A Fuzzy-Based Model to Predict the Spatio-Temporal Performance of the Dolichogenidea gelechiidivoris Natural Enemy against Tuta absoluta under Climate Change
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assumption and Modelling Procedure
2.3. Data
2.4. Land Use/Land Cover Characterization
2.5. Presence of the Parasitoid Host, T. absoluta
2.6. Predicting the Spatio-Temporal Performance of D. gelechiidivoris
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lux, S.A.; Copeland, R.S.; White, I.M.; Manrakhan, A.; Billah, M.K. A new invasive fruit fly species from the Bactrocera dorsalis (Hendel) group detected in East Africa. Int. J. Trop. Insect Sci. 2003, 23, 355–361. [Google Scholar] [CrossRef]
- Mohamed, E.S.I.; Mohamed, M.E.; Gamiel, S.A. First record of the tomato leafminer, Tuta absoluta (Meyrick)(L epidoptera: Gelechiidae) in Sudan. EPPO Bull. 2012, 42, 325–327. [Google Scholar] [CrossRef]
- Goergen, G.; Kumar, P.L.; Sankung, S.B.; Togola, A.; Tamò, M. First report of outbreaks of the fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 2016, 11, e0165632. [Google Scholar] [CrossRef] [PubMed]
- Kwadha, C.A.; Okwaro, L.A.; Kleman, I.; Rehermann, G.; Revadi, S.; Ndela, S.; Khamis, F.M.; Nderitu, P.W.; Kasina, M.; George, M.K.; et al. Detection of the spotted wing drosophila, Drosophila suzukii, in continental sub-Saharan Africa. J. Pest Sci. 2021, 94, 251–259. [Google Scholar] [CrossRef]
- Giorgini, M.; Guerrieri, E.; Cascone, P.; Gontijo, L. Current strategies and future outlook for managing the neotropical tomato pest Tuta absoluta (Meyrick) in the Mediterranean Basin. Neotrop. Entomol. 2019, 48, 1–17. [Google Scholar] [CrossRef]
- Illakwahhi, D.T.; Srivastava, P.B.B.L. Control and management of tomato leafminer -Tuta Absoluta (Meyrick) (Lepidotera, Gelechiidae).A Review. IOSR J. Appl. Chem. 2017, 10, 14–22. [Google Scholar] [CrossRef]
- Machekano, H.; Mutamiswa, R.; Nyamukondiwa, C. Evidence of rapid spread and establishment of Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae) in semi-arid Botswana. Agric. Food Secur. 2018, 7, 1–12. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Wamalwa, M.; Obala, F.; Tonnang, H.E.Z.; Tefera, T.; Calatayud, P.-A.; Subramanian, S.; Ekesi, S. A deadly encounter: Alien invasive Spodoptera frugiperda in Africa and indigenous natural enemy, Cotesia icipe (Hymenoptera, Braconidae). PLoS ONE 2021, 16, e0253122. [Google Scholar] [CrossRef]
- Aigbedion-Atalor, P.O.; Mohamed, S.A.; Hill, M.P.; Zalucki, M.P.; Azrag, A.G.A.; Srinivasan, R.; Ekesi, S. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control 2020, 144, 104215. [Google Scholar] [CrossRef]
- Guimapi, R.Y.A.; Mohamed, S.A.; Okeyo, G.O.; Ndjomatchoua, F.T.; Ekesi, S.; Tonnang, H.E.Z. Modeling the risk of invasion and spread of Tuta absoluta in Africa. Ecol. Complex. 2016, 28, 77–93. [Google Scholar] [CrossRef]
- Fiaboe, K.R.; Agboka, K.; Agboyi, L.K.; Koffi, D.; Ofoe, R.; Kpadonou, G.E.; Agnamba, A.O.; Assogba, K.; Adjevi, M.K.A.; Zanou, K.T.; et al. First report and distribution of the South American tomato pinworm, Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae) in Togo. Phytoparasitica 2021, 49, 167–177. [Google Scholar] [CrossRef]
- Mansour, R.; Brévault, T.; Chailleux, A.; Cherif, A.; Grissa-Lebdi, K.; Haddi, K.; Mohamed, S.A.; Nofemela, R.S.; Oke, A.; Sylla, S.; et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 2018, 38, 83–112. [Google Scholar] [CrossRef]
- Yalcin, M.; Mermer, S.; Kozaci, L.D.; Turgut, C. Insecticide resistance in two populations of Tuta absoluta (Meyrick, 1917)(Lepidoptera: Gelechiidae) from Turkey. Türkiye Entomol. Derg. 2015, 39, 137–145. [Google Scholar]
- Sridhar, V.; Onkara naik, S.; Nitin, K.S.; Ashokan, R.; Swathi, P.; Gadad, H. Efficacy of integrated pest management tools evaluated against Tuta absoluta (Meyrick) on tomato in India. J. Biol. Control 2019, 33, 264–270. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Roditakis, E.; Campos, M.R.; Haddi, K.; Bielza, P.; Siqueira, H.A.A.; Tsagkarakou, A.; Vontas, J.; Nauen, R. Insecticide resistance in the tomato pinworm Tuta absoluta: Patterns, spread, mechanisms, management and outlook. J. Pest Sci. 2019, 92, 1329–1342. [Google Scholar] [CrossRef]
- Santana, P.A.; Kumar, L.; Da Silva, R.S.; Picanço, M.C. Global geographic distribution of Tuta absoluta as affected by climate change. J. Pest Sci. 2019, 92, 1373–1385. [Google Scholar] [CrossRef]
- Silva, G.A.; Picanço, M.C.; Bacci, L.; Crespo, A.L.B.; Rosado, J.F.; Guedes, R.N.C. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Manag. Sci. 2011, 67, 913–920. [Google Scholar] [CrossRef]
- Cocco, A.; Deliperi, S.; Delrio, G. Control of Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae) in greenhouse tomato crops using the mating disruption technique. J. Appl. Entomol. 2013, 137, 16–28. [Google Scholar] [CrossRef]
- Bawin, T.; Dujeu, D.; De Backer, L.; Francis, F.; Verheggen, F.J. Ability of Tuta absoluta (Lepidoptera: Gelechiidae) to develop on alternative host plant species. Can. Entomol. 2016, 148, 434–442. [Google Scholar] [CrossRef]
- Palacios, M.; Cisneros, F. Management of the potato tuber moth. Program 4. In Integrated Pest Management; Program Report; International Potato Center: Lima, Peru, 1995; pp. 87–91. [Google Scholar]
- Vallejo Cabrera, F.A. Mejoramiento Genético y Producción de Tomate en Colombia; Universidad Nacional de Colombia: Bogotá, Colombia, 1999. [Google Scholar]
- Moore, M.E.; Hill, C.A.; Kingsolver, J.G. Differing thermal sensitivities in a host–parasitoid interaction: High, fluctuating developmental temperatures produce dead wasps and giant caterpillars. Funct. Ecol. 2021, 35, 675–685. [Google Scholar] [CrossRef]
- Bai, B.; Smith, S.M. Effect of host availability on reproduction and survival of the parasitoid wasp Trichogramma minutum. J. Ecol. Antomol. 1993, 18, 279–286. [Google Scholar] [CrossRef]
- Hohmann, C.L.; Luck, R.F. Effect of host availability and egg load in Trichogramma platneri Nagarkatti (Hymenoptera: Trichogrammatidae) and its consequences on progeny quality. Braz. Arch. Biol. Technol. 2004, 47, 413–422. [Google Scholar] [CrossRef]
- Iverson, A.L.; Gonthier, D.J.; Pak, D.; Ennis, K.K.; Burnham, R.J.; Perfecto, I.; Rodriguez, M.R.; Vandermeer, J.H. A multifunctional approach for achieving simultaneous biodiversity conservation and farmer livelihood in coffee agroecosystems. Biol. Conserv. 2019, 238, 108179. [Google Scholar] [CrossRef]
- Agboka, K.M.; Tonnang, H.; Abdel-Rahman, E.; Kimathi, E.; Mutanga, O.; Odindi, J.; Niassy, S.; Mohamed, S.; Ekesi, S. A systematic methodological approach to estimate the impacts of a classical biological control agents dispersal at landscape: Application to fruit fly Bactrocera dorsalis and its endoparasitoid Fopius arisanus. Authorea, 2022; Preprint. Available online: https://europepmc.org/article/ppr/ppr475970 (accessed on 10 April 2022).
- Jamielniak, J.A. A mathematical approach to study stress-related behaviors in captive golden-bellied capuchins (Sapajus xanthosthernos). Comput. Ecol. Softw. 2016, 6, 83. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Bone, C.; Dragicevic, S.; Roberts, A. Integrating high resolution remote sensing, GIS and fuzzy set theory for identifying susceptibility areas of forest insect infestations. Int. J. Remote Sens. 2005, 26, 4809–4828. [Google Scholar] [CrossRef]
- Garcia, A.G.; Diniz, A.J.F.; Parra, J.R.P. A fuzzy-based index to identify suitable areas for host-parasitoid interactions: Case study of the Asian citrus psyllid Diaphorina citri and its natural enemy Tamarixia radiata. Biol. Control 2019, 135, 135–140. [Google Scholar] [CrossRef]
- Louis, G.N.; Aloo, F.; Were, K.; Kebeney, J.K.; Kibwage, J.; Sikei, G.; Wokabi, S.; Paul, M.N. Land, agriculture and livestock. no. GoK 2007. 2011; pp. 108–123. Available online: https://www.nema.go.ke/images/Docs/Regulations/KenyaSoECh6.pdf (accessed on 10 January 2022).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Bajonero, J.; Córdoba, N.; Cantor, F.; Rodríguez, D.; Cure, J.R. Biología y ciclo reproductivo de Apanteles gelechiidivoris (Hymenoptera: Braconidae), parasitoide de Tuta absoluta (Lepidoptera: Gelechiidae). Agron. Colomb. 2008, 26, 417–426. [Google Scholar]
- Cely Pardo, N.L. Determinación de Niveles de daño Ocasionados por Diferentes Densidades de Población de Tuta Absoluta (Lepidoptera: Gelechiidae) en Tomate Bajo Invernadero; CO-BAC: Bogotá, Colombia, 2006. [Google Scholar]
- Kinyanjui, G.; Khamis, F.M.; Ombura, F.L.O.; Kenya, E.U.; Ekesi, S.; Mohamed, S.A. Distribution, abundance and natural enemies of the invasive tomato leafminer, Tuta absoluta (Meyrick) in Kenya. Bull. Entomol. Res. 2021, 111, 658–673. [Google Scholar] [CrossRef] [PubMed]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Booth, T.H. Why understanding the pioneering and continuing contributions of BIOCLIM to species distribution modelling is important. Austral Ecol. 2018, 43, 852–860. [Google Scholar] [CrossRef]
- Aigbedion-Atalor, P.; Hill, M.P.; Azrag, A.G.A.; Zalucki, M.P.; Mohamed, S.A. Disentangling thermal effects using life cycle simulation modelling on the biology and demographic parameters of Dolichogenidea gelechiidivoris, a Parasitoid of Tuta Absoluta. J. Therm. Biol. 2022, 107, 103260. [Google Scholar] [CrossRef] [PubMed]
- Salehie, O.; Hamed, M.M.; bin Ismail, T.; Shahid, S. Projection of droughts in Amu Darya River Basin for shared socioeconomic pathways. Res. Sq. 2021; preprint. Available online: https://www.researchsquare.com/article/rs-1088081/v1 (accessed on 10 April 2022).
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A systematic review of landsat data for change detection applications: 50 years of monitoring the earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Young, N.E.; Anderson, R.S.; Chignell, S.M.; Vorster, A.G.; Lawrence, R.; Evangelista, P.H. A survival guide to Landsat preprocessing. Ecology 2017, 98, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling. R Package Version 3.3–7. 2020. Available online: https://cran.r-project.org/package=raster (accessed on 10 January 2022).
- Leroy, B.; Meynard, C.N.; Bellard, C.; Courchamp, F. virtualspecies, an R package to generate virtual species distributions. Ecography 2016, 39, 599–607. [Google Scholar] [CrossRef]
- Perfilieva, I. Fuzzy IF-THEN rules from logical point of view. In Computational Intelligence, Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2006; pp. 691–697. [Google Scholar]
- Keshwani, D.R.; Jones, D.D.; Meyer, G.E.; Brand, R.M. Rule-based Mamdani-type fuzzy modeling of skin permeability. Appl. Soft Comput. 2008, 8, 285–294. [Google Scholar] [CrossRef]
- Zadeh, L.A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man. Cybern. 1973, 1, 28–44. [Google Scholar] [CrossRef]
- Perfilieva, I. Analytical theory of fuzzy if-then rules with compositional rule of inference. In Fuzzy Logic; Springer: Berlin/Heidelberg, Germany, 2007; pp. 174–191. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Chicago, IL, USA, 2009. [Google Scholar]
- Mama Sambo, S.; Ndlela, S.; du Plessis, H.; Obala, F.; Mohamed, S.A. Ratio dependence effects of the parasitoid Dolichogenidea gelechiidivoris on its associated host Tuta absoluta. Biocontrol Sci. Technol. 2022, 32, 497–510. [Google Scholar] [CrossRef]
- Groth, M.Z.; Loeck, A.E.; Nornberg, S.D.; Bernardi, D.; Nava, D.E. Biology and thermal requirements of Fopius arisanus (Sonan, 1932) (Hymenoptera: Braconidae) reared on Ceratitis capitata eggs (Wiedemann) (Diptera: Tephritidae). Neotrop. Entomol. 2017, 46, 554–560. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Silva-Torres, C.S.A.; Matthews, R.W. Development of Melittobia australica Girault and M. digitata Dahms (Parker) (Hymenoptera: Eulophidae) parasitizing Neobellieria bullata (Parker) (Diptera: Sarcophagidae) puparia. Neotrop. Entomol. 2003, 32, 645–651. [Google Scholar] [CrossRef]
- Sow, G.; Arvanitakis, L.; Niassy, S.; Diarra, K.; Bordat, D. Performance of the parasitoid Oomyzus sokolowskii (Hymenoptera: Eulophidae) on its host Plutella xylostella (Lepidoptera: Plutellidae) under laboratory conditions. Int. J. Trop. Insect Sci. 2013, 33, 38–45. [Google Scholar] [CrossRef]
- Le Provost, G.; Thiele, J.; Westphal, C.; Penone, C.; Allan, E.; Neyret, M.; van der Plas, F.; Ayasse, M.; Bardgett, R.D.; Birkhofer, K.; et al. Contrasting responses of above-and belowground diversity to multiple components of land-use intensity. Nat. Commun. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Foba, C.N.; Akutse, K.S.; Fiaboe, K.K.M.; Lagat, Z.O.; Gitonga, L.M. Interaction between Phaedrotoma scabriventris Nixon and Opius dissitus Muesebeck (Hymenoptera: Braconidae): Endoparasitoids of Liriomyza leafminer. Afr. Entomol. 2015, 23, 120–131. [Google Scholar] [CrossRef]
- Nderitu, P.W.; Muturi, J.; Otieno, M.; Arunga, E.E.; Mattias, J. Tomato leafminer (Tuta absoluta) (Meyrick 1917) (Lepidoptera: Gelechiidae) prevalence and farmer management practices in Kirinyanga County, Kenya. J. Entomol. Nematol. 2018, 10, 43–49. [Google Scholar] [CrossRef]
- Usery, E.L.; Finn, M.P.; Scheidt, D.J.; Ruhl, S.; Beard, T.; Bearden, M. Geospatial data resampling and resolution effects on watershed modeling: A case study using the agricultural non-point source pollution model. J. Geogr. Syst. 2004, 6, 289–306. [Google Scholar] [CrossRef]
- Bell, J.R.; Aralimarad, P.; Lim, K.-S.; Chapman, J.W. Predicting insect migration density and speed in the daytime convective boundary layer. PLoS ONE 2013, 8, e54202. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Tobin, P.C. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 2008, 53, 387–408. [Google Scholar] [CrossRef]
- Ibrahim, E.A.; Salifu, D.; Mwalili, S.; Dubois, T.; Collins, R.; Tonnang, H.E.Z. An expert system for insect pest population dynamics prediction. Comput. Electron. Agric. 2022, 198, 107124. [Google Scholar] [CrossRef]
- Center, B.; Verma, B.P. Fuzzy logic for biological and agricultural systems. In Artificial Intelligence for Biology and Agriculture; Springer: Berlin/Heidelberg, Germany, 1998; pp. 213–225. [Google Scholar]
Months 1 | Western | Nyanza | Rift Valley | Central | Eastern | Coast |
---|---|---|---|---|---|---|
January | 21.0 | 23.6 | 18.9 | 19.3 | 19.6 | 27.9 |
February | 21.9 | 24.6 | 19.5 | 20.0 | 20.5 | 28.1 |
March | 21.6 | 23.9 | 19.3 | 19.8 | 20.4 | 28.7 |
April | 20.5 | 22.8 | 18.1 | 18.6 | 19.5 | 28.1 |
May | 19.5 | 22.5 | 17.2 | 17.7 | 18.7 | 26.6 |
June | 18.6 | 22.4 | 16.4 | 16.8 | 17.8 | 25.9 |
July | 18.2 | 22.5 | 16.1 | 16.3 | 17.2 | 25.4 |
August | 18.3 | 22.7 | 16.5 | 16.7 | 17.6 | 25.5 |
September | 19.0 | 23.2 | 17.5 | 17.9 | 18.8 | 26.2 |
October | 19.7 | 23.2 | 18.3 | 18.6 | 19.6 | 26.8 |
November | 19.8 | 22.7 | 17.7 | 17.8 | 18.7 | 27.2 |
December | 20.2 | 22.9 | 18.1 | 18.2 | 18.7 | 27.7 |
Temperature Threshold | Net Reproduction Rate (R0) | Fuzzy Partition Variable Names |
---|---|---|
10–15 °C | 0.13–1.55 | Suboptimal lower temperature threshold |
20 and 25 °C | 15–14 | Optimal |
30–35 °C | 2.18–0.06 | Suboptimal higher temperature threshold |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agboka, K.M.; Tonnang, H.E.Z.; Abdel-Rahman, E.M.; Odindi, J.; Mutanga, O.; Mohamed, S.A. A Fuzzy-Based Model to Predict the Spatio-Temporal Performance of the Dolichogenidea gelechiidivoris Natural Enemy against Tuta absoluta under Climate Change. Biology 2022, 11, 1280. https://doi.org/10.3390/biology11091280
Agboka KM, Tonnang HEZ, Abdel-Rahman EM, Odindi J, Mutanga O, Mohamed SA. A Fuzzy-Based Model to Predict the Spatio-Temporal Performance of the Dolichogenidea gelechiidivoris Natural Enemy against Tuta absoluta under Climate Change. Biology. 2022; 11(9):1280. https://doi.org/10.3390/biology11091280
Chicago/Turabian StyleAgboka, Komi Mensah, Henri E. Z. Tonnang, Elfatih M. Abdel-Rahman, John Odindi, Onisimo Mutanga, and Samira A. Mohamed. 2022. "A Fuzzy-Based Model to Predict the Spatio-Temporal Performance of the Dolichogenidea gelechiidivoris Natural Enemy against Tuta absoluta under Climate Change" Biology 11, no. 9: 1280. https://doi.org/10.3390/biology11091280
APA StyleAgboka, K. M., Tonnang, H. E. Z., Abdel-Rahman, E. M., Odindi, J., Mutanga, O., & Mohamed, S. A. (2022). A Fuzzy-Based Model to Predict the Spatio-Temporal Performance of the Dolichogenidea gelechiidivoris Natural Enemy against Tuta absoluta under Climate Change. Biology, 11(9), 1280. https://doi.org/10.3390/biology11091280