Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Species
2.2. Occurrence Data Collection
2.3. Environmental Parameters Collection
2.4. Statistical Analysis and Suitable Habitat Modeling
3. Results
3.1. MaxEnt Model Performance and Environmental Variable Evaluation
3.2. Current Habitats
3.3. Historical Habitats and Refugia
3.4. Future Habitats in Different Carbon Emission Scenarios
3.5. Elevation and Latitude Effects
4. Discussion
4.1. Important Environmental Factors
4.2. Suitable Habitat Changes, as Well as Elevation and Latitude Effect
4.3. Historical Refugia
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insects pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Woodward, G.; Perkins, D.; Brown, L. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B: Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, K.D.; Provan, J. What do we mean by ‘refugia’? Quat. Sci. Rev. 2008, 27, 2449–2455. [Google Scholar] [CrossRef]
- Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M. The Last Glacial Maximum. Science 2009, 325, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Gavin, D.G.; Fitzpatrick, M.; Gugger, P.; Heath, K.D.; Rodriguez-Sanchez, F.; Dobrowski, S.; Hampe, A.; Hu, F.S.; Ashcroft, M.; Bartlein, P.; et al. Climate refugia: Joint inference from fossil records, species distribution models and phylogeography. New Phytol. 2014, 204, 37–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntley, B.; Webb, T. Migration: Species’ Response to Climatic Variations Caused by Changes in the Earth’s Orbit. J. Biogeogr. 1989, 16, 5–19. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Kumar, P.S.; Kabir, M.; Zuhara, F.T.; Mehjabin, A.; Tasannum, N.; Hoang, A.T.; Kabir, Z.; Mofijur, M. Threats, challenges and sustainable conservation strategies for freshwater biodiversity. Environ. Res. 2022, 214, 113808. [Google Scholar] [CrossRef]
- Chuine, I.; Beaubien, E.G. Phenology is a major determinant of tree species range. Ecol. Lett. 2001, 4, 500–510. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Thomas, C.D. A northward shift of range margins in British Odonata. Glob. Chang. Biol. 2005, 11, 502–506. [Google Scholar] [CrossRef]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Fox, R.; Thomas, C.D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 2006, 12, 450–455. [Google Scholar] [CrossRef]
- Kwon, T.-S.; Lee, C.M.; Kim, S.-S. Northward range shifts in Korean butterflies. Clim. Chang. 2014, 126, 163–174. [Google Scholar] [CrossRef]
- Lenoir, J.; Svenning, J.-C. Climate-related range shifts—A global multidimensional synthesis and new research directions. Ecography 2014, 38, 15–28. [Google Scholar] [CrossRef]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Wang, H.; Xiao, S.; Guan, Z.; Zhang, H.; Dumont, H.J.; Han, B.-P. Modeling and Prediction of the Species’ Range of Neurobasis chinensis (Linnaeus, 1758) under Climate Change. Biology 2022, 11, 868. [Google Scholar] [CrossRef] [PubMed]
- Pelini, S.L.; Dzurisin, J.D.K.; Prior, K.M.; Williams, C.M.; Marsico, T.D.; Sinclair, B.J.; Hellmann, J.J. Translocation experiments with butterflies reveal limits to enhancement of poleward populations under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 11160–11165. [Google Scholar] [CrossRef] [Green Version]
- Massolo, A.; Fric, Z.F.; Sbaraglia, C. Climate Change Effects on Habitat Suitability of a Butterfly in the Past, Present, and Future: Biotic Interaction between Parnassius Apollo and Its Host Plants; University of Pisa: Pisa, Italy, 2022. [Google Scholar]
- Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; et al. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- Li, X.; Mao, F.; Du, H.; Zhou, G.; Xing, L.; Liu, T.; Han, N.; Liu, Y.; Zhu, D.; Zheng, J.; et al. Spatiotemporal evolution and impacts of climate change on bamboo distribution in China. J. Environ. Manag. 2019, 248, 109265. [Google Scholar] [CrossRef]
- Ma, B.; Sun, J. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol. 2018, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Li, S.; Wang, X.; Chen, L.; Su, T. Cedrus distribution change: Past, present, and future. Ecol. Indic. 2022, 142, 109159. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zeng, H. Application of the MaxEnt model in improving the accuracy of ecological red line identification: A case study of Zhanjiang, China. Ecol. Indic. 2022, 137, 108767. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Y.; Huang, Y.; Zhang, J.; Mou, Q.; Qiu, J.; Wang, R.; Li, Y.; Zhang, D. Simulation of potential suitable distribution of original species of Fritillariae Cirrhosae Bulbus in China under climate change scenarios. Environ. Sci. Pollut. Res. 2021, 29, 22237–22250. [Google Scholar] [CrossRef] [PubMed]
- Qin, A.; Jin, K.; Batsaikhan, M.-E.; Nyamjav, J.; Li, G.; Li, J.; Xue, Y.; Sun, G.; Wu, L.; Indree, T.; et al. Predicting the current and future suitable habitats of the main dietary plants of the Gobi Bear using MaxEnt modeling. Glob. Ecol. Conserv. 2020, 22, e01032. [Google Scholar] [CrossRef]
- Wan, J.-Z.; Wang, C.-J.; Liu, C.-X.; Li, H.-L. Climate change may alter genetic diversity of Duchesnea indica, a clonal plant species. Biochem. Syst. Ecol. 2016, 66, 114–122. [Google Scholar] [CrossRef]
- West, A.M.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.; Bromberg, J. Field validation of an invasive species Maxent model. Ecol. Informatics 2016, 36, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.-J.; Cheng, X.; Yang, Z.-F.; Zhang, S.-H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- Yuan, H.-S.; Wei, Y.-L.; Wang, X.G. Maxent modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China. Fungal Ecol. 2015, 17, 140–145. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Li, R.; Wang, X.; Cheng, J.; Yang, Q.; Kong, H. AHP-GIS and MaxEnt for delineation of potential distribution of Arabica coffee plantation under future climate in Yunnan, China. Ecol. Indic. 2021, 132, 108339. [Google Scholar] [CrossRef]
- Augustine, B.; Eo, J.; Kim, M.-H.; Kim, M.-K.; Choi, S.-K.; Yeob, S.-J.; Bang, J.-H.; Eric, O.D. Effects of temperature and water management in rice fields on larval growth of Pantala flavescens (Odonata: Libellulidae). Environ. Biol. Res. 2021, 39, 536–541. [Google Scholar] [CrossRef]
- Hobson, K.A.; Anderson, R.C.; Soto, D.X.; Wassenaar, L. Isotopic Evidence That Dragonflies (Pantala flavescens) Migrating through the Maldives Come from the Northern Indian Subcontinent. PLoS ONE 2012, 7, e52594. [Google Scholar] [CrossRef] [PubMed]
- Borisov, S.N.; Iakovlev, I.K.; Borisov, A.; Zuev, A.G.; Tiunov, A.V. Isotope evidence for latitudinal migrations of the dragonfly Sympetrum fonscolombii (Odonata: Libellulidae) in Middle Asia. Ecol. Èntomol. 2020, 45, 1445–1456. [Google Scholar] [CrossRef]
- Devaud, M.; Lebouvier, M. First record of Pantala flavescens (Anisoptera: Libellulidae) from the remote Amsterdam Island, southern Indian Ocean. Polar Biol. 2019, 42, 1041–1046. [Google Scholar] [CrossRef]
- Samways, M.J.; Osborn, R. Divergence in a transoceanic circumtropical dragonfly on a remote island. J. Biogeogr. 1998, 25, 935–946. [Google Scholar] [CrossRef]
- Hedlund, J.S.U.; Lv, H.; Lehmann, P.; Hu, G.; Anderson, R.C.; Chapman, J.W. Unraveling the World’s Longest Non-stop Migration: The Indian Ocean Crossing of the Globe Skimmer Dragonfly. Front. Ecol. Evol. 2021, 9, 698128. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Watanabe, M. Daily Egg Production in Pantala Flavescens in Relation to Food Intake (Odonata: Libellulidae). Odonatologica 2016, 45, 107–116. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G. Where is positional uncertainty a problem for species distribution modelling? Ecography 2013, 37, 191–203. [Google Scholar] [CrossRef]
- Xu, D.; Li, X.; Jin, Y.; Zhuo, Z.; Yang, H.; Hu, J.; Wang, R. Influence of climatic factors on the potential distribution of pest Heortia vitessoides Moore in China. Glob. Ecol. Conserv. 2020, 23, e01107. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, L.; Zhang, X.; Guo, Z. Predicting the Potential Distribution of Hylomecon japonica in China under Current and Future Climate Change Based on Maxent Model. Sustainability 2021, 13, 11253. [Google Scholar] [CrossRef]
- Gong, L.; Li, X.; Wu, S.; Jiang, L. Prediction of potential distribution of soybean in the frigid region in China with MaxEnt modeling. Ecol. Informatics 2022, 72, 101834. [Google Scholar] [CrossRef]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total. Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Reckhow, K.H.; Qian, S.S. Modeling phosphorus trapping in wetlands using generalized additive models. Water Resour. Res. 1994, 30, 3105–3114. [Google Scholar] [CrossRef]
- Wood, S.N.; Pya, N.; Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 2016, 111, 1548–1563. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Major, D.C.; Demong, K.; Stanton, C.; Horton, R.; Stults, M. Managing climate change risks in New York City’s water system: Assessment and adaptation planning. Mitig. Adapt. Strat. Glob. Chang. 2007, 12, 1391–1409. [Google Scholar] [CrossRef]
- Chi, G.; Su, X.; Lyu, H.; Li, H.; Xu, G.; Zhang, Y. Prediction and evaluation of groundwater level changes in an over-exploited area of the Baiyangdian Lake Basin, China under the combined influence of climate change and ecological water recharge. Environ. Res. 2022, 212, 113104. [Google Scholar] [CrossRef]
- Schulte, P.M. What is environmental stress? Insights from fish living in a variable environment. J. Exp. Biol. 2014, 217, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Morrison, S.M.; Mackey, T.E.; Durhack, T.; Jeffrey, J.D.; Wiens, L.M.; Mochnacz, N.J.; Hasler, C.T.; Enders, E.C.; Treberg, J.R.; Jeffries, K.M. Sub-lethal temperature thresholds indicate acclimation and physiological limits in brook trout Salvelinus fontinalis. J. Fish Biol. 2020, 97, 583–587. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Yokoi, T.; Watanabe, M. Thermal factors affecting egg development in the wandering glider dragonfly, Pantala flavescens (Odonata: Libellulidae). Appl. Èntomol. Zoöl. 2016, 52, 89–95. [Google Scholar] [CrossRef]
- Marden, J. Large-scale changes in thermal sensitivity of flight performance during adult maturation in a dragonfly. J. Exp. Biol. 1995, 198, 2095–2102. [Google Scholar] [CrossRef] [PubMed]
- Schenk, K.; Suhling, F.; Martens, A. Egg distribution, mate-guarding intensity and offspring characteristics in dragonflies (Odonata). Anim. Behav. 2004, 68, 599–606. [Google Scholar] [CrossRef]
- Horváth, Z.; Ptacnik, R.; Vad, C.; Chase, J.M. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecol. Lett. 2019, 22, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, R.M.; Roy, P.S.; Chakravarthi, V.; Sanjay, J.; Joshi, P.K. Long-term land use and land cover changes (1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation. Ecol. Indic. 2018, 85, 21–36. [Google Scholar] [CrossRef]
- Wang, G.; Wang, C.; Guo, Z.; Dai, L.; Wu, Y.; Liu, H.; Li, Y.; Chen, H.; Zhang, Y.; Zhao, Y.; et al. Integrating Maxent model and landscape ecology theory for studying spatiotemporal dynamics of habitat: Suggestions for conservation of endangered Red-crowned crane. Ecol. Indic. 2020, 116, 106472. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Luo, Y.; Chen, X. The vegetation and climate at the last glaciation on the emerged continental shelf of the South China Sea. Palaeogeogr. Palaeoclim. Palaeoecol. 2000, 160, 301–316. [Google Scholar] [CrossRef]
- Wang, X.; Sun, X.; Wang, P.; Stattegger, K. Vegetation on the Sunda Shelf, South China Sea, during the Last Glacial Maximum. Palaeogeogr. Palaeoclim. Palaeoecol. 2009, 278, 88–97. [Google Scholar] [CrossRef]
- Borisov, S.N.; Iakovlev, I.K.; Borisov, A.S.; Ganin, M.Y.; Tiunov, A.V. Seasonal Migrations of Pantala flavescens (Odonata: Libellulidae) in Middle Asia and Understanding of the Migration Model in the Afro-Asian Region Using Stable Isotopes of Hydrogen. Insects 2020, 11, 890. [Google Scholar] [CrossRef]
- Lambret, P.; Boudot, J.-P.; Chelmick, D.; Knijf, G.D.; Durand, É.; Judas, J.; Stoquert, A. Odonata Surveys 2010–2016 in the United Arab Emirates and the Sultanate of Oman, with Emphasis on Some Regional Heritage Species. Odonatologica 2017, 46, 153–205. [Google Scholar] [CrossRef]
- Monnerat, C.; Dhafer, H.M.A. Odonata Records from Southwestern Saudi Arabia. Not. Odonatol. 2016, 8, 203–245. [Google Scholar]
- Zhou, L.; Tian, Y.; Wei, N.; Ho, S.-P.; Li, J. Rising Planetary Boundary Layer Height over the Sahara Desert and Arabian Peninsula in a Warming Climate. J. Clim. 2021, 34, 4043–4068. [Google Scholar] [CrossRef]
- Ssemmanda, I.; Gelorini, V.; Verschuren, D. Sensitivity of East African savannah vegetation to historical moisture-balance variation. Clim. Past 2014, 10, 2067–2080. [Google Scholar] [CrossRef] [Green Version]
- Keppel, G.; Van Niel, K.P.; Wardell-Johnson, G.W.; Yates, C.J.; Byrne, M.; Mucina, L.; Schut, A.G.T.; Hopper, S.D.; Franklin, S.E. Refugia: Identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 2012, 21, 393–404. [Google Scholar] [CrossRef]
- Keppel, G.; Wardell-Johnson, G.W. Refugia: Keys to climate change management. Glob. Chang. Biol. 2012, 18, 2389–2391. [Google Scholar] [CrossRef]
- Médail, F.; Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 2009, 36, 1333–1345. [Google Scholar] [CrossRef]
- Xue, P.; Pal, J.S.; Ye, X.; Lenters, J.D.; Huang, C.; Chu, P.Y. Improving the Simulation of Large Lakes in Regional Climate Modeling: Two-Way Lake–Atmosphere Coupling with a 3D Hydrodynamic Model of the Great Lakes. J. Clim. 2017, 30, 1605–1627. [Google Scholar] [CrossRef] [Green Version]
- Clites, A.H.; Wang, J.; Campbell, K.B.; Gronewold, A.D.; Assel, R.A.; Bai, X.; Leshkevich, G.A. Cold Water and High Ice Cover on Great Lakes in Spring 2014. Eos 2014, 95, 305–306. [Google Scholar] [CrossRef] [Green Version]
- Gronewold, A.D.; Anderson, E.J.; Lofgren, B.; Blanken, P.D.; Wang, J.; Smith, J.; Hunter, T.; Lang, G.; Stow, C.A.; Beletsky, D.; et al. Impacts of extreme 2013-2014 winter conditions on Lake Michigan’s fall heat content, surface temperature, and evaporation. Geophys. Res. Lett. 2015, 42, 3364–3370. [Google Scholar] [CrossRef] [Green Version]
- Van Cleave, K.; Lenters, J.; Wang, J.; Verhamme, E.M. A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niñ winter of 1997-1998. Limnol. Oceanogr. 2014, 59, 1889–1898. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Bai, X.; Hu, H.; Clites, A.; Colton, M.; Lofgren, B. Temporal and Spatial Variability of Great Lakes Ice Cover, 1973–2010*. J. Clim. 2012, 25, 1318–1329. [Google Scholar] [CrossRef]
- Karatayev, V.A.; Karatayev, A.Y.; Burlakova, L.E.; Padilla, D.K. Lakewide dominance does not predict the potential for spread of dreissenids. J. Great Lakes Res. 2013, 39, 622–629. [Google Scholar] [CrossRef]
- Bailey, R.M.; Smith, G.R. Origin and Geography of the Fish Fauna of the Laurentian Great Lakes Basin. Can. J. Fish. Aquat. Sci. 1981, 38, 1539–1561. [Google Scholar] [CrossRef]
- Collins, S.D. Fine-Scale Modeling of Riverine Odonata Distributions in the Northeastern United States. Ph.D. Thesis, Texas Tech University, Lubbock, TX, USA, 2014. [Google Scholar]
- Orr, A.G.; Hämäläinen, M. The Metalwing Demoiselles of the Eastern Tropics—Their Identification and Biology; Natural History Publications (Borneo): Kota Kinabalu, Malaysia, 2007; pp. 5–25. [Google Scholar]
Variables | CR (%) | PI (%) | RTGW | RTGO | TGW | TGO | AUCW | AUCO |
---|---|---|---|---|---|---|---|---|
BIO2 | 0.8077 | 2.9101 | 0.8348 | 0.0639 | 0.8770 | 0.0711 | 0.8426 | 0.6073 |
BIO3 | 4.1241 | 5.0757 | 0.8318 | 0.3587 | 0.8778 | 0.3684 | 0.8429 | 0.7075 |
BIO5 | 42.9567 | 48.1969 | 0.8115 | 0.6087 | 0.8539 | 0.6304 | 0.8393 | 0.7781 |
BIO8 | 0.6035 | 2.3714 | 0.8432 | 0.4787 | 0.8905 | 0.4998 | 0.8448 | 0.7606 |
BIO9 | 14.1083 | 19.1390 | 0.8327 | 0.5518 | 0.8784 | 0.5691 | 0.8438 | 0.7566 |
BIO13 | 26.3270 | 5.1150 | 0.8326 | 0.4763 | 0.8808 | 0.4852 | 0.8434 | 0.7447 |
BIO14 | 2.4172 | 3.4321 | 0.8409 | 0.2987 | 0.8846 | 0.3135 | 0.8438 | 0.7146 |
BIO15 | 0.4081 | 5.6594 | 0.8359 | 0.1045 | 0.8756 | 0.1151 | 0.8418 | 0.6125 |
BIO18 | 3.6003 | 1.3327 | 0.8407 | 0.4221 | 0.8842 | 0.4356 | 0.8439 | 0.7490 |
BIO19 | 2.7809 | 4.6792 | 0.8357 | 0.2384 | 0.8801 | 0.2505 | 0.8431 | 0.6892 |
ELE | 1.8663 | 2.0886 | 0.8326 | 0.2400 | 0.8746 | 0.2486 | 0.8417 | 0.6783 |
Scenario | Highly Suitable Habitat | Moderately Suitable Habitat | Lowly Suitable Habitat | Total |
---|---|---|---|---|
Historical | 752.698 | 3528.225 | 3748.250 | 8029.172 |
Current | 388.743 | 2453.779 | 3739.145 | 6581.667 |
SSP1-2.6 | 406.577 | 3651.409 | 4026.553 | 8084.539 |
SSP2-4.5 | 400.006 | 3634.743 | 3875.535 | 7910.285 |
SSP3-7.0 | 393.321 | 3648.141 | 3724.864 | 7766.326 |
SSP5-8.5 | 410.056 | 3636.386 | 3652.739 | 7699.181 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Wu, Z.; Wang, H.; Xiao, S.; Mo, P.; Cui, X. Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly. Biology 2023, 12, 226. https://doi.org/10.3390/biology12020226
Liao J, Wu Z, Wang H, Xiao S, Mo P, Cui X. Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly. Biology. 2023; 12(2):226. https://doi.org/10.3390/biology12020226
Chicago/Turabian StyleLiao, Jian, Zhenqi Wu, Haojie Wang, Shaojun Xiao, Ping Mo, and Xuefan Cui. 2023. "Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly" Biology 12, no. 2: 226. https://doi.org/10.3390/biology12020226
APA StyleLiao, J., Wu, Z., Wang, H., Xiao, S., Mo, P., & Cui, X. (2023). Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly. Biology, 12(2), 226. https://doi.org/10.3390/biology12020226