. https://doi.org/10.3390/biology12050675
Chicago/Turabian StyleAhammed, Md. Shakir, Md. Abdul Baten, Muhammad Aslam Ali, Shahin Mahmud, Md. Sirajul Islam, Bhim Sen Thapa, Md. Aminul Islam, Md. Alim Miah, and Tanmoy Roy Tusher. 2023. "Comparative Evaluation of Chlorella vulgaris and Anabaena variabilis for Phycoremediation of Polluted River Water: Spotlighting Heavy Metals Detoxification" Biology 12, no. 5: 675. https://doi.org/10.3390/biology12050675
APA StyleAhammed, M. S., Baten, M. A., Ali, M. A., Mahmud, S., Islam, M. S., Thapa, B. S., Islam, M. A., Miah, M. A., & Tusher, T. R. (2023). Comparative Evaluation of Chlorella vulgaris and Anabaena variabilis for Phycoremediation of Polluted River Water: Spotlighting Heavy Metals Detoxification. Biology, 12(5), 675. https://doi.org/10.3390/biology12050675