Spatial Heterogeneity of Root Water Conduction Strategies of Zygophyllaceae Plants in Arid Regions of China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area and Sample Collection
2.2. Sample Processing
2.3. Data Processing and Statistical Analysis
3. Results and Analysis
3.1. Change in the Vessel Characteristic Parameter Value of Zygophyllaceae Plants
3.2. Change Law of the Vessel Structure Parameter on the Precipitation Gradient of Zygophyllaceae Plants
3.3. Variation in Vessel Structure Parameters in Temperature Gradients of Zygophyllaceae Plants
3.4. Variation in Vessel Structure Parameters along the Elevation Gradient of Zygophyllaceae Plants
4. Discussion
4.1. Basic Performance Characteristics of Root Vessels of Zygophyllaceae Plants in Arid and Semi-Arid Areas in China
4.2. Characteristics of the Root Ducts of Zygophyllaceae Plants in Arid and Semi-Arid Areas of China Change along the Precipitation Gradient
4.3. Variation in Root Vessel Characteristics along the Temperature Gradient of Zygophyllaceae Plants in Arid and Semi-Arid Regions of China
4.4. Variation in the Coastal Uprooting Gradient of Root Vessel Characteristics of Zygophyllaceae Plants in Arid and Semi-Arid Areas of China
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, G.H.; Fu, B.J. Impact of global climate change on forest ecosystems. J. Nat. Resour. 2001, 1, 71–78. [Google Scholar]
- Maurel, C.; Nacry, P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat. Plants 2020, 6, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.H.; Pospíšilová, J. Xylem Structure and the Ascent of Sap. Biol. Plant. 1984, 26, 165. [Google Scholar]
- Hu, G.L.; Zhao, W.Z.; Wang, G. Reviews on spatial pattern and sand-binding effect of patch vegetation in arid desert area. Acta Ecol. Sin. 2011, 31, 7609–7616. [Google Scholar]
- Sun, A.A.; Zhi, Y.B.; Jiang, P.P.; Lü, K.; Zhang, D.J.; Li, H.L.; Zhang, H.L.; Wang, Y.F.; Hua, Y.P.; Hong, G.; et al. Characteristics of and differences in photosynthesis in four desert plants in western ordos. Acta Ecol. Sin. 2019, 39, 4944–4952. [Google Scholar]
- Chen, J. Water Use Strategies of Rare and Endangered Plants in West Ordos Desert of Inner Mongolia in China. Ph.D. Thesis, China Academy of Forestry Sciences, Beijing, China, 2016; pp. 105–108. [Google Scholar]
- Wu, K.S. Study of Hydraulic Lift in Zygophyllum xanthoxylum of Eremophytes. Master’s Thesis, Lanzhou University, Lanzhou, China, 2010; pp. 1–5. [Google Scholar]
- Zhou, Z.B.; Li, P.J. The study of morphological anatomy of dry plants in China. Arid. Zone Res. 2002, 2, 35–40. [Google Scholar]
- Shi, S.L.; Wang, Y.C.; Zhou, H.B.; Zhou, J.H. Comparative analysis of water related parameters and photosynthetic characteristics in the endangered plant Tetraena mongolica Maxim and the closely related Zygophyllum xanthoxylon (Bunge) Maxim. Acta Ecol. Sin. 2012, 32, 1163–1173. [Google Scholar]
- Zhang, W.Q.; Luo, G.P.; Zheng, H.W.; Wang, H.; Hamdi, R.; He, H.L.; Cai, P.; Chen, C.B. Analysis of vegetation index changes and driving forces in inland arid areas based on random forest model: A case study of the middle part of northern slope of the north Tianshan Mountains. Chin. J. Plant Ecol. 2020, 44, 1113–1126. [Google Scholar] [CrossRef]
- Shao, Z.L.; Zhou, W.Z.; Li, F.; Zhou, X.Y.; Yang, F. Spatiotemporal variation of vegetation phenophase and its response to climate change in Micang Mountains from 2003 to 2018. Acta Ecol. Sin. 2021, 41, 3701–3712. [Google Scholar]
- Chui, Z.Z.; Ma, C.; Chen, D.K. Space-time changes and climate response of vegetation in the Koryu Sands from 1982 to 2015. Arid Zone Res. 2021, 38, 536–544. [Google Scholar]
- Chen, L.R.; Li, Y.Y. Responses of stem hydraulic traits in Salix psammophila and Caragana korshinskii to manipulated precipitation variation. Chin. J. Appl. Ecol. 2018, 29, 507–514. [Google Scholar]
- Liu, C.Z. The vulnerability of water resources in northwest china. J. Glaciol. Geocryol. 2003, 25, 309–314. [Google Scholar]
- Ren, G.Y. On baseline vegetation in Northern China. Acta Ecol. Sin. 2004, 24, 1287–1293. [Google Scholar]
- Zhan, Y.F.; Ma, L.; Teng, Y.F.; Qian, W.J.; Lu, Y.F. Analysis of soil seed bank characteristics of artificial revegtated desert area in Hexi Corridor. Acta Ecol. Sin. 2022, 42, 1–13. [Google Scholar]
- Li, F.Y.; Ma, J.M.; Liang, S.C.; Tang, S.Q.; Xue, Y.G. A low-toxicity and high-effectiveness preparation method for plant paraffin section. J. Agric. 2014, 4, 83–85. [Google Scholar]
- Zhou, N.F.; Zhang, J.P.; Liu, H.; Zha, W.W.; Pei, D. Woody plant non-homogenized tissue paraffin slicing method. Chin. Bull. Bot. 2018, 53, 653–660. [Google Scholar]
- Zhang, J.Z.; Gou, X.H.; Yue, Z.Q.; Liu, W.Q.; Zhang, F.; Chao, Z.Y.; Zhou, F.F. Improved method of obtaining micro-core paraffin sections in dendroecological research. Chin. J. Plant Ecol. 2013, 37, 972–977. [Google Scholar] [CrossRef]
- Lewis, A.M.; Boose, E.R. Estimating Volume Flow Rates Through Xylem Conduits. Am. J. Bot. 1995, 82, 1112–1116. [Google Scholar] [CrossRef]
- John, S.S.; June, S.E.M. Xylem embolism in response tofreeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol. 1992, 100, 605–613. [Google Scholar]
- Lewis, A.M. Measuring the Hydraulic Diameter of a Pore or Conduit. Am. J. Bot. 1992, 79, 1158–1161. [Google Scholar] [CrossRef]
- Li, R.; Dang, W.; Cai, J.; Zhang, S.X.; Jiang, Z.M. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees. Chin. J. Plant Ecol. 2016, 40, 255–263. [Google Scholar]
- Jiang, S.; Ren, X.H.; Gu, S.; Li, J.; Xu, K. Wood anatomy of Tetraena mongolica maxim. (Zygophyllaceae). J. Trop. Subtrop. Bot. 2008, 16, 466–471. [Google Scholar]
- Carlquits, S.; Hoekman, D.A. Ecological Strategies of Xylem Evolution; University California Press: Berkeley, CA, USA, 1975; Volume 103, pp. 136–138. [Google Scholar]
- Pei, T.T.; Li, X.Y.; Wu, H.W.; Wu, X.C.; Chen, Y.; Xie, B.P. Sensitivity of vegetation water use efficiency to climate and vegetation index in Loess Plateau. China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 119–125. [Google Scholar]
- Wilcox, K.R.; von Fischer, J.C.; Muscha, J.M.; Petersen, M.K.; Knapp, A.K. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered precipitation regimes. Glob. Chang. Biol. 2015, 21, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Von Arx, G.; Archer, S.R.; Hughes, M.K. Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Ann. Bot. 2012, 109, 1091–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacke, U.G.; Sperry, J.S.; Wheeler, J.K.; Castro, L. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 2006, 26, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Cao, W.H. The ecological secondary xylem anatomy of 7 desert spsert species of leguminosae. Acta Bot. Sin. 1993, 35, 929–935. [Google Scholar]
- Li, J.R.; Peng, J.F.; Ynag, L.; Cui, J.Y.; Li, X.; Peng, M. Responses of radial growth of two coniferous species to climate factors in western Sichuan Plateau, China. Chin. J. Appl. Ecol. 2021, 32, 3512–3520. [Google Scholar]
- Wu, X.D.; Shao, X.M. An attempt was made to analyze the effects of climate change on tree growth using tree wheel width data. Acta Geogr. Sin. 1996, 30(07), 92–101. [Google Scholar]
- Han, J.S.; Zhao, H.Y.; Zhu, L.J.; Zhang, Y.D.; Li, Z.S.; Wang, X.C. Comparing the responses of radial growth between Quercus mongolica and Phellodendron amurense to climate change in Xiaoxing an Mountains, China. Chin. J. Appl. Ecol. 2019, 30, 2218–2230. [Google Scholar]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Wang, X.C.; Zhou, X.F.; Shun, Z.H. Research advances in the relationship between alpine timberline and climate change. Chin. J. Ecol. 2005, 24, 301–305. [Google Scholar]
- Niu, J.Q.; Yuan, Y.J.; Zhang, T.W.; Shang, H.M.; Zhang, R.B.; Yu, S.L.; Chen, F.; Jiang, S.X. Climate response characteristics of two tree wheel width chronometers in the Altai Mountains. Desert Oasis Meteorol. 2016, 10, 59–67. [Google Scholar]
Site ID | Site | Longitude | Latitude | Altitude (/m) | Precipitation (/mm) | Temperature (/℃) | Species | Number of Samples |
---|---|---|---|---|---|---|---|---|
S1 | Yanchi xian | 107°24′ | 37°50′ | 1380 | 278.01 | 8.14 | Peganum harmala | 5 |
S2 | Alashan zuoqi | 104°59′ | 37°52′ | 1670 | 180.58 | 8.39 | Peganum harmala | 5 |
S3 | Minqin xian | 102°55′ | 38°37′ | 1370 | 133.39 | 8.34 | Nitraria tangutorum, Sarcozygium xanthoxylon | 12 |
S4 | Wuwei shi | 102°25′ | 38°15′ | 1573 | 165.44 | 7.54 | Peganum harmala, Artemisia brachyloba | 12 |
S5 | Zhangye shi | 100°26′ | 38°41′ | 1793 | 240.88 | 4.14 | Peganum harmala, Zygophyllum fabago | 10 |
S6 | Zhangye shi | 100°08′ | 39°21′ | 1377 | 102.95 | 7.77 | Nitraria tangutorum, Zygophyllum gobicum | 8 |
S7 | Zhangye shi | 100°27′ | 38°45′ | 1584 | 154.40 | 7.47 | Nitraria tangutorum, Zygophyllum fabago, Peganum harmala, Tribulus terrestris | 16 |
S8 | Jiuquan shi | 98°46′ | 39°53′ | 1351 | 77.22 | 8.38 | Nitraria tangutorum | 4 |
S9 | Dunhuang shi | 93°48′ | 40°20′ | 1018 | 45.27 | 10.44 | Nitraria tangutorum | 3 |
S10 | Fukang shi | 89°20′ | 45°08′ | 800 | 155.28 | 3.72 | Peganum harmala, Zygophyllum potaninii | 7 |
S11 | Dabancheng | 88°34′ | 43°24′ | 1200 | 92.73 | 3.65 | Peganum harmala | 4 |
Species | Genera | Life Type |
---|---|---|
Nitraria tangutorum | Nitraria | Shrub |
Sarcozygium xanthoxylon | Sarcozygium | Shrub |
Artemisia brachyloba | Artemisia | Semi-shrub-like herb |
Peganum harmala | Peganum | Perennial herb |
Zygophyllum fabago | Zygophyllum | Perennial herb |
Zygophyllum mucronatum | Zygophyllum | Perennial herb |
Zygophyllum gobicum | Zygophyllum | Perennial herb |
Zygophyllum potaninii | Zygophyllum | Perennial herb |
Tribulus terrestris | Tribulus | Annual herb |
Elevation (m) | Precipitation (mm) | Temperature (℃) | |
---|---|---|---|
Elevation (m) | 1 | ||
Precipitation (mm) | 0.466 * | 1 | |
Temperature (℃) | 0.177 | −0.346 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Dong, Y.; Liu, J.; Li, Z.; Wang, X.; Keyimu, M.; Wang, C.; Gao, G.; Feng, X. Spatial Heterogeneity of Root Water Conduction Strategies of Zygophyllaceae Plants in Arid Regions of China. Biology 2022, 11, 1502. https://doi.org/10.3390/biology11101502
Chen Y, Dong Y, Liu J, Li Z, Wang X, Keyimu M, Wang C, Gao G, Feng X. Spatial Heterogeneity of Root Water Conduction Strategies of Zygophyllaceae Plants in Arid Regions of China. Biology. 2022; 11(10):1502. https://doi.org/10.3390/biology11101502
Chicago/Turabian StyleChen, Ying, Yanjun Dong, Jie Liu, Zongshan Li, Xiaochun Wang, Maierdang Keyimu, Cong Wang, Guangyao Gao, and Xiaoming Feng. 2022. "Spatial Heterogeneity of Root Water Conduction Strategies of Zygophyllaceae Plants in Arid Regions of China" Biology 11, no. 10: 1502. https://doi.org/10.3390/biology11101502
APA StyleChen, Y., Dong, Y., Liu, J., Li, Z., Wang, X., Keyimu, M., Wang, C., Gao, G., & Feng, X. (2022). Spatial Heterogeneity of Root Water Conduction Strategies of Zygophyllaceae Plants in Arid Regions of China. Biology, 11(10), 1502. https://doi.org/10.3390/biology11101502